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1. Introduction

One of the most interesting and cormonly pursued branches of
mathematics is the study of number theory. Its appeal lies not in its
applicability, but in a fascination for the properties of the numbers
themselves. It should be noted that, on occasion, problems of number
theory have contributed to more pragmatic branches of mathematics and hence
to a practical application. Frequently this happens without the original
author's expectation or intentior since he was merely remarking on what he
considered to be a singular or unusual facet of the employed nurber system.

Such a problem is that which involves the rearrangement of the digits
of a given integer. The algebra student frequently encoumters problems
of this nature while studying systems of equations. lile is asked to find
an 1nteger such that the sum of this integer and the integer generated by
reversing the order of the digits is equal to a second given integer. The
student, if he progresses to the study of an actual course in number theory,
will again encounter problems involving reversing the order of the digits
of wnknown integers, and at this time further stipulations will be added.
It 1s this problem with which this paper will deal.

In this paper, as in most work done in number theory, we shall be
using the set of integers and any alphameric symbols, unless stated
otherwise, will be understood to represent integers. We shall emmlcy the
system of axioms sssociated with the integers; this system can be found
in any elementary algebra text. In additien, we shall here introduce

a further postulate which will be enpleoyed in one of the following three



equivalent forms:

(1) First form of the Principle of Mathematical Induction. Any
set of positive integers which contains the integer 1 and the integer k+1
whenever it contains the positive integer k, contains all positive
integers.

{Z) Second form of the Principle of Mathematical Induction. Any
set of positive integers which contains 1 and k+1 whenever it contains the
integers 1 to k inclusive, contains all positive integers.

(3) Well Ordering Principle. Every non-empty set of positive

integers has a least element.

The preceding postulate is a powerful tool cormonly used to establish
conjectures for the whole of the integers when one knows the conjecture
to be true for a finite subcollection, While we shall later emnley tha
postulate in just this manner, its immediate ccnsequence is a fundamental

property referred to as the Division Algorithm.

Theorem 1.1, For any m>0 and integer a, there exist unique integers

q and r with 0<r<m such that a=mq+r.

The Division Algorithm states that if we were to subtract
suf{iciently many multipnles of n from the integer a, we would eventually
be left with a remainder or residue r, which it would not be possible
to reduce further under the restriction that r be positive. Consequently,
it could be said that there is a connection between the integer r and a.

This conriection is called congruence and is further delineated by:



Definition 1.1. If n is a positive integer greater than one and n

divides (a-r), we say '"'a is congruent to r modulo n'" and we write

azr(mod n). If a is not congruent to r mcdulo n, we write afr(mod n).

Definition 1.2. If a=nq + r with O<r<«, then r is the '"least residue"

of a modulo n. In general, if azs(mod n) then s is called a

""residue" of a modulo n.
The posulate of Mathematical Induction also gives us the following:

Theorem 1.2. Let b>1. Then every M>0 can be uniquely represented

in the form

Mray + apb + azbz tooo t ak_lbk'1 # akbk

with a #0, k>0, and O<a;<b for izk.
We shall use the preceding theorem in conjunction with the special
case b=10 and the standard notation

k
+ 3110 800 aklo .



We make the following observations:

k
(1) if t is a constant, iZotai=ta0 *ta) 4ol 4 otay

=t(a0 +ta; ..t ak)

=t
i

a.
Ol

o~ %

k k
(2) if a.=1 for all i, ] t=] ta,
t i=1 i=1 !

=t(l +1 +... +1)
=tk

K
@ izo(ai * by)=(ag + bg) + (a + by +... + (3 + by)

=(a0 tap bt ak) + (bo + b1 W bk)

(4) ai=0 for all i<O0,

We know sufficient information to now pose the question that shall

be the concern of this paper:

Let n be a positive integer. Does there exist a positive integer

e 1 . k ...
4-30 + 3110 Foe. * aklo with aO#O such that

1), k-1
M+a +a 100+ a 107 4w 210570 4 2 108 20(mod n)2

™~



We shall conclude the introduction by stating two elementary

~theorems of number theory.

k
Theorem 1.3. Let M=.Z

ailol. Then 11 divides M if and only if
i=0

ai(-l)iEO(mod 1),

k
!

i=0

It shall later be shown that numbers which are the sums of addends,
each of which is the reversed image of the other, are frequeuily civisible
by 11. Consequently, this theorem will constitute a useful check.

The second theorem deals with congruences and will form a basis for
the proof of the existence of an integer M and its image such that these

integers satisfy the conditions of the question.

Theorem 1.4, The linear congruence axzc(mod n) is solwvable if and

only if the greatest common divisor of a and n also
divides c where the greatest common divisor of a and

n is the largest positive integer that divides a and
n, and is such thet any other divisor of a and n also
divides it, and it is denoted by d=(a,n). Furthermore,
if there are any solutions, there are precisely d

incongruent solutions.



2. An Alternating Generator

Let M be any positive integer, then by Theorem 1.2 there exist
integers agy 315 Ay, eeey A such that:

(D 05a159, for 0<i<k-1

(2) 1:ca 29,

: K ;
(3) M= ] a;10%.
i=0

For the purpose of this paper, we shall further assume that 15a059 .

so that M defined by
_ Kk i
i2.1) hhizoak_ilo
makes sense.
Letting S=M + M, we have

