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                                                              ABSTRACT 

 

                     SCREENING OF CATALYSTS FOR THE SUBCRITICAL WATER 

 

                                         DEPOLYMERIZATION OF LIGNIN 

 

                                              

                                               BALAWANTHRAO JADHAV 

 

                                                                   2020 

 

 

 

                    The current world population completely relies on non-renewable resources 

such as coal, fossils, and natural gas to get the energy, fuel, and value-added chemicals. 

The increasing demand for utilizing non-renewable resources leads to severe problems 

such as global warming, climate changes, and environmental pollution. The renewable 

resources such as wind, solar energy, and biomass are alternative source to overcome these 

problems and to save the environment. Lignocellulosic biomass is made up of cellulose, 

hemicellulose, and Lignin. Lignin is a copolymer of phenolic monomers and inexpensive 

naturally occurring complex material to produce value-added chemicals and various 

aromatics for industrial applications. 

                    The first objective of this dissertation is, the catalytic depolymerization of 

alkali lignin (AL) into phenolic monomers were studied using green and eco-friendly 

solvent.  In this study, subcritical water (SCW) was used as a green solvent with catalysts. 

The different types of heterogeneous catalysts were investigated for the depolymerization 

of alkali lignin in the presence of subcritical water. The goal of this study is to screen the 

best catalyst for the depolymerization of lignin in the presence of subcritical water. The 

depolymerization of alkali lignin was performed at 240oC for 10 minutes reaction time 



xxi 
 

using subcritical water as a solvent and catalysts. The subcritical water and catalysts were 

used for the cleavage of the β-O-4 bond in the alkali lignin. The treatment of alkali lignin 

with Ni-Graphene catalyst in subcritical water resulted in the highest phenolic monomers 

yield of 40.84 ± 0.27 mg/ g of alkali lignin. This result shows that the Ni-Graphene catalyst 

with subcritical water is an efficient method for the depolymerization of lignin.  The 

combination of the catalyst with subcritical water is beneficial for saving the reaction time 

and inhibition of repolymerization reaction. The most abundant phenolic monomers were 

guaiacol, vanillin, isoeugenol, acetovanillone, guaiacylacetone, and homovanillic acid 

identified using Gas Chromatography-Mass Spectrometry (GC-MS). This method is 

considered as the potential to produce a valuable chemical from the lignin under moderate 

conditions with 10 minutes reaction time.  

                               Secondly, optimized the reaction conditions for the depolymerization 

of alkali lignin in the presence of subcritical water.  The depolymerization of lignin 

reaction was carried out at 200℃ and 240℃ for 5, 10, and 15 minutes reaction time. The 

highest conversion of phenolic monomers and selectivity of phenolic monomers was 

observed at 240℃ for 10 minutes reaction time. The lowest yield was observed at 200℃ 

and 5, 15 minutes reaction from the alkali lignin. The possible reason for the lowest yield 

was the repolymerization of lignin. The catalysts used for the optimization of conditions 

were Ni-Graphene, 5% V/Zeolite, and 1.7% V/ZrO2 (Sulfate).  

                             Finally, studied the extraction of lignin from the pine sawdust and 

pistachio shells biomass and performed the depolymerization reactions with extracted 

lignin using Ni-Graphene catalyst at 240℃ for 10 minutes reaction time. The accelerated 

solvent extraction (ASE) and the mixture of methyl isobutyl ketone (MIK)  and ethanol 



xxii 
 

(7:3) used as solvent A, and a mixture of water and  0.1 M H2SO4  used as a solvent B. The 

extraction of lignin was performed at 200℃ for 60 min with 1400-1530 psi pressure. The 

characterization of extracted lignin studied using TGA, FT-IR, and  1H NMR. 12 different 

phenolic monomers were identified using GC-MS from the extracted lignin. The major 

identified phenolic monomers were Syringaldehyde, vanillin, coniferyl aldehyde, 

trimethoxy benzyl alcohol, and synapyl alcohol. The total conversion yield was found to 

be 45.2% from the pistachio shell extracted lignin. The total extraction of lignin was found 

to be 23.57±3.38% from the pistachio shells, and 22.86 ± 1.52% from the pine sawdust 

biomass.  

                           The goal of this dissertation was, to develop the eco-friendly and viable 

technique for the depolymerization of lignin using green solvents and decreasing the harsh 

conditions such as temperature and pressure for breaking the bonds in the lignin. The 

conclusion of this dissertation was, Successfully, converted the lignin into phenolic 

monomers using minimal reaction conditions (temperature and pressure) in the presence 

of green solvent (subcritical water) and catalysts and also extracted the lignin from the 

waste biomaterials and applied the same optimized conditions and catalyst to get the 

phenolic monomers from the lignin in the presence of subcritical water. Finally, conclude 

that this approach is a green and environmentally friendly method for converting biomass 

into value-added chemicals.  
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CHAPTER ONE 

 

                                     INTRODUCTION AND BACKGROUND 

 

 

1.1. Introduction 

 

1.1.1. Biomass 

 

The continuous growth of the world population every year significantly, and completely 

relies on nonrenewable resources such as coal, fossils, and natural gas for energy and food 

lead to the depletion of energy resources.1-3 The utilization of nonrenewable resources 

increases global warming and environmental pollution.4  To address these issues 

researchers are looking for alternative and renewable resources for replacing nonrenewable 

resources to produce energy, food, and chemicals for the future generations.  Biomass is 

an excellent, promising, and alternative renewable source to overcome these issues, and 

for the production of energy and useful materials.5  Biomass is a plant and animal-derived 

organic material.6  

The main resources of biomass are:7 

1. Forestry residues 

2. Agricultural residues like wheat straw, rice straw, and corn stover 

3. Wood from natural forests and woodlands 

4. Sugarcane bagasse and rice husk from agricultural waste 

5. Animal wastes 

6. The black liquor from paper manufacturing industries 

7. Sewage 

8. Municipal solid wastes 

9. Food processing wastes 
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Biomass is used to produce liquid fuels for transportation, to generate electricity by burning 

biomass, and converting the biomass into chemicals to make plastics and resins.8 The 

advantages of using biomass is reduced global warming and replacement of fossil fuels.9  

1.2. Lignocellulosic Biomass 

1.2.1. Introduction 

Lignocellulosic biomass is a plant-derived organic material and composed of three main 

components, cellulose, hemicellulose, and lignin.10 Lignocellulosic biomass is a renewable 

and economical resource to produce biofuel, biomaterials, and value-added chemicals.11 

The lignocellulosic biomass consists of 40-45%  cellulose, 25-35%  hemicellulose, and 15-

30% lignin.12 Figure 1.1 shows the structure of lignocellulosic biomass in the plant cell 

wall.  

                               

         

Figure 1.1. Structure of Lignocellulosic biomass and different types of components.13  
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1.3. Lignin  

 

1.3.1. Introduction 

 

Lignin is one of the major components in lignocellulosic biomass and the second most 

renewable source of producing bio-oil and value-added chemicals.14, 15 Lignin is a source 

of aromatic Chemicals.16 These value-added chemicals are platform chemicals for the 

pharmaceuticals, polymer, and pesticides industries.17, 18 Lignin is derived from the plant 

material and consists of 15-30% of their weight and about 40% of the biomass energy 

content.19 The main source of producing petroleum-based chemicals is fossils. The 

increasing demand for fuels and chemicals causes the decreasing fossil resources. The 

utilization of fossils for producing fuels increases environmental pollution as well as global 

warming.4 It is very necessary to find the alternative and natural renewable source for the 

production of chemicals. Lignin is a promising biopolymer for replacing fossils to produce 

fossil-based chemicals and reducing the emission of CO2.
20-22 The structure of lignin 

changes with the plant species.23 Lignin is a complex and high molecular weight polymer.  

1.3.2. Lignin Structure 

Lignin is a highly complex organic biopolymer 24 and composed of phenylpropane units 

and bonded together by C-C and C-O bonds.25 p-hydroxy-phenyl propanol, guaiacyl-

propanol, and syringyl-propanol linked together by condensed linkages 5-5-biphenyl, --

resinol, -5, and -1-(1,2-diarylpropane) linkages, and ether linkages -O-4, 5-O-4-diaryl 

ether, and more than 60% -O-4-aryl ether.26 Lignin is composed of the three major 

monolignols that are coniferyl alcohol (G), paracoumaryl alcohol (H-units), and sinapyl 

alcohol (S-units).27 Figure 1.2 shows the complex structure of lignin and different types of 

chemical bonds and linkages.28 Table 1.1 shows the percentage of chemical bonds and 
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linkages in lignin in different biomass sources. The β-O-4 bond percentage is more than 

50% present in all kinds of biomasses.  

Table 1.1. Percentage of chemical bonds and linkages in lignin in different biomass.29 

Bond Linkages Softwood lignin (%) Hardwood lignin (%) Gross lignin (%) 

-O-4 Ether       43-50      50-65     74-84 

α-O-4 Ether       5-7       <1      ND 

4-O-5 Ether       4       6-7      ND 

5-5 C-C       5-7       <1      ND 

β-5 C-C       9-12       3-11      5-1 

β-1 C-C       1-9       1-7      ND 

β-β C-C       2-6       3-12      1-7 

 

ND: Not Detected 
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                                   Figure 1.2. The Complex structure of lignin.28 

1.3.3. Lignin Sources 

Lignin is mainly produced in the pulp and paper industries. The annual production of lignin 

from the pulp and paper industry is around 50 million tons worldwide.30 Table 1.2 shows 

the average organic constituents present in different biomass feedstock.4 The main source 

of lignin is corn stover, wheat straw, rice straw, prairie cordgrass, switchgrass, pine 

sawdust, birch wood, and Pistachio shells. Utilization of these materials could help to 

reduce waste production, greenhouse gas emission and increase the revenue for the 

industries by converting them into valuable products.31 
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     Table 1.2. Cellulose, Hemicellulose, and Lignin percent in the different feedstock.31    

     

 

1.4. Lignin monomers applications 

Lignin is used as an alternative source to produce transportation biofuels, green chemicals, 

and used as a combustion fuel in pulp and paper mills. The lignin phenolic monomers such 

as coniferyl alcohol, coumaryl alcohol, and synapyl alcohol were used in the synthesis of 

resins32, 33, aromatic polymers, additives in cement, the component in binders. Lignin is an 

attractive raw material to produce benzene, toluene, xylene, and phenol. The green 

chemicals produced from the lignin used as food additives, bio preservatives, 

pharmaceutical products, industrial products for phenolic resins, plastics, and jet fuel.    

1.5. Lignin Extraction 

Lignocellulosic biomass is the most abundant, low-cost, and renewable resource to produce 

valuable chemicals and biomaterial.34 Lignocellulosic biomass constituents are cellulose, 

hemicellulose, and lignin.35 10-25% of lignin present in lignocellulosic biomass and second 

most abundant natural polymer.14 The main sources of lignin are plant materials, 

Feedstock Cellulose (%) Hemicellulose (%) Lignin (%) 

      Softwood 40-44 20-32 25-35 

      Hardwood 40-44 15-35 18-35 

      Switchgrass 37 29 19 

Wheat straw 38 29 15 

Corn stover 38 26 19 

Miscanthus 43 24 19 

Eucalyptus 49 21 18 

       Agave 78 6 13 

       Bagasse 49 31 19 
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agricultural wastes, and byproducts of pulp and paper industries.  The main methods for 

the extraction of lignin were hydrothermal, acidic, alkaline, hydrogen peroxide, wet 

oxidation, ammonia fiber explosion, supercritical carbon dioxide, organosolv, ionic liquid 

pre-treatment methods, Soda-ethanol, ultrasound-assisted extraction, and microwave-

assisted extraction. 

           The Ultrasound-Assisted extraction method was simple and more effective.36 This 

method was improved economic efficiency and reduce environmental pollution.37 The 

extraction of lignin from the rice straw was studied using Ultrasonic irradiation.34 The 

reactive free radicals were produced after induces with ultrasonic irradiation at high 

temperature and pressure. The ultrasound irradiation increases the penetration of solvent 

and heat into the biomass and it improves the mass transfer.  

            The prairie cordgrass, switchgrass, and corn stover biomass were used for the 

extraction of lignin using the organosolv treatment method.38 The main principle is that 

extraction is based on the solubility of the lignin in the organic solvent. Organosolv 

pretreatment cleaves the -aryl ether bonds and -aryl ether bonds.39 The extracted lignin 

with this method was highly pure because low in carbohydrates, free of sulfur, and low in 

ash.40 The main applications of organosolv lignin are the production of resins, limiting uses 

of toxic formaldehyde.41 The solvents used for the extraction of lignin from the prairie 

cordgrass, switchgrass, and corn stover are ethyl acetate, water, and ethanol .38 Sulfuric 

acid was added as a catalyst.  

                   The extraction of lignin from the biomass was studied using high 

concentrations of acids and organic solvents.42 The uses of these solvents are harmful to 

the environment and the cost of recycling is very high.42 The scientists developed  
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environmentally friendly solvents such as ionic liquids (IL) for the extraction of lignin from 

the biomass.43 Because the ionic liquid has capable of dissolving biomass.43 The extraction 

of lignin from oil palm biomass was studied using 1-butyl-3-methylimidazolium chloride 

([bmim][Cl]) ionic liquid. The dried oil palm biomass (OPB) was added to [bmim] [Cl] 

ionic liquid and heated at 110C under an N2 atmosphere for 8 h with high agitation.44  

                       The supercritical CO2 is used for the extraction of lignin from the corn stalks. 

Supercritical conditions are 31C temperature and 1070 psi.45 The environmentally 

friendly supercritical fluid used for the extraction of lignin from the biomass is carbon 

dioxide. The co-solvents such as ethanol or methanol added to the supercritical CO2 to 

increase the solvating power of the liquid and diffusivity of the gas. Supercritical carbon 

dioxide has both properties liquid as well as gas and it is an extremely good solvent for a 

wide variety of chemicals, biological, and polymer extraction procedures. The main 

advantages of using this solvent including, easy to recover solvent, lower pressure drops, 

low cost, and exploited to control chemical reactivity.45  

                         Lignin extracted in different pretreatment methods in the process of bio-

ethanol production.46 The pretreatment methods include sulphuric acid pretreatment, 

sodium hydroxide pretreatment, and steam explosion, etc.  These extraction methods were 

operated at elevated temperature for several hours. These methods are not desirable 

because of high energy consumption, long reaction time, and unwanted reactions of 

lignin.47 The microwave-assisted extraction is a technology used for the separation of 

compounds from the lignocellulosic biomass.46 In this process it needs microwave energy 

and solvent. The main advantages of this method are the reduction of energy, uniform, and 

selective processing. The bamboo stem cut into small pieces and ground to 40-60 mesh 
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particle size after an air dry. The conditions were used for the extraction of lignin from the 

bamboo was the temperature 90 and 109C, time (0-120 min), and 700 W power applied 

to heat the material. The maximum extraction was found at 109C for 60 min.46 Other 

pretreatment of lignocellulosic biomass to extract the lignin is using Amino acid deep 

eutectic solvents (AADESs). Lignin is extracted using betaine: lysine and betaine: arginine 

DESs. These AADESs showed the highest solubility of lignin for the extraction. AADESs 

pretreatment is a green and sustainable process because AADESs are safer, nonvolatile, 

nonflammable, and nontoxic.48  

                        The extraction of lignin from biomass using water or steam with high- 

pressure oxygen or air is called wet oxidation.49 The oxygen, water, and elevated 

temperature were used for the extraction of lignin from the wheat straw.50 The wet 

oxidation process was carried out in a specially designed loop-autoclave constructed at 

Riso National Laboratory.51  Na2CO3 and water were used for the extraction of lignin from 

the wheat straw. 