Y a0t s i
(2.2) 5= ) a. 10 + ;10
i=0 ! j2o k-1

K i
=i£0(ai +a_;)10

1 2
=(a, + ak)lo0 + (3, ak-l)lo + (a2 + ak_z)lo

b (agq * al)mk'l + (a + )10k,

A careful examination of the coefficients of the powers of ten in

k

(2.2) tells us that the coefficients of 100 and 10™ are the same; 2as

are the coefficients of the pairs (101,10k-1), (102,10K°2), (103,10k43),



k-4 KX,

(lC 10 ), ..., (lox,lu J; where the value of x is dependent upon

the number of digits in M,

| If there is an even number of digits in M, then there is an even
nunber of terms in S and k is odd so that there exists an integer x such
that k=2x+1. In this case, all the coefficients of (2.2) can be paired;
that is, for every term involving 101, 0<i<x, there is another term
involving 10}('i having the same coefficient. Hence, we have

(2.3) S=(ay * a5,,7) (107 + 10%) + (a; + &, ) (207X + 107

2x-1

2
+ (a2 + aZX_l)(IO + 10%) +... +

x+2

x-1 x+1 X
(ax_1 2)(10 10 %) + (ax + ax+1)(10 + 107)

=(a0 + a2x+1)(10 + 1) + (a1 + azx)(lo

2x-1 2
+ (a2 + aZX_l)(lo + 1)10° +,.. +

(a g+ ax+2)(103 + 11051 & (a, + a,,,) (10 + 1)10*

b 23
= LG5 Ak Qo2 4 10t
1=
-3 e;10* (102 ("1 4
i=0 *
vhere e;=a; * a5 9.4 and is such that 0Oze;<18 for 1<izx and 2cey<18

because of the restrictions on a; for O<ic<k.



If there is an odd nuwer of digits in M, then there is an odd
nunber of terms in S and k is even so that there exists an integer x such
‘that k=2x. In this case, all the coefficients of (2.2), with the exception
of one, can be paired; that is, for every temm involving 101, 0<i<x-1,
there is another term involving 1ok'i having the same coefficient. The

exception is the coefficient of 10% which is unpairable. Hence, we have
: > 2x 0 2x-1
(2.4) S=(a, + a2x)(10 +107) + (a; + aZX_l)(lo + 10)

2x-2

2
+ (a2 + azx_z)(lo + 10°) +... +

x+1 x-1 x
(ax_1 + ax+1)(10 + 100 ) + Zaxlo

2x-2

=(ay + 3, ) (107 + 1) + (a; + a,, 1) (10772 + 110

2x-4

+ 1) +l'. +

+ (ay + ap, )10

2 -1 x
(a1 * A,q) (W07 + 1107 + 22,10

X . s
=1 (a; + aZx_i)lol(IOZ(x 1,
i=0

filoi(loz(x‘i) + 1)

2 |

o~

0

v

where f.=a, + a, _; and is such that 0<f; <18 for 1l<i<x-1, Offxfg, and

2x-1

2<£,<18 because of the restrictions. on a; for 0<ic<k.



Let us now assume that we are given a number S which can be written
in the form of (2.3) or (2.4). We shall show that there exist integers
M and fT such that S=M + M, where M and M satisfy the restrictions

previously given.

X : .
Suppose that S=.z eilﬂl(loz(x-l)+l + 1)

1=0

where 0ce;<18 for 1<i<x and 2<e<18.

Choose a, such that

(2.5) maximum{o,eo-10}<a0<minimum{e0,10}
and let
(2.6) a, +1°€0"3p°

it 1s obvious from (2.5) that U<30<10 so tnat 153059. using (2.3)
again, we see that e0-10<a0<eO so that -10<ao-e0<0 or lfeo-aofg.
flence, l<a, ,;29.

If 1<i<x, we choose a; such that

(2.7) maximum{0,e.-9}<a, sminimumf{e, ,9}
and let
2.8 xe1-i%1 734"

As before, it is obvious from (2.7) that 0<a;<9 and O<e,-a;=a, 9.

x+1-i2
Using (2.7) and (2.8) together with our suppositions, we have

X
(2.9 S= )

eilol(loz("‘“+l + 1)
i20



X X
2x+1-1i il
=)a, .. .10 + Ja.l0
j=p 2x*1-1 L™
X X
2x+1-i i
k Lzoailo iZoaz;cﬂ 110
2x+1 2x+1
= a.10” + a. 10
1—>z£r’ 120 -)zc+laZX+1- z 87X+1 oy
2x+1 2x+1
120 a; 10" 2 3y 41- 110
=M + M

where M and M satisfy the restrictions previcusly given.

Let us now assume that S= Z £,10 1(102(x-1)

i=0 *

+ 1)

where 0<f,<18 for lcigx-1, 2¢£,<18, and 0<f <9.

Choose an aosuch that

(2.10) maximum{O,50-10}<a0<minimum{f0,10}

and let

Ay~ fo aye

(2.11)
Using (2.10) and an argusent similar to that for the case where

S involved the e;, we see that 1<a;<9, and l<a, =f,- a,<9.

10



11

If 1<i<x-1, we choose a; such that

(2.12) maximm{0,£,-9}<a, sminimm{f,,9}
and let
(2.13) azx-i=fi‘ai.

Using (2.12) and a familiar argument, we see that 05a159 and

0<f.-a.=a 9.
-1

. %
i "2x-1i-

If i=x, the expression for S tells us that we have folox. We let

a, be given by

(2.14) ax=fx'

By (2.11), (2.13), and (2.14), together with our assumptions, we see,

+1% .
the ey, that

by an argument similar to that for the case where S involves

X
(2.15) S= ]

filoi(lozcx'i) + 1)
1i=0

x-1 : :
_ . 2x-1 |, 41 x
_izo(aZX'i +a.)(10 +107) + 2a 10

x-1 _ioox-1 -
=V a, 10771 4 77 a 10t + a 10"
. 2x-1 L1 X
i=0 i=0
x-1 . Xx-1 .
. ] 2x-1 X
+ ,E a, ;10" + _Z a;10 +a 10
i=0 =0
2x . X 3 25 - X -
=T a10ts Jat0te T oa102t s §aq0%E
S| i=0 * i=x+1 1=0
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2x i 2x
= 13,100+ )
l=

p—
) ail0..x i
i=0

0

=M + N
where M and M satisfy the restrictions previously given.