                            The anhydrous ammonia (AA) and NaOH were used for the extraction of 

lignin from the corn stover. The main benefit of using ammonia over other techniques is 

cost-effective. This method is economically more attractive than other techniques.52 The 

liquid ammonia used for the swelling the biomass for altering the morphology.52-54 This 

extraction involved two steps. In the first step biomass subjected to anhydrous ammonia 

and residue was treated with sodium hydroxide in the second step.55 The main advantage 

of utilizing these two steps process is (1) increasing the recyclability of ammonia (2) 

performing solid-liquid separation under ambient conditions.55 The AA treated corn stover 

showed the lignin removal was 70%, Cellulose 9%, and hemicellulose 35%. 
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                                   Rye is one of the cereal crops and the straw was used for the 

extraction of lignin using alkaline hydrogen peroxide.56 The main reason for using  

hydrogen peroxide is that reducing the production of chlorinated organic from the pulping 

and bleaching process.57 Hydrogen peroxide with alkaline solution increased the extraction 

of lignin from lignocellulosic biomass.58 

                                   In this work, extracted the lignin from the pine sawdust and pistachio 

shells using methyl isobutyl ketone and ethanol organic solvents. 

 

1.6. Depolymerization of Lignin 

 

                    Lignin is a complex biopolymer and source of phenolic monomers.59 Lignin 

conversion into phenolic monomers was reported using different techniques. The 

depolymerization of lignin was studied using acid catalyst, base catalyst, ionic liquid 

assisted depolymerization, pyrolysis, sub, and supercritical fluids, and metallic catalyzed 

depolymerization.  

                                 The depolymerization of lignin was reported using supercritical 

carbon dioxide, acetone, and water fluid.60 The temperature of supercritical CO2  (ScCO2) 

was >31C and pressure was >7.4 MPa.61  The main advantage of this technique is that 

operating temperature is low comparative pyrolysis and gasification, and preventing the 

cross-linking reactions, and used non-toxic CO2.
60 The acetone/water 8:2 v/v at 0.35 g/ml 

used for the dissolving lignin. The wheat straw lignin is used for producing phenolic 

monomers. The formic acid was added to the mixture because stabilizing alcohols and 

reduces the char formation. The temperature was 300C and the pressure was 100 bar. The 

total processing time was 3.5 h.  
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                          The depolymerization of corn stover lignin was studied using base 

catalysts.62 The two different types of NaOH concentration (2 and 4%) were used for the 

reaction.62 The reaction temperatures were 270, 300, and 330C used for 40 min.  

                          The depolymerization of alkali lignin was reported using sub-and 

supercritical water.24 The subcritical water means, water exist in a liquid state above its 

boiling point 100C and below its critical temperature 647 K and pressure < 21.1 Mpa.63 

The temperatures were 553, 643, 653, and 663 K used for the reaction for 30, 60, 90, 120, 

and 240 min.24 The reaction mixture was collected by washing the reactor vessel with 

methanol. The water-methanol soluble products were separated from the mixture by 

vacuum filtration. The qualitative analysis of water and methanol soluble products done by 

using GC-MS.24 

                        The depolymerization of lignin was reported using an acid catalyst.64 The 

0.5 g of lignin dissolved in water and methanol (5:25 ml) solvent and 0.5g of SiO2/Al2O3 

solid catalyst loaded into the high temperature and pressure Parr autoclave reactor. The N2 

gas flushed into the reactor with 0.7 Mpa pressure.  

                      The depolymerization of beech lignin was reported using the metal catalyst 

and ionic liquid.65 The larger amount of lignin dissolved in ionic liquids comparative other 

solvents. The lignin dissolved in ionic liquids such as 1,3-dimethylimidazolium methyl 

sulfate [MMIM]-[MeSO4] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[BMIM]CF3SO3] and loaded into the 300 ml stainless steel autoclave reactor with Mn 

(NO3)2 catalyst.65 The depolymerization of lignin was conducted at 100C and 8 Mpa 

pressure for 24 h. The depolymerization products were extracted using dichloro methane 

(DCM) and identified using GC-MS.65 
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                  The depolymerization of lignin was reported using pyrolysis.66 1 mg of lignin 

sample was placed in a 20 mm quartz tube between quartz wool plugs. The sample placed 

in the Pyroprobe and pyrolyzed at a set point temperature. The temperature range was 

between 400 and 800C. The ramp was 20C/ms with a dwell time of 15 s in every case.66 

The phenolic compounds were identified using PyGC-MS. The maximum yield was found 

at 600C.66 

                 In this work, the depolymerization of lignin studied using subcritical water and 

catalysts. 

1.7. Subcritical water 

1.7.1. Introduction 

                       Subcritical water means water exists in liquid at a higher temperature than 

its natural boiling point of 100℃ and below its critical temperature of 374℃ by applying 

pressure.63 Figure 1.3 shows the sub and super-critical conditions of the water. Sub and 

supercritical water reactions involve applying temperature under pressure to achieve the 

reaction in the aqueous medium. Water at subcritical conditions acts as an acid and base 

catalyst.67 The properties of water will change when it is in subcritical conditions. The 

density and dielectric constant will decrease by varying the temperature and pressure.68 

The decreasing the dielectric constant will increase the solubility of the small organic 

compounds.69-74 The polarity of the subcritical water will increase the ability to dissolve 

the solids, liquids, and gases. Table 1.2 shows the properties of ordinary water and 

subcritical water.74, 75 The ionic product of subcritical water is higher than normal water to 

increase the acid-base catalyzed reactions in biomass hydrolysis.76 
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         Figure 1.3. Phase diagram of water representing the sub-and supercritical region 

         Table 1.3. Properties of water and subcritical water.74, 75 

Properties Normal water Subcritical water 

Temperature (K)      298        523 

Pressure (bar)      1        50 

Density (g/m3)      1        0.80 

Dielectric constant      78.5        27.1 

pK
w      14.0        11.2 

Heat capacity (Kj/Kg K)      4.2        4.86 

Dynamic viscosity (mPa s)      0.89        0.11 

Heat conductivity (mW/m K)      608        620 

 

1.7.2. Applications of Subcritical water 

                       Subcritical water is an alternative and greener solvent for the extraction of 

chemicals from various sources. Subcritical water is an emerging tool for the processing of 
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bioorganic wastes including biomass conversion, hydrolysis of lignocellulose, 

carbohydrates, lipids, proteins, and extraction of bioactive compounds.77-79 Subcritical 

water used to production of cellulose nanocrystals, and extraction of antioxidants, phenolic 

compound, and oils.  

                             Hydrolysis of protein with subcritical water is an alternative method for 

enzymatic digestion.80 This method was a potential and alternative to the traditional method 

for the hydrolysis of protein instead of using expensive acids or enzymes. The reaction was 

carried out in the temperature range of 200-300C using subcritical water.80 The glycine, 

alanine, serine, isoleucine, lysine, arginine, valine, proline, threonine, and histidine amino 

acids were identified after the hydrolysis of BSA in the presence of Subcritical condition.80 

The acetic acid, formic acid, pyruvic acid, maleic, malic, and fumaric acids were identified 

after the hydrolysis of BSA in the presence of subcritical water.80   

                        The production of peptides from hemoglobin, bovine serum albumin 

(BSA), and -casein were studied and compared the results with enzymatic digestion of 

proteins by trypsin.81 BSA contains 17 disulfides bond, and -casein contains five sites of 

phosphorylation. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

was used for the analysis of the SCW hydrolysis products. The reaction tube was placed at 

50C for 10 minutes for equilibrium. The thermocouple is used to monitor the reaction 

temperature. The reactions were studied from 0 to 20 minutes using subcritical water. 