The preceding discussion proves the following theorem:

Theorem 2.1. A necessary and sufficient condition for a positive

integer S to be written in the form M + T, where

k . :
M=} ailol with C<a; <9 for 1<i<k and 1za;<9 for i=0 or k
i=0 -

k :
and ﬂé.g ak_ilo1 is
i=0
%

(@ s=]

e; 107102 4 1) yhere k=241,
i=0

€;=a; * 45,414 and is such that O<e, <18 for 1l<icx, and

2<e,<18; or

2(x-1) - 3
+ 1) where k=2x, fi-ai tay s

X .
) s=) filol(lo
i=0
and is such that 0<f,;<18 for 1l<izx-1, ng*gQ, and

25f0518.

In Tables I and II, we find a partial list of integers which can te

written in the form S=M + M. A careful examination of Tables I and II

leads one to the following theorzms:



Table I
The following is a list of numbers which are of the form

£, 10" (107 (x-1) 4 1) and which are less than 2000.

Z 504 807 1110 1413 1716
4 505 808 1111 1414 1717
6 524 827 1130 1433 1736
8 525 828 1181 1434 1737
10 544 847 1150 1453 1756
12 545 848 1151 1454 1757
14 564 867 1170 1473 1776
16 565 868 1371 1474 1777
18 584 887 1190 1493 1796
585 888 1191 1494 1797
202
B2 605 908 1211 1514 1817
242 606 an9 1212 1518 1218
262 625 218 1281 1534 1837
282 626 929 1252 1535 1838
645 948 1251 1554 1857
302 646 949 ¥I52 1555 1858
303 665 968 1371 1574 1877
322 666 966 1272 1575 1878
323 HRS 853 1291 15¢4 1897
342 686 9389 1292 1595 1998
343
362 706 1009 1312 1615 1918
363 707 1010 1313 1616 1938
382 726 1029 1332 1635 1958 .
383 727 1030 1383 1636 1978
746 1749 1352 1655 1598
747 1050 1353 1656
403 766 1N5G 1372 1675
404 767 1570 1373 1676
4723 786 1082 1392 1695
124 787 1090 1393 1696
443
444
463
464
483
484

292583 SOUTH DAKOTA STATE UNIVERSITY LIBRARY
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The following are numbers which are of the form

Table II

X s .
s= 1 ;107102 D*1 4 1) and which are less than 20,000.

i=0

22
33
44
55
66
g
8§38
99

110
21
132
143

TCcA
do-r

165
176
187
198

2002
212
2222
2332
2442
2552
2662
3372
2882
2992

3003
3102
3113
3212
3223
3322
3333
3432
3443
3542
3553
3652
3663
3762
3773
3872
3883
3982
3993

4004
4103
4114
4213
4224
4323
4334
4433
4444
4543
4554
4653
4664
4763
4774
A873
4834
4983
4994

5005
5104
5115
5214
5225
5324
5335
5434
5445
5544
5555
3654
5665
£764
5775
5874
5885
5984
5995

6006
6105
6116
6215
6226
6325
6336
6435
6446
6545
6556
6655
6666
6765
6776
6875
6886
€985
6996

7007
7106
7117
7216
7227
7326
7337
7436
7447
7546
7557
7655
7607
7766
Lo
7876
7887
7986
7997

8003
8107
8118
8217
8228
8327
8338
8437
8448
8547
8558
8657
8668
8767
8778
8877
8888
8987
8998

9009
9108
9119
9218
9258
9328
9339
9438
9449
9548
9559
9658
9669
8768
377
9878
9889
9988
9999

10,010
10,109
10,120
10,219
10,230
10,329
10,340
10,439
10,450
10,549
10,560
10,659
10,670
10,769
10,780
10, 879
10,890
10,989

14

11,000
1163
11,110
11,129
11,220
11,230
11,330
11,341
11,440
11,451
11,550
11,561
11,660

) z -

41,071 .
19,276
11,781
11,880
11,891
11,990

12,001
12,012
12,104
g, 420
113t
.=
12, 331
12,3242
12,441
12,452
12 851
12,562
12,661
12,672
12,771
12,782
12,881
12,892
12,991



13,002
13,013
13,112
13,123
13,222
13,233
13,332
13,343
13,442
13,453
13,552
13,563
13,662
13,673
13,772
13,783
13, 882
13,893
13,992

14,003
14,014
14,113
14,124
14,223
14,234
14,333
14,344
14,443
14,454
14,553
14,564
14,663
14,674
14,773
14,784
14,883
14,894
14,993

15,004
15,015
15,114
15,125
15,224
15,235
15,334
15,345
15,444
15,455
15,554
15,565
15,664
15,675
15,774
15,785
15,884
15,895
15,994

16,005
16,016
16,115
16,126
16,225
16,236
16,335
16,346
16,445
15,456

16,55
16,566
16,665
16,676
16,775
16,785
15,885
16,896
16,995

Table II continued

17,006
17,017
17,116
275, 127
17,226
17,237
17,336
17,347
17,446
17,457
17,556
17,567
17,666
17,677
17,776
17,787
17, 886
17,897
17,996

18,007
18,018
18,117
18,128
18,227
18,238
18,337
18,348
18,447
18,458
18,557
18,568
18,667
18,678
18,777
18,788
18,887
13,898
18,597

19,008
19,118
19,228
19,338
19,448
19,558
19,668
19,778
19,888
19,998

15



16

2(®*1)+41

Theorem 2.2. If S= + 1) then 11 divides S.