MS/MS (CID or ETD) scan used for the analysis. The Xcalibur software used the determine 

protein sequence.81 The trypsin digestion of hemoglobin gave high sequence coverage for 

both the -globin (88.9 3.6%) and -globin (92.74.0%). The hydrolysis of hemoglobin 

with subcritical water gave sequence coverage for both -globin (91.5 5.6%) and -globin 
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(87.93.3%) at 160C for 0 min. The sequence coverage increased with the increasing 

reaction time to 20 min. The sequence coverage was 97.43.9% for -globin and 

96.20.8% for -globin. The peptide sequence coverage is higher with subcritical than the 

enzymatic digestion.81 

                             Subcritical water is used to produce cellulose nanocrystals from the 

cellulose.82 The traditional methods to produce cellulose nanocrystals were uses of 

concentrated solutions of strong acids.83, 84 This method takes a long duration of washing 

steps and the nanocrystals are low resistance temperature because of acidic moieties. The 

ammonium persulfate85, 86, and metaperiodate87 is alternative technique to produce 

cellulose nanocrystals. These reagents were expensive, reactive, corrosive, and toxic. The 

subcritical water is an alternative greener solvent and environmentally friendly solvent to 

produce cellulose nanocrystals from the cellulose. The resulted cellulose nanocrystals from 

cellulose with the hydrolysis of subcritical water showed a high crystallinity index, rod-

like shape, and higher thermal stability.82 Cellulose is one of the main renewable 

components in the lignocellulosic biomass. The thermal stability of nanocrystals produced 

with subcritical water is higher than the nanocrystals produced with acid hydrolysis. The 

acid-treated nanocrystals degrade around 200C and subcritical water treated nanocrystals 

degrade around 300C. So, the production of cellulose nanocrystals from cellulose with 

subcritical water is more environmentally friendly, chemicals consumption reduction, and 

lower generation of chemical wastes comparative the acid treatment of cellulose.82  

                                 The depletion of fossil carbon reserves and increase the global 

warming led to the introduction of renewable biomass to produce fine chemicals, 

transportation fuels, and platform chemicals. Cellulose is the most abundant natural 
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polymer.88 Hydrolysis of cellulose studied using subcritical water.88 They converted 

cellulose into glucose, fructose, and oligomers. The traditional methods were studied using 

acid catalyst, 89, 90 and enzyme catalyst hydrolysis.91 The uses of subcritical water are 

environmentally friendly and green solvent for the hydrolysis of cellulose. The identified 

products were erythrose, dihydroxyacetone, fructose, glucose, glyceraldehyde, 

pyruvaldehyde, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose. The 

hydrolysis of cellulose with subcritical water has reduced the uses of chemicals for the 

degradation of cellulose.88  

                                   The Coriandrum sativum seeds (CSS) and subcritical water are used 

for the extraction of antioxidants.92 The coriander seeds contain linalool, limonene, 

camphor, and geraniol.93 These compounds showed high stability than other oils.94 The 

traditional methods for the extraction of antioxidants from the Coriandrum was using 

organic solvents and hydrodistillation.95 The disadvantages of these methods were the use 

of organic solvents, more extraction time, and thermal degradation.92 To overcome these 

issues scientists recently developed extraction techniques using subcritical water. This 

technique is more environmentally friendly.96 The advantages of this technique over the 

conventional extraction techniques were shorter extraction time, higher quality of the 

extract, lower costs of the extracting agent, and environmentally compatibility. The 

extraction of antioxidants from CSS with subcritical water showed a significant 

improvement than conventional solid-liquid extraction, ultrasound-assisted, and 

microwave-assisted extraction. A linear correlation was observed between antioxidant 

(IC50 value) and total phenolic content (R2 = 0.965), and total flavonoid content (R2 = 
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0.709), which indicates that these groups of compounds are responsible for the antioxidant 

activity of Coriander sativum seeds.92 

                                The extraction of pharmaceutical extracts such as volatile oil, tannins, 

flavonoids, anthraquinone, and lactone with subcritical water was studied.97 The subcritical 

water extraction technique is widely used in the field of medicinal industries to bring huge 

economic benefits, environmental, and social benefits.98 The 30 to 40 percent of medicines 

were used from the plant materials worldwide.97 The plant medicines have incomparable 

advantages over relative chemical drugs. So, the extraction of medicines from plants is 

more important. The traditional techniques are using ultrasonic extraction, microwave 

extraction, membrane separation technologies, molecular distillation, and subcritical fluid 

extraction.98 Among these techniques subcritical fluid extraction is the most prominent 

technique because this method is more feasible for heat-sensitive materials, no solvent 

residue, high extraction rate, and free of environmental pollution.98 Another advantage of 

subcritical water is that the high temperature and pressure produce a high diffusion rate 

which promotes a very efficient extraction rate of the raw materials.99, 100 The traditional 

methods for the extraction of essential oil from the plants were using steam distillation and 

organic solvent extraction, indicating more shortcomings, such as volatile compounds loss, 

low extraction efficiency, and need more heating.97 The subcritical fluid technique 

developed for the extraction of volatile oil from the plant materials to overcome the 

disadvantage of traditional methods.99 The organic compounds were more soluble under 

subcritical conditions. The Rosmarinus and subcritical water used to extract oxygenated 

fragrance flavor compounds.99  
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                           Steam distillation was performed for the extraction of volatile oil from the 

Rosemary leaves.99 The total yield found to be using subcritical water was 0.494 mg/1 g of 

the sample at 150C for 60 min. The total yield found to be using steam distillation was 

0.249 mg/g of the sample at 150C for 60 min.99 The extraction of the volatile compounds 

from rosemary leaves with subcritical water showed a higher yield than steam distillation. 

The subcritical water is an effective way of extracting volatile oil from the plant materials 

comparative steam distillation and carbon dioxide extraction because of environmental 

advantages and low cost of water and energy.99 

                                 The extraction of anthraquinone from the roots of Morinda citrifolia 

was studied using subcritical water.101 The anthraquinone has several therapeutic activities. 

They include antibacterial, antiviral, anticancer, and analgesic effects.102 The conventional 

extraction method was using ethanol.101 In this method final product contains ethanol, 

which is unacceptable for use on a human. The alternative solvent for the extraction of 

anthraquinone is subcritical water.101 In subcritical condition water dielectric constant and 

polarity will decrease and increase the solvent power for organic compound dissolution. 

The total yield was found at 110C was 20.8 mg/g dry root, at 170C was 40.1 mg/g of the 

dry root, and at 220C was 43.6 mg/g of dry root. The yield was increased with the 

increasing temperature because anthraquinone solubility increased with the increasing 

temperature of the water.101  

The extraction of lactones from kava root was studied using subcritical water and compared 

with the Soxhlet extraction.103 Kava roots were used as a beverage in Pacific island as a 

coffee or tea.104 Kava roots were used as a phytomedicine. A number of studies have been 

carried out on the isolation and identification of kavalactones.105-108 The different methods 
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were proposed for the extraction of kavalactones using chloroform 109, methylene chloride 

110, methanol 111, ethanol 112, and ethyl acetate 113 as a solvent. 