Il e~

i
eilo (10

i=0

Proof.--Since 10=-1(mod 11), we have 102("1)*1_920(-1)+1_ 514 19y,

Hence, S=0(mod 11) and 11 divides S; for which we write 11|S.

X . .
Theorem 2.3. Let S=M + }E Z filol(loz(x-l) + 1). Then there exists
i=0

an M=N if and only if 2|f; for O<is<x-1.

k

Proof.--Because of the form of S, we know that M= Z ai101 where k=2x.
i=0

It is now obvious that Mell if and only if a, .=a. for O<i<x-1 if

and only if fi=2a for 0<i<x-1.

X . s
Theorem 2.4, Let S=M + M | ;10" (10°"D*1 + 1), Then there

i=0

exists an M=M if and only if 2|e; for O<icx.

Proof.--Since the proof of Theerem 2.4 is identical to that of

Thearem 2.3, the details have been omitted.

Theorem 2.5. If O<e; + ei_1518 for 1<i<x-1, 05ex59, and ?_ﬁeOng, then

X . (=i x+1 -

11 § e, 10802 * 4 1= 7 £.10 (20
. 1 =0 1

i=0 1

2(x+1-1) , 4



Proof.--Using the simple fact that 11=10 + 1, we have

13 e, 101 (102X 1)*1 4
i=0 1

X 0 .
=.Zoei(102x.“’2 + 101+1 Z e. (IOZX i+1 + 10 )
1= i=0 1

X . X . X 5
2x- . 5 i
=.Z eilo X=-1+2 + Z eilol"'l + z ei102x 1+1 + Z e.101
i=0 i=0 i=0 i=0

X . X :
=7 eilozx 12 J e l Z e 102%-1*2 ) e.101
i=1 i=1 * j=1 1 i=1 !
2x+2 Xl rama Xl
e010 + exlo + exlo * e
£ ip102(x-1+1) 2x+2 +1
=.Zl(ei + e;_1)107(10 + 1) + eq(l0 - 1) + 2e 1ox
1=
x+1
Zof 10t (102 (x*1-1) , qy
i=

where fi=ei +e; q for l<i<x, fo—eo, and £, ,=e '+ Obviously, the

fis satisfy the conditions of Part (b) ot Theorem 2.1.

Table III illustrates the results of Theorem 2.5.

17



Table III

18

The entries of Table III are the result of multiplying the entries of

Table II by 11.

An asterisk (*) indicates that the entry cannot be written

in the form S=M + M,

242
363
484
605
726
847
968
1089

1210*
1331%
1452%*
1575
1694%
1815*
1936*
2057*
2078*

22,022
not

24,442
25,652
26,862
28,072
29,282
30,492
31,702
32,912

33,033
34,122*
34,243
25,332%
35,453
36,542*
36,663
37,752%
37,773
38,962*
39,083
40,172*
40,293
41,382*
41,503
42.592*
42,713
43,802%
43,923

44,044
45,133*
45,254
46 ,343%*
46,464
47,553%*
47,674
48,763%
48,884
49,973*
50,094
51,183%*
51,304
52,393%*
52,514
532,603*
53,724
54,813*
54,934

55,055
56,144*
56,265
57,354%
57,475
58,564*%
58,685
59, 774*
59, 895
50,984%
61,115
62,695*
62,315
63,364*
63,525
64,614%
64,735
65,824*
65,945

66,066
67,155*
67,276
68,365*
68,485
69,575%
69,696
70,785%
70,906
71,995*%
72,116
73,205%
73,336
74,415%
74,536
75,625%
75,746
76,835*
76,956

77,077
78,166*
78,287
79,376*
79,497
80,586%
80,707
81,796*
31,917
83,006*
83,127
84,216*
84,337
35,426*
85,547
86,636*
86,757
87,846*
87,967

88,088
89,177%
89,298
90,38§7%
90,508
91,597*
91,718
92,807*
92,928
94,017*
94,138
95,227*
95,348
96 ,437*
96,558
97,647*
97,768
98,857*
98,978

99,099
100,188*
100,309
101, 398*
101,519
102,608*
102,729
103,818*
103,539
105,028*
105,149
166,238*
106,359
167,448*
107,569

© 108,658*

108,779
109, 868*
109,989

110,110
111,199*
111, 320
112,409*
112,530

113,619* .

113,740
114,829*
114,950
116,039*
116,160
117,249*
117,370
118,459*
118,580
119,660*
119,790

17"\ 0'7



121,000%
121,121
122,210%
122,331
123,420%
123,541
124,630*
124,751
125,840*
125,961
127,000%
1275171
128,260*
128,381
129,470%
129,591
130,680*
130,801%
131,890*%

132,011*
132,132
133,211*
133,342
134,431*
134,552
135,641*
135,762
136,851*
136,972
138,061*
138,182
139,272%
139,392
140,481*
140,602
141,691*
141,812%
142,301*

143,022*
143,143
144,232#
144,353
145,442%
145,563
145 ,552%
146,773
147,862*
147,983
149,072*
149,193
159,282*
150,403*
151,492*
151,613*
152,702%
152,823*
153,912¢%

154,033*
154,154

155,243%
155,364

156 ,453*
156,574

157,663*
157,784

158,873*
158,994

160,083*
160,204*
161,293*
161,414*
162,503*
162,624*
163, 713*
163,834*
164,923*

Table III continued

165,044*
165,165

166,254%
166,375

167,464*
167,585

168,674*
168,795

169, 884*
170,005*
171,094*
171,215*%
172,304*
172,425%

173,514*% _

173,635%
174,724*
174,845*
175,934*

176,005%
176,176

177,265*
177,386

178,475*
178,596

179,686*
179,806 *
186,895*
181,016*
182,105%
182,226*
183,315*
183,436*
184,525*
184,646*
185,735%
185,856*
186,945%

187,066*
187,187
188,276*
188,397
189,486*
189,607*
190,696*
190,817*
191,906*
192,027+
193,116*
193,437*
194,326%
194,457%
195,536*
195,657*
196 ,746*
196,867*
197,956*

108,077*
198,198

199,287+
199,408%
200,497*
200,618*
201,707*
201,828*
202,917*%
203,038%
204,127*
204,248%
205,337*
205,458*
206,547*
206,668%
207,757*
207,878*
208,967*

209,088*
210,298*
211,508*
212,718*
213,928*
215,138*
216,348%
217,558*
218,768*
219,978*
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The entries of Table IV are the result of miltiplying the entries of
Table I by 11,

in the form S=M + M,

5544
5555
5764
5775
5984
5995
6204*
6215
6424%*
6435

6655
6666
6375
6886
7095%*
7106
7315%
7326
7535%*
7546

7766
7777
7986
7997
8206*
8217
8426*
8437
8646*
8e57

8877
8888
9097*
9108
9317%
9328
9537*
9548
9757*
9768

9988
9999
10,208*

10,219
10,428%
10,439
10,648*
10,659
10,868%
10,879

11,099*
11,110
11,319*
11,330
11,539*
11,550
11,759%
11,770
11,979%
11,990

Table IV

12,210%
12,221
12,430*
12,441
12,650*
12,661
12,870*
12,881
13,090%
13,101*

13,211%

13,332

Ys f.'ﬁl‘k

.Lv’.)‘\
13,552
13,761%
13,772
13,981*
13,992
14,201%
14,212*

14,432%
14,443

14,652*
14,663

14,872*
14,883

15,092*
15,103*
15,312%
15,323%

15,543%
15,554

15,783*
15,774

15,983*
15,994

16,203*
16,214%
16,423*
16 ,434*%

16,654*
16,665

16,874%
16,885

17,004%
17,105%
17,314%
17,325*%
17,534%
17,545%

17,765%
17,776

17,985%
17,996

18,205*
18,216%
18,425*
13,436*
18,645*
18,656 %

18,876*
18,887

19,096*
19,107*
19,316*
19,327*
19,536*
19,547*
19,756*
19,767*

19,987*
19,998

20,207*
20,218*
20,427*
20,438*
20,647%
20,658*
20,867*
20,878*

21,008*
21,318*
21,538*%

21,758%

21,978*

20

An asterisk (*) indicates that the entry cannot be written
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Theorem 2.6, If 0t * £;.1518 for lsisx-1, 2<£,<18 and

0<2f, + £, _;<18, then

X . . X " &
11 ] £100 02D 4 1) T o 1020241, oy
i<0 120

Proof.--Using the arguments of Theorem 2.5, we have

X . _:
1§ £10t 0?7 4 g
i=0

X . 3 X s s
i=0 i=0

e e}
f. ;10" + £

X 5
1
) £;10

lOZx—i+1 =
i=1

X =3
= Z filo:.,k .A.+1 +

i=1 -1

2x+1 x+1 x+1
+ folo + fxlo + fxlo + f0

S i - 2x+1 |
=_Zl(fi v £, 100 0Py gy b g 1020 4 g
i=

+ fxlox(lo + 1)

x-1 : Sive Bk W %
- L+ £, 10 o 4y 4 g (102X )
e
X
+ (2f_+ £,_)10%(10 + 1)

X . (oo
- § e, 10t @o? ™ML

i=0
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where

o

i =F; + £ for 1gix-1, ey=fp, and e~2f + £ ;. Obviously,

the e; s satisfy the conditions of Part (a) of Theorem 2.1.

Table IV illustrates the results of Theorem 2.6.
At this point, one might ask if there exist numbers, other than 11,
which transform classes of numbers form Table I to those of Table II and

conversely. The next two theorems answer the question in the affirmative.

> i,02(x-1)+1 j
Theorem 2.7. Let S= § e;107 (10 + 1) and R=107 + 1 where
i=0

j is odd, say j=2h + 1. If 25e0518, 0<e, <18 for
l<i<j-1, Oze; + ei_jfla'for Jedsk, 0se;_5 * epyep.;518

for x+1l<i<h+x, and Ofex_h59; then RS is a member of

Table I.

Proof.--The theorem is obviously true if j>2k; we assume j<2k.

Following the arguments given in Theorem 2.5, we have

X . X q
JCTE A S U

X . X s,
RS= § e,102X7 134 T e 10MT s

i=0 i=0 1=0 i=0

X .. j+x . j+x it X .
=y e.102X"1%3+1 ) ei..101 + 7 ei_ilozx 1+l ) ei101

i=o ! i=j t7J i=j 17J =i



“1208 10 (102 (- D*3HL gy Z (e + e;_5)10 10102(x-1)+j+1 + 1)
i=j

Z e. 101 (102 (x-1)+j+1
i=x+1 1-] )

Replacing j by 2h + 1 in the last sum, we have

Zh+x+1
2(x+h+1)-i i

i=x+1 ®1-2n-1110 i

h+x ;

i,q02(x+h*1-1)
_£+1e1 oh-110" (20 +1)
2h+x+1 . .
. 2(}1+x+1)-1>+ 101) + Zex_h10h+X+1.