The Soxhlet extraction was used for extracting kavalactones from kava roots. 0.5 g of 

ground kava was used for the extraction of kavalactones. Kavalactones were extracted for 

6 h using 150 ml of water. The water extract was acidified with 2 M HCl and extracted 

using CH2Cl2. The residue in the Soxhlet extraction was sonicated for 18 h in 15 ml of 

acetone.103 

                     The total yield of kavalactones with subcritical water was 104 10 mg/g at 

175C for 20 minutes. The total yield of kavalactones in Soxhlet extraction was 48 6 mg/g 

for 360 min.103 The Soxhlet extraction was showed a nearly 50% lower recovery than the 

subcritical water extraction. The subcritical water extraction time was lesser than the 

Soxhlet extraction.103  

                            The grape seeds and subcritical water used to extract the catechins and 

proanthocyanins and compared with the results of conventional extraction with 

methanol/water.114  The grape seeds contain approximately 60% polyphenols and these 

extracts have antioxidant activity in vivo.115 The total yield was found to be 292.7 mg/100 

g of grape seeds powder with methanol/water extraction. The total yield was found to be 

380.6mg/100 g of grape seeds powder with subcritical water extraction at 150C. The 

subcritical water extraction method showed a higher yield than the methanol/water 

extraction. The subcritical water extraction is a selective and environmentally friendly 

technique for the extraction of different antioxidant activity compounds.114  
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                        Another active ingredient in the plant is phenolic compounds. These 

phenolic compounds are inhibiting tumor development in animals and humans, prevent 

cardiovascular disease, as well as anti-mutation, anti-virus, and anti-oxidation.116 The 

extraction of phenolic compounds from the potato peels was studied.117 The potato peels 

were considered as a waste generated from potato and it is a good source of phenolic 

compounds and fourth crop grown in the world.118 Phenolic compounds from potato peels 

were preventing the oxidation of lipids.119 Gallic acid (GAC) and Chlorogenic acid (CGA) 

are the major compounds in potato peels.119 The conventional technique for the extraction 

of phenolic compounds from potato peel is solid-liquid extraction using organic solvents 

was reported.120 The main drawbacks were long retention time and low yield of extraction. 

Subcritical water extraction is an alternative method for the extraction of phenolics from 

the potato peels is known as pressurized polarity water extraction. The intermolecular 

hydrogen bonds of water break down, and the dielectric constant decrease in subcritical 

conditions. The normal water dielectric constant was 79 and it is reduced to 27 in subcritical 

condition and which is equal to the ethanol dielectric constant.121 The yield of phenolics 

with methanol was found to be 46.36 mg/100g and with ethanol was found to be 29.52 

mg/100 g. The subcritical water extraction was carried out in a batch reactor. The total 

yield was found to be 81.83 mg/g with subcritical water at 180C. The optimized time was 

60 min. The conclusion of this study was subcritical water extraction showed higher 

recovery than the methanol extraction.117 

                                 The extraction of oil and water-soluble compounds such as proteins 

and carbohydrates from the sunflower seeds were studied using subcritical water.122 The 

extraction of oils from oilseeds using an aqueous solvent is an alternative and greener 
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process.123 The extraction of oils with aqueous solvent from peanuts 124, coconuts 124, 

soybeans 125, and rapeseeds 126 were reported. They reported extraction yield was 93% and 

extraction carried out lower than 100C but the main drawbacks were long agitation time, 

the formation of stable emulsions, and difficulty of separating phases as well as changing 

pH of media. The main solution for the overcome above difficulties is that increasing 

temperature. The extraction rate will increase with increasing the temperature.127 

Subcritical water is a prominent solvent for the extraction of oil from the sunflower 

seeds.127 Subcritical water means,  water heated under pressure from its boiling temperature 

to its critical temperature. In subcritical conditions water polarity, viscosity, and surface 

tension will decrease and increase the diffusion rate.128 The Soxhlet extraction was used 

for the oil extraction from sunflower seeds. The total oil yield with subcritical water was 

44.30.3% after 30 min at 130C. The total yield in the Soxhlet extraction was 46.2 0.7% 

after 4 h. The extraction time was lesser with subcritical water than Soxhlet extraction.122  

                              Biomass is one of the most abundant renewable sources and an 

important sustainable energy system. The conversion of biomass into liquid energy is the 

most popular and it will replace the decline of fossil fuels and reducing global warming. 

The conventional methods are direct pyrolysis, gasification, and liquefaction.129-131 The 

hydrothermal liquefaction is carried out between 280-370C.132 The plant biomass consists 

of cellulose, hemicellulose, and lignin.133 The production of bio-oil from biomass with 

subcritical was studied.133 Woody biomass, grass, agricultural wastes, and micro-and 

macroalgae, etc. considered as biomass. The production of bio-oil from Oil palm biomass 

was studied using subcritical water.133 These Oil palm wastes are utilizing to produce bio-

oil using subcritical water. The yield of bio-oil increased when temperature increased from 
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360 to 390C. However, increasing the temperature to 450C decreased the yield of bio-

oil. The higher temperature causes secondary decomposition of biomass and recombination 

of some free radicals, leading to form gas and char formation.133  

                              The production of bio-oil from the biomass studied using subcritical 

water.134 The production of food waste from processing animals, fruits, vegetables, dairy, 

and grain was nearly 36 million tons of food waste per year in the USA.135 The 

decomposition of food waste generates the greenhouse gases such as methane and carbon 

dioxide. Food waste material is also an excellent renewable and sustainable source to 

produce liquid transportation fuels.136, 137 A large number of food wastes such as peels, 

shells, seeds, and bagasse are used to produce sugars, fibers, fatty acids, and phenolic 

compounds.138 Hydrothermal liquefaction (HTL) is applied to convert biomass into useful 

chemicals. HTL is used for converting lignocellulosic biomass into smaller molecules. The 

maximum oil yield was found to be 50  3.18 wt% from starch biomass at 250C for 60 

min. The lowest yield was found to be 31 3.4 wt% from starch at 250C for 20 min. The 

yield of oil was increased with increasing time. The production of oil change takes place 

because of changing the polarity of feedstock.139 The highly thermal stability fatty acids 

can be degraded under subcritical conditions to produce long-chain hydrocarbons, which 

have good fuel properties.140 The subcritical water is used for the conversion of bio-oil 

from biomass 

                                The production of bio-oil from microalgae with subcritical water was 

studied.141 The production of bio-oil from fossils leading to an increase in the greenhouse 

and declining the fossils. Biomass is an alternative renewable source to produce bio-oil. 

Biomass is a promising, most abundant, and cheap feedstock to produce bio-oil.142 
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Microalgae biofuels are having a much lower impact on the environment and it has high 

caloric value, low viscosity, and low density.143 These properties make microalgae more 

suitable for biofuel than lignocelluloses materials.143 The conventional methods for the 

conversion of biomass to bio-oil were either biochemical or thermochemical methods.144 

These techniques need high temperature and pressure. The hydrothermal process is a 

promising method for converting bio-oil from biomass. Biomass is heated in water at mild 

temperature and pressure. In hydrothermal liquefaction (HTL) biomass converted into bio-

oil using water at the subcritical conditions. The main advantage of this process is that no 

need for the drying process for biomass. The production of bio-oil with subcritical water 

has zero SOX emission.145 Water has several advantages over chemicals such as an 

ecologically safe, non-toxic, cheap, readily available, and environmentally benign 

solvent.141 The bio-oil yield was showed higher at 300C. The bio-oil production was 

decreased after 300C because decomposition of bio-oil occurred.146, 147 The conversion of 

algal biomass to bio-oil increases during the first phase of liquefaction until approximately 

300C. The bio-oil yield was decreased after 300C because of breaking the secondary 

bonds in bio-oil.148 The bio-oil yield also depends on the ratio of biomass and water. 

Solvents play an important role in the solvation and breaking the chemical bonds. The 

excess amount of water concentrations easily splits algal macromolecules into small gas 

molecules and decreases the bio-oil yield. The different categories of chemical 

compositions such as phenolics, nitrogenated compounds, oxygenates, hydrocarbons, and 

organic acids were observed in GC-MS analysis.141 The subcritical water is the green and 

environmentally friendly solvent to produce bio-oil from the algae biomass.  
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                                                  CHAPTER  TWO 

CATALYST SCREENING FOR THE DEPOLYMERIZATON OF ALKALI 

LIGNIN INTO PHENOLIC MONOMERS IN THE PRESENCE OF 

SUBCRITICAL WATER 

2.1. Introduction  

In recent years, the consumption of fossil feedstocks such as coal, natural gas, and crude 

oil has been increasing due to the high demand for petro-based chemicals, fuels, and 

energies. The depletion of fossil resources and increasing global warming brought special 

attention to using sustainable, alternative, and renewable resources like lignocellulosic 

biomass. Lignocellulosic biomass is mainly consisting of cellulose, hemicellulose, and 

lignin 149-152. Lignin is an organic complex biopolymer and the second most abundant 

biomass on earth 41 and 10-20% of lignin present in the lignocellulosic biomass 153. The 

lignin is an amorphous copolymer of p-coumaryl (H), coniferyl (G), and sinapyl (S) 

alcohols. Figure 2.1 shows the phenolic monomers of the lignin. These alcoholic units are 

bonded together by C-C and C-O-C bonds 154. These phenolic monomers mainly linked 

together by 5-5, β-β, β-5, and β-1 condensed linkages and α-O-4, 5-O-4, and β-O-4 ether 

linkages 155. The main sources of lignin are wood, plants, wheat straw, corn stover, and 

pine straw 156.   
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                                 Figure 2.1. Phenolic monomers of the Lignin 

 Lignin is one of the renewable, and promising alternative source for producing fuel and 

aromatic phenolic monomers 157. 40-50 million tons of lignin was produced from the pulp 

and paper industries per annum worldwide but only 2% of lignin was used for industrial 

applications 26. The highest content of oxygen and lower heating values, indicating to 

develop the effective technologies for the usage of lignin resources to produce the value-

added chemicals 158. Lignin phenolic monomers are used for the synthesis of resins and 

polymers. Phenolic monomers from the lignin were used for the synthesis of cyanate ester 

resins, epoxy resins, polyesters, polyacetals, polycarbonates, polyanhydrides, polyoxalates, 

and vinyl ester resins 159.  

The researchers are still facing challenges to understand the depolymerization of lignin due 

to the complex and recalcitrant structure of lignin 160-162. Several methods were proposed 

for the depolymerization of lignin, such as base-catalyzed 62, 163, 164, acid-catalyzed 165-168, 

fast pyrolysis 169-173, oxidation 174, 175, microwave-assisted depolymerization 176, 177, ionic 

liquid depolymerization 178, 179, and supercritical carbon dioxide depolymerization of lignin 

using ethanol, methanol, and acetone as a cosolvent 60, 180, 181.  These methods showed low 
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selectivity and need severe reaction conditions (high temperature and pressure) for the 

depolymerization of lignin. Ionic liquid assisted depolymerization method showed high 

selectivity, but the cost of ionic liquids and recycling is more. The uses of organic solvents 

for this process become very toxic to the environment.182 To overcome these issues and 

minimize the usage of hazardous conditions and chemicals need an appropriate and suitable 

depolymerization method. 

The main goal of this study is to convert the complex lignin into small chemicals or 

oligomers by using green solvent and minimizing the hazardous reaction conditions.  In 

this study, developed the method which is an environmentally friendly and green approach 

for the depolymerization of alkali lignin in the presence of sub-critical water and different 

types of catalysts. The subcritical water and catalysts were used for the depolymerization 

of alkali lignin. The depolymerization of alkali lignin was performed at 240 ℃ for 10 

minutes reaction time with different types of heterogeneous catalysts.183 The Ni-Graphene 

catalyst at 240 ℃ for 10 minutes reaction time showed the highest conversion yield from 

the alkali lignin. The used operating conditions (temperature, time, and pressure) for the 

depolymerization of lignin were lesser than traditional methods. Under the subcritical 

condition’s alkali lignin produced a smaller molecular weight value-added chemical. The 

12 different phenolic monomers were identified, and six phenolic monomers were 

quantified from the alkali lignin using GC-MS. 

 

 

 

 



27 
 

Graphical Abstract: 

 

2.2. Experimental section 

2.2.1. Materials and Catalysts 

Alkali Lignin was purchased from the Sigma Aldrich (St. Louis, MO). The Catalysts 5% 

V/Zeolite, 1.7% V/ZrO2 (Sulfate), 10% V-Ni/Zinc, 1.7% V/ZrO2 (Neutral), Ni-Graphene, 

Ni-Zinc, 5% V/Ni-Graphene, 1.7% V/Zeolite, Carbon supported (CoO, MoO, and LaO), 

and Zeolite supported (CoO, MoO, and LaO) were obtained from the Agriculture and Bio-

system Engineering department (Dr. Gu), SDSU. The deionized water was used for the 

depolymerization of alkali lignin. Ethyl acetate (99.9%) was purchased from Fisher 

Scientific Store for the extraction of phenolic monomers. O-Terphenyl was purchased from 

the Sigma Aldrich (St. Louis, MO) used as an analytical internal standard for the 

quantification of phenolic monomers. Other standards such as vanillin, homovanillic acid, 

acetovanillone, guaiacylacetone, and isoeugenol purchased from Sigma Aldrich (St. Louis, 

MO). Guaiacol was purchased from Acros Organics (New Jersey, USA). Acetic acid 

(99.9%) was purchased from the Sigma Aldrich (St. Louis, MO) for the protonation of 

phenolic compounds. 
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2.2.2. Hydrothermal Conversion Process 

The lignin depolymerization reactions were conducted in Helix sub-critical H2O instrument 

from Applied separation (Allentown, PA). The de-ionized water is used as a hydrogen 

donor and solvent during the depolymerization process.184 The 24 ml of stainless-steel 

vessel was loaded with 250 mg of alkali lignin and 25 mg of catalyst (The ratio of 

lignin/catalyst is 10:1). The 21 ml of deionized water passed through the reservoir into the 

vessel. The subcritical water depolymerization of lignin was carried under settled reaction 

temperature 240℃ for 10 minutes reaction time with a constant stirring. The pressure 

increased with increasing reaction temperature. The pressure of the reaction was 15.0 to 

21.5 MPa. The vessel was quickly cooled down using ice-water. The gas-outlet valve was 

opened to reduce the pressure from the gas level to the atmospheric level. Figure 2.2 shows 

the stepwise process for the depolymerization of alkali lignin in the presence of subcritical 

water and catalyst. 

      

 Figure 2.2. Stepwise process for the depolymerization of alkali lignin in the presence of 

subcritical water and different types of catalysts. 
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2.2.3. Separation and Extraction of Phenolic monomers 

The liquid phenolic products and unreacted lignin residue separated through the vacuum 

filtration. 0.2 ml of acetic acid added to the liquid mixture for the deprotonation of 

phenoxide ions. The ethyl acetate is used for separating organic products from the aqueous 

medium. The organic layer is concentrated under N2 gas. The 1.5 ml of concentrated 

sample was used for the GC-MS analysis.  

2.2.4. GC-MS Analysis 

Phenolic monomers from the alkali lignin were identified and quantified by using 5977B 

MSD and 7890B GC system from the Agilent Technologies (Wilmington, DE). This GC-

MS was equipped with a 30m*250µm*0.25µm film thickness DB-5 MS capillary column. 