Recognizing that

2h+x+1 . . h+x
2(x+h+1)-i P 2 (h#x+1)-i ¢
e. (10 +10M)= § e 10 %
ooy 1201 by 20211 bald )

and combining the previous results, we see that

2h
RS= ) e, 10t (102 (X 1-3) o gy
i=0 !
X s s

f T (e + ei..‘)h-l‘\)101(102(x+h+1 (3 R 1)

i=Zh+1 1 -

h+x 2 (h+x+1-1) x+h+1
L, Ciohe t Coc 107 (10 td) v

Letting fi=ei for 0<i<2h, fi---(ei *+e; _op.q) for Zhtl<icx,
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fi=(ej.2n-1 * €2xe1-1) for x+lsichex, and £, . ,=e ., we have

h+x+1
RS= §

) fi101(102(h+x+1-1) + 1) and the theorem is proved.
1_

X . . |
Theorem 2.8. Let S= J fi101(102(x'1) + 1) and R=107 + 1 where j is
i=0

odd, say j=2h + 1. If 25f0518, 05f1518 for 1<i<j-1,

O<f, + fi_j_18 for j<i<x-1, O<2f + fk_j518, and

0<f. + f

<f5.; ;<18 for x+1<i<h+x then RS is a member

2%
of Table II.

Proof.--Since the proof of Theorem 2.8 is similar to the proofs of

previous theorems, the details have been omitted.

There exist other classes of numbers which will transform numbers
from Table I to Table II and conversely. However, the number of
restrictions becomes so large and so detailed that the author feels they

are insignificant and should be left out of this paper.

In developing Theorems 2.7 and 2.8, the author found the next two

results, The details of the proofs are omitted since they follow the

pattern of the proof of Theorem 2.7.
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X . " -
Theorem 2.5, Let S= ) eilol(loz(x )+1, 1) and R=107 + 1 where J
i=0

is even, say j=2h. If 2<e <18, 0<e,<18 for 1<igj-1,
O<e; + e, .<18 for j<icx, and Ofei_j * ey 41-4518 for

i-j §S

x+1<i<h+x then RS is of the same form and hence is in

Table II.
S i, 2(x-1) '
Theorem 2.10. Let S= } £.107(10 + 1) and R=107 + 1 where j is
i=0

even, say j=2h. If foofls, Offifls for 1<i<j-1,

.<18,

0<f, + fi_j518 for jeigx-1, 0<2f + fX-J-

0<f f)y-1$18 for x+lcich+x-1 and O<f , <9

..+
1-]

then RS is of the same form and hence is in Table I.

In Theorems 2.3 and 2.4, it is shown that it is possible for S to be
equal to M + I where M=FM. That is, S=2M so that 2 divides S. We shall

now show that this is not possible for any integer larger than two.

Theorem 2.11. If S=M + M then there does not exist any integer

q>2 such that qMeS.

Proof.--We wish to show that there does not exist an integer g>2

such that qM=M + M. To do this, we shall assume that such an integer

does exist and arrive at a contradiction.



M= + M where q>2, then (q-1)M=M where (q-1)>1. Recalling

that M=

. k 3
nailo1 and M= ak_ilol and comparing like powers of ten,
i=0 i=0

we obtain the equations (q-l)a0=ak and (q-l)ak=a0. Hence,

2
(a-1) e =ay
so that ak=0 or (q-1)=t1. However, ak#O and (q-1)>1 so that our

assumption is false and the theorem is proved.

The last two theorems of this section deal with the number of ways

in which we can write S=M + M,

X = BF e
Theorem 2.12., Let G=M + F%_Z eilol(loz(x-l)+1 + 1) where

1=0

e;=a; * Ay1-4 and is such that Jze, <18 for

l<i<x and 25e;<18. Then there exist

X
(9-|10—e0|) I (10-|9-ei|) possible values of M.
i=1

Proof.--We shall use the arguments found on page 9.

First we observe that 3, nust lie in the range stated in (2.5)
and that a, for i<i<x must lie in the range stated in (2.7).
By (2.5), we see that 0<30<eo £ 3 eoflo and e0-10<a0<10 if e0>10.

In the former case, there exist eo-l=9-i10-e0| choices for a,



while there are 19-e0=9-|10-e0| choices if e0>10. In either case,
there are 9-|10-e0| choices of a,.

By (2.7), we see that O<a;ce; if e, <9 and e;=8sa; <9 if e;>9.
Hence, there exist e, * 1=10~|9-ei| choices for a; if e159 and there
exist 19-ei=10-|9-ei| choices for a; if e;>3. In either case, there
are 10-|9-e, | choices for a;.

Combining (2.9) with the conclusions of the two preceding
paragraphs, we see that there exist

X
(9-10-e4|) T (10-[9-e; )
i=0

P
possibilities for M where 1 vy is the product of the integers
i=1 ‘

Vis V25 Vzy eees Vo

Using (2.10) through (2.14) and an argument similar to that of the

preceding theorem, we have

X . s
Theorem 2.13. If S=M + F%VE filol(loz(x 1)

+ 1) where f.=a. + a
=0 1 2

24 x-i

and is such that Off1518 for 1<i<x-1, Offx59, and

2<f;<18 then there exist

x-1
(9-[10—f0}) )\ (10-|9-fi|) possible values of M.
i=1

27



3. A Partial Solution

At this point, we have established a generator for all numbers of th
form S=M + M and have made several statements concerning the nature of th
set of nunbers., We know there are infinitely many numbers of the form
M + M since there exist infinitely many replacements for M and given any
n>1, we suspect that there are infinitely many which are divisible by n.

We can see from an examination of Table V that for any n<100, there
does exist at least one multiple of n which is also the sum of reversed
digit addends. A further interesting note on the numbers of Table V is
that if n=0(mod 10) then the first S which is also a multiple of n is
frequently a much larger number than that required for neighboring n's
not divisible by 10G. This is so because the last digit of S is zero.
This also gives us a clue as to how one might scek a proof of the initial

question.

Throughout this chapter, we will restrict our consideration to

T i,02(x-1) L,
numbers of the form M + M ) £,107(10 + 1) keeping in mind that

i=0

X .

parallel statements could be made for the case | ei101
i=0 ~

(102(x-i)+1 +'1).