Hydrogen was employed as a carrier gas at a constant flow rate of 1.2 ml/min. The initial 

temperature of the oven was 50C held for 0 min and then programmed from 50C to 200C 

at 20C/min with an isothermal hold for 1 min and from 200C to 300C at 40C/min hold 

for 2 min. The injection volume was 2l. The ion source was electron impact (EI) and total 

ion chromatogram (TIC) used in GC-MS.185 The compounds were identified by comparing 

the data with the NIST library.  

2.3. Results and Discussion 

2.3.1. Product Analysis and Quantification 

The cleavage of the C-O bond of the alkali lignin took place in the presence of subcritical 

water and catalysts. The main products were mono aromatics oxygenates (Phenolics). The 

standard calibration curves of guaiacol, vanillin, isoeugenol, acetovanilone, 

guaiacylacetone, and homovanillic acid were used for the quantification of phenolic 

monomers. Figure 2.3 shows the standard calibration curves of major phenolic monomers. 
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These calibration curves showed R2 >0.9998. O-Terphenyl was used as an internal standard 

for the quantification of phenolic monomers186. Figure 2.4 shows the GC-MS 

chromatogram of phenolic products from the alkali lignin in the presence of (a) 5% 

V/Zeolite, (b) 1.7% V/ZrO2 (Sulfate), and (c) 10% V-Ni/Zn catalysts. The signal peaks are 

related to the various volatile phenolic monomers. The twelve different phenolic monomers 

were identified from the alkali lignin based on the total ion chromatogram, and the result 

is shown in Table 2.1. All these monomers were obtained at 240℃ for 10 minutes reaction 

time. The catalysts enhance the depolymerization of alkali lignin and reduce the reaction 

time. The relative concentration of the phenolic monomers identified by the relative 

abundance of peak area.  

      

     Figure 2.3. Standard calibration curves of phenolic monomers. 
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Figure 2.4. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and (a) 5% V/Zeolite (b) 1.7% V/ZrO2 (Sulfate) and (c) 10% 

V-Ni/Zn catalysts. 
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Table 2.1. Identified phenolic monomers and retention time in the presence of 5% 

V/Zeolite catalyst 

No Retention time (min) Phenolic monomer Molecular weight Moiety 

1 3.121 Phenol 94 H 

2 3.899 Guaiacol 124 G 

3 5.024 Ethyl guaiacol 152 G 

4 5.467 Vinyl guaiacol 150 G 

5 5.831 Propyl guaiacol 166 G 

6 6.095 Vanillin 152 G 

7 6.365 Isoeugenol 164 G 

8 6.627 Acetovanillone 166 G 

9 6.895 Guaiacylacetone 180 G 

10 7.226 Butyrovanillone 194 G 

11 7.607 Homovanillic acid 182 G 

12 8.155 Coniferyl aldehyde 178 G 

 

Figure 2.5 shows the yield of phenolic monomers in the presence of subcritical water and 

5%V/Zeolite catalyst. The total yield was found to be 33.76 ± 0.44 mg/g of alkali lignin in 

the presence of a 5% V/Zeolite catalyst. Table 2.2 shows the yield of phenolic monomers 

in the presence of a 5% v/Zeolite catalyst.  
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Figure 2.5. quantification results of phenolic monomers in the presence of subcritical water 

and 5%V/Zeolite catalyst.   

Table 2.2. The yield of phenolic monomers, standard deviation, and % RSD in the presence 

of 5% V/Zeolite catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          3.34       0.40    12.15 

Vanillin          9.55       0.63    6.67 

Isoeugenol          1.28       0.09    7.07 

Acetovanillone          2.29       0.09    8.54 

Guaiacylacetone          5.06       0.72    14.31 

Homovanillic acid          12.5       0.23    1.90 

 

Figure 2.6 shows the yield of phenolic monomers from the alkali lignin in the presence of 

1.7 % V/ZrO2 (Sulfate) catalyst. The total yield was found to be 33.96 ± 0.22 mg/g of alkali 
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lignin in the presence of a 1.7 % V/Zeolite (Sulfate) catalyst. Table 2.3 shows the yield of 

phenolic monomers.  

 

Figure 2.6. quantification results of phenolic monomers in the presence of subcritical water 

and 1.7% V/ZrO2 (Sulfate) catalyst. 

Table 2.3. Yield of phenolic monomer, standard deviation, and % RSD in the presence of 

1.7% V/ZrO2 (Sulfate) Catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          3.16       0.24    7.6 

Vanillin          8.31       0.40    4.8 

Isoeugenol          2.03       0.01    0.77 

Acetovanillone          2.50       0.05    2.4 

Guaiacylacetone          5.10       0.01    0.34 

Homovanillic acid          12.85       0.26    2.17 
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Figure 2.7 shows the yield of phenolic monomers for the depolymerization alkali lignin in 

the presence of 10% V-Ni/Zinc catalyst. The total yield was found to be 17.42 ± 0.37 mg 

/g of alkali lignin in the presence of 10% V-Ni/Zinc catalyst. The major phenolic monomers 

were identified as vanillin and homovanillic acid in the presence of these three types of 

catalysts. Table 2.4 shows the yield of phenolic monomers, standard deviation, and % RSD 

in the presence of a 10% V/Ni-Zn catalyst. 

  

 

Figure 2.7. Quantification of phenolic monomers from the alkali lignin in the presence of 

subcritical water and 10% V/Ni-Zn catalyst. 
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Table 2.4. The yield of phenolic monomer, standard deviation, and % RSD in the presence 

of 10% V/Ni-Zn catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          1.31       0.12    9.1 

Vanillin          5.27       0.28    5.4 

Isoeugenol          0.27       0.06    23.9 

Acetovanillone          1.22       0.23    19.1 

Guaiacylacetone          2.35       0.46    19.7 

Homovanillic acid          6.75       0.21    3.1 

 

Figure 2.8 shows the GCMS chromatogram of phenolic monomers for the 

depolymerization of alkali lignin in the presence of subcritical water and (a) 1. 7% V/ZrO2 

(Neutral) (b) Ni-Graphene and (c) Ni-Zinc catalyst. Table 2.5 shows the twelve different 

phenolic monomers identified by using GC-MS.  

 

Figure 2.8. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and (a) 1.7% V/ZrO2 (Neutral) (b) Ni-Graphene and (c) Ni-

Zn catalysts 
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Table 2.5. Identified phenolic monomers and retention time. 

No Retention time (min) Phenolic monomer Molecular weight Moiety 

1 3.125 Phenol      94 H 

2 3.892 Guaiacol      124 G 

3 5.012 Ethyl guaiacol      152 G 

4 5.458 Vinyl guaiacol      150 G 

5 5.807 Propyl guaiacol      166 G 

6 6.077 Vanillin      152 G 

7 6.356 Isoeugenol      164 G 

8 6.615 Acetovanillone      166 G 

9 6.883 Guaiacylacetone      180 G 

10 7.214 Butyrovanillone      194 G 

11 7.593 Homovanillic acid      182 G 

12 8.140 Coniferyl aldehyde      178 G 

 

Figure 2.9 shows the yield of six major phenolic monomers from the alkali lignin. The total 

yield was found to be 21.97 ± 0.36 mg/g of alkali lignin in the presence of 1.7 % V/ZrO2 

(Neutral) catalyst. Table 2.6 shows the yield of each phenolic monomers, standard 

deviation, and % RSD in the presence of 1.7% V/ZrO2 (Neutral) catalyst. 
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Figure 2.9. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and 1.7% V/ZrO2 (Neutral) catalyst. 

 

Table 2.6. The yield of phenolic monomer, standard deviation, and % RSD in the presence 

of 1.7% V/ZrO2 (Neutral) catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          2.07       0.07    3.6 

Vanillin          6.30       0.26    4.2 

Isoeugenol          0.90       0.04    5.4 

Acetovanillone          1.27       0.17    13.7 

Guaiacylacetone          2.70       0.19    7.1 

Homovanillic acid          8.73       0.51    5.8 
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Figure 2.10 shows the yield of phenolic monomers from the alkali lignin in the presence 

of Ni-Graphene catalyst. The total yield was found to be 40.84 ± 0.27 mg/g of alkali lignin 

in the presence of Ni-Graphene catalyst. Table 2.7 shows the yield of depolymerized 

compounds from the alkali lignin.    

 

Figure 2.10. Quantification of results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and Ni-Graphene catalyst. 
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Table 2.7. The yield of phenolic monomers, standard deviation, and % RSD in the presence 

of Ni-Graphene catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          3.70       0.16    4.3 

Vanillin          9.59       0.34    3.5 

Isoeugenol          3.26       0.15    4.8 

Acetovanillone          2.95       0.06    2.1 

Guaiacylacetone          6.38       0.26    4.1 

Homovanillic acid          14.96       0.18    1.2 

 

Figure 2.11 shows the yield of phenolic monomers from the alkali lignin in the presence 

of Ni-Zinc catalyst. The total yield was found to be 24.57 ± 0.14 mg/g of alkali lignin in 

the presence of Ni-Zn catalyst. Table 2.8 shows the yield of depolymerized compounds 

from the alkali lignin.    

 

Figure 2.11. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and Ni-Zinc catalyst.  
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Table 2.8. The yield of phenolic monomers, standard deviation, and % RSD in the presence 

of Ni-Zn catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          2.20       0.10    4.7 

Vanillin          6.60       0.31    4.8 

Isoeugenol          0.51       0.02    5.8 

Acetovanillone          1.69       0.04    2.3 

Guaiacylacetone          3.90       0.04    1.0 

Homovanillic acid          9.67       0.08    0.8 

 

Figure 2.12 shows the GCMS chromatogram of phenolic monomers for the 

depolymerization of alkali lignin in the presence of subcritical water and (a) 5% V/Ni-

Graphene (b) 1.7% V/Zeolite and (c) No catalyst. Table 2.9 shows the twelve different 

phenolic monomers identified by using GC-MS.  

 

Figure 2.12. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and (a) 5% V/Ni-Graphene (b) 1.7% V/Zeolite and (c) No 

catalysts.  
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Table 2.9. Identified phenolic monomers and retention time in the presence of 5% V/Ni-

Graphene catalyst. 

No Retention time (min) Phenolic monomer Molecular weight Moiety 

1 3.127 Phenol      94 H 

2 3.898 Guaiacol      124 G 

3 5.023 Ethyl guaiacol      152 G 

4 5.609 Vinyl guaiacol      150 G 

5 5.813 Propyl guaiacol      166 G 

6 6.098 Vanillin      152 G 

7 6.363 Isoeugenol      164 G 

8 6.629 Acetovanillone      166 G 

9 6.896 Guaiacylacetone      180 G 

10 7.226 Butyrovanillone      194 G 

11 7.612 Homovanillic acid      182 G 

12 8.164 Coniferyl aldehyde      178 G 

 

Figure 2.13 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of a 5% V/Ni-Graphene catalyst. The total yield was found to be 31.21 ± 0.16 

mg/g of alkali lignin in the presence of a 5% V-Ni-Graphene catalyst. Table 2.10 shows 

the yield of each phenolic monomer, standard deviation, and %RSD. 
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Figure 2.13. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and 5% V/Ni-Graphene catalyst. 

 

Table 2.10. The yield of phenolic monomers, STD, and % RSD in the presence of 5% 

V/Ni-Graphene catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          2.73       0.16    5.9 

Vanillin          8.97       0.17    1.8 

Isoeugenol          1.19       0.11    9.5 

Acetovanillone          2.47       0.24    9.7 

Guaiacylacetone          4.58       0.16    3.4 

Homovanillic acid          11.26       0.14    1.3 
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Figure 2.14 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of 1.7% V/Zeolite catalyst. The total yield was found to be 30.90 ± 0.40 mg/g of 

alkali lignin in the presence of 1.7% V/Zeolite catalyst. Table 2.11 shows the yield of each 

phenolic monomers, standard deviation, and %RSD in the presence of 1.7% V/Zeolite 

catalyst. 

 

Figure 2.14. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and 1.7% V/Zeolite catalyst. 
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Table 2.11. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of 1.7% V/Zeolite catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          2.54       0.20    7.8 

Vanillin          8.07       0.10    1.2 

Isoeugenol          1.55       0.11    7.4 

Acetovanillone          2.10       0.02    1.3 

Guaiacylacetone          4.85       0.36    7.4 

Homovanillic acid          11.56       0.50    4.3 

Figure 2.15 shows the yield of six major phenolic monomers from the alkali lignin without 

catalyst. The total yield was found to be 24.06 ± 0.27 mg/g of alkali lignin without catalyst. 

Table 2.12 shows the yield of each phenolic monomers, STD, and %RSD without catalyst. 

 

Figure 2.15. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and without catalyst. 
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Table 2.12. The yield of phenolic monomers, standard deviation, and % RSD without 

catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          2.31       0.25    11.2 

Vanillin          6.52       0.38    5.9 

Isoeugenol          1.35       0.14    10.7 

Acetovanillone          1.76       0.30    17.1 

Guaiacylacetone          3.58       0.11    3.3 

Homovanillic acid          8.52       0.35    4.2 

 

Figure 2.16 shows the GCMS chromatogram of phenolic monomers for the 

depolymerization of alkali lignin in the presence of subcritical water and carbon-supported 

(a) CoO (b) LaO and (c) MoO catalyst. Table 2.13 shows the 9 different phenolic 

monomers identified by using GC-MS.  

 

Figure 2.16. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and Carbon supported (a) CoO (b) LaO and (c) MoO catalysts 
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Table 2.13. Identified phenolic monomers and retention time in the presence of carbon 

supported CoO catalyst. 

No Retention time (min) Phenolic monomer Molecular weight Moiety 

2 3.892 Guaiacol      124 G 

3 5.012 Ethyl guaiacol      152 G 

4 5.458 Vinyl guaiacol      150 G 

5 5.807 Propyl guaiacol      166 G 

6 6.077 Vanillin      152 G 

7 6.356 Isoeugenol      164 G 

8 6.615 Acetovanillone      166 G 

9 6.883 Guaiacylacetone      180 G 

11 7.593 Homovanillic acid      182 G 

 

Figure 2.17 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of a CoO catalyst. The total yield was found to be 7.19 ± 0.08 mg/g of alkali 

lignin in the presence of a CoO catalyst. Table 2.14 shows the yield of each phenolic 

monomers, STD, and % RSD in the presence of carbon-supported CoO catalyst. 
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Figure 2.17. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and carbon supported CoO catalyst. 

 

Table 2.14. Yield of phenolic monomers, standard deviation, and % RSD in the presence 

of carbon-supported CoO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol         0.25       0.01    5.76 

Vanillin         3.59       0.13    3.86 

Isoeugenol         0.06       0.01    18.81 

Acetovanillone         0.20       0.03    14.12 

Guaiacylacetone         0.62       0.05    8.76 

Homovanillic acid         2.40       0.15    6.1 

 

Figure 2.18 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of LaO catalyst. The total yield was found to be 9.01 ± 0.21 mg/g of alkali lignin 
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in the presence of LaO catalyst. Table 2.15 shows the yield of each phenolic monomer, 

standard deviation