We will first show that if (30,n)=1 then there exists an

X . .
M+ M= § filol(loz(x'l) + 1) which is divisible by n. Secondly, we shall
i=0

show that there are in fact infinitely many solutions provided (10,n)=1.

3 . . . . Iq
Finally, we shall discuss the case for (10,n)>1.

28
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Table V

Given an n<100, there exists an S=M + M such that S=0(mod n).

=t
0NN

10,120

483
22
828
504
525
988
1998
504
464
1050
403
544
33
544
525
504
444
342
585
10,120

41
42
43
44
45

19,271
504
1333
44
585
322
282
1392
343
1050
969
988

424
1698

10,560

16,775
868
504

232
585

8107
544
483

10,010
34,932
504
584
222
525
988

77
20,202
948
10,560

81
82

84
85
86
87
88
89
90
91
92
95
94
95
96

98
P9
10

1,999,999,998
8118
747
504
50,405
23,822
21,402
88
5874
10,890
2002
828
5115
282
665
23,252
24,832
686

99
11,000

29
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Theorem 3.1. If (10,n)=1 then there exists an S=M + Mz0(mod n) such

that M + §= ) filoicloz(x‘i) «
0

n-1 : :
Proof.--Let s='20f1101(102("‘1’1) + 1) where 2:f;<18 and 2<£,<9 for
i= it

l<i<n-1.
Using Theorem 1.1 and Definition 1.1, we obtain the following

congruences::
(3.1) fo(loz(n'l) + 1)=qyn + 1= (mod n)

2(n-2)

f]10(10 +1) + r0=qln'+ rlsrl(mod n)

2,..,2(n-3 .
f210 (10 (n-3) , 1) + ri=q,n *+ rzzrz(mod n)!

n-1..,0 p "
f 110 (10" + 1) + 1 _,=q 0+ rn_l=rn_1(mod n).

If no two of the remainders are equal in the above system of

n congruences then there is a j such that rjEO(mcd n). Hence,

(3.2) fjloj(loz(“'l'J) +1) + 1, _j=0(mod ).
vl 2(m-1-1)
Let S =) £,107 (10 + 1) where
i=0
/ ..
fi y 1<1¢)
1]
(3.3) f,= <
0, j*lcicn-1.



(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

31

By Theorem 2.1, it is obvious that S is of the form M + M,
Furthermore,
o
s'- 1 £.101 (102 1) gy
120y &

From (3.1), we see that

2(n-1-1) ]
f 10 10
o ( +1) + lzorl .iorl(mod n).

il l‘\’}-h

i
Combining (3.4) and (3.5), we have
t
S zrjsO(mod n)}
and we are done if all the remainders are distinct.

Suppose that in (3.1), we have IL,=T, where S<b<c<n-1. Then

)]

b , .
i 2n-1-1) (n-1-1 S
izofild (10 + 1)z zofllu (10%¢ ? + Wy A,
IHence,
= i, 2(n-1-1) b+l i,...2(n-1-i
] £,10°(10 + 1)=10 ) £,10%(10 ),
i=b+l i=b+1
-b-1
_1gb*1 € 2(n-b-2-i
07 £, 1141107 (103 )y

=0(mod n).
However, (n,10)=1 so that (n,10b+1)=1. Therefore, (3.8) becomes
c-b- 1
y 101 202®0-2-1) 4 1520 (mod n).

Lo o1t



(3.10) f.

’ n-b-z . .
et S'= ] £100 0% P21 4 gy pere
i=0

£

b+1+j? 0Sisc-b-1

- -
1}
=

0, c-b<i<n-b-2
\

1
Since S satisfies the hypotheses of Theorem 2.1, we know that

L}
S =M + M, Furthermore, it is obvious by (3.9) and (3.10) that

’
S z0(mod n) and we are done.
Recalling that Theorem 2.10 is obviously true if j>2x, we have

Theorem 3.2. If (n,10)=1 then there exist infinitely many

Before considering the case where (n,10)>1, we note the following.

Theorem 3.3. If (n,10)=1 then there are at least 17 multiples of n

that are sums of reversed digit addends in the range

2¢5<2-10%"°1,

Proof. --Replacing f, in (3.1) by any value between 2 and 18 other

than the initiallv specified value of fO will merely change each ry

to r. + K where X is some constant between 0 and n-1. llence, one of

32



the r; *+ K is congruent to zero modulo n if the r, were disStingt of

T+ KErC + K(mod n). In either case, the argument of Theorem 3.1

n-1

gives anew M + M. Since S is obviously between 2 and 2:10" , the

theorem is proved.
Although we cannot answer the question completely when (10,n)>1, we
can find a solution for many special cases. Using Theorems 2.9 and 2.10,

we can then construct infinitely many solutions to M + Mz0(mod n).

Theorem 3.4. Let (10,d)=1. If there exists an integer t such that

10ts-1(mod d) then 10d divides a number of the form

M+ M,

Proof.--Since 10 =-1 (mod d), wz have 10(10 + 1)=0(mod 104d).

Obviously, 10(10t + 1) is a sum of reverse digit addends.

2s+1
Let n=33-10%. Let S= ) £,10 1090225+ 1-1) | 43 vhere

Theorem 3.5.
1—0

£,=10, £, =9 for 1<i<2s-2, f25_1=f25+1=2, and £, =16.

Then S=0 (mod 33-105) or 33-10° divides a sum of

reverse digit addends.



Proof.--Expanding S, we see that

2s-2 i 2s5-2 As+2-i
(3.11) s= ] £100 + 7 £10%%21 4 20002.102571
1=0 1=0
+ 1616-10%5 + 40.1025*1
25"2 i
= ] £;10" (nod 10%).
i=0
Now,
25:2 .
(3.12) ] £,10%=10 + 9010 + 107 +... + 107572
i=0
1+ 901 + 10 + 107 +... + 10%57%)
=1+ (10-13(1 + 10 + 102 +... + 102572
=1025-1.

Hence, we have Sz0(mod 10°).

Furthermore, noting that lozqsl(mod 33) for any q, we obtain
2s+1

ERiS) s=2f | ) filol(mod 33)
i=0

2s-2

=2( Z

filoi +20 + 16 + 20] (mod 33)
1=0

=2(66) (inod 33)

=0 (mod 33).

Since (33,10)=1, we have (33,17°)=1 so that S=0(med 33-105).

34



The next theorem can be proved in a manner similar to that of

Theorem 3.5. Hence, the details are omitted.

2s+1
Theorem 3.6. (a) If n=3-10% let S= [ f; 101 (10
=0 ®

2(2s+1-1) + 1) where

f0=10, fi=9,for 1<i<2s-2, fZS_l--'fZS =0, and fés+1

Then S=0(mod 3-105).

2s+1
(b) If n=9.10° let S= Z £ 10% (10
120

2(2s+1-1) + 1) where

f0=10, fi=9 for 1<i<2s-2, f25-1=f25 =0, and f25+1 =8.

Then S=0(mod 9-105).

In conclusion, we observe the following.

Let n=2P5%d where (10,d)=1. Let s=maximm{p,q} so that n[lOsd.
d+s-1 1
pefine 5= § £;100107 (#5711 4 1) where £,=10, £;=9 for leigs-1,
i=0

and 0<f;<9 for scizd+s-1.

Following the argument of (3.11) and (3.12), we see that S=0(mod 105).
If it is also true that S=0(mod d) we are done. If not, we proceed as in
the proof of Theorem 3.1 and we write

(3.14) U+ fs1os(1oz(d'1) + Dzr_(mod d)

1q2(d-2 _
T+ fs+1105+1(‘0 (@-2) , 1)=r_,, (mod d)



+ £ 10%%2(10%(d-3)

Tse1 ¥ Fse2 * 1zrg,,(mod d)

d+s-1_
¥4 4 10 :rd+s_1(mod d)

Taes-2 7 “Tges-1

s-1 . R
where U= ] £,10%(102(d*s-1-1) , oy
i=0

If there exists a j such that rj is congruent to zero modulo d, then

we can follow the argument of Theorem 3.1 to show that

(3.15) U+ .i £,101 (102 (#5711 4 1520 (nod q).
1=S
Let
d+s-1, . pllies
(3.16) s'= § 10t 0f ST Ly ere
i=0
(10, i=0
9, 0<ic<s-1
L
o
b} £y, scigd
k 0, j+l<izd+s-1.

' ?
It is now obvious that S is of the form M + M, S =0(mod d), and.

S'EO(mod 10°). However, (10,d)=1 sc that {los,d)=1. Hence, S'so(mod 19°d)

t
or S =0(mod n).

If there does not exist an Ij in (3.14) which is congruent to zero

modulo d, we construct the following set of congruences:



2(d-1)

(3.17) £,10%(10 + 1)zq_(mod d)

sl o B(dz2
qg *+ U+ £,;105"110° D 4 1y=r - (mod a)

2(d-3)

r ..+ £ 10520

o+l s+2 + 1)5rs+2(mod d)

5 yzr oy (rod d).

Taes-2 * 2fd+s-1(10
Since there does not exist an erO(mod d), we ask if there does exist

an rjsqs(mod d) where s+l<j<d+s-1. If so, then by using the arguments of

(3.7) and (3.8) in Theorem 3.1, we have

(3.18) ur 3 £100020@s D | 1y 00mod a).
i=s+1
Let
d+s-1 , . e
(3.19) S = ) filol(lozkd+s =), 1) where
i=0
(10, i=0

f.= { 90, i=s

£, s+1:isj

(. 0, j+l<i<d+s-1.
!
It is obvious that S is of the form M + N and that S =0(mod 10%d).

Since it is possible that qsfrj(mOd d) for s+l<jcd+s-1, we write



38

2(d-1)

(3.20) fslos(lo + 1) (mod d)

s s+l * 1)=qg,,(mod d)

+2,.2(d-
+ U+ £, 1052 (20%(4"3)

5 + 1)=r,,(mod d)

qs+1

d+s-1_
2f 10 =T 4pg-1(mod d).

Tars-2 ¥ ““aue1

As before, we ask if there exists an rj for s+2<j<d+s-1 such that

qs+lzrj(mod d). If there is, we proceed as before except that we let
10, i=0
9, 1l<ics-1
. 0, i=s
{B3«2d) f.=
1 0, i=s+1

£5» s+2<i<j

0, j+l<i<d+s-1.

If a suitable rj does not exist, we repeat the preceding process,

placing U in successive congruences until, with U in the (g+1)st

congruence, we might find an rjaqg_l(mod d) where g<j<d+s-1. We then have

(3.22) v+ 3 filoi(loz(d*s’l‘i) + 1)=0(mod d).
jeg

[>]

Let

d+s-1 . 1l
S'= z f;101(102(d+s 1-1)

1=0

+ 1) where
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(10, i=0
9, 1<iss-1
(3.23) £i=¢ 0, sgicg-1

£, gsisd

\ 0, j+l<i<d+s-1,
If having added U to every congruence in the manner described in

(3.12), (3.17) and (3.20) up to the point where we have

d+s-1_
U+ dgugp * 2f 34,5110 2T 441 (mod d)

does 10t give us qd+s_25ra+s_1(mod d), we must conclude that the procedure

described in this chapter will fail to construct a number S which is of
the form M + M and is also divisible by n. We believe that if we vary

the values of fi for s<i<d+s-1 and repeat the precedure outlined in (3.17)
through (3.23) we will arrive at the desired sclution. The proof, however,

escapes discovery.
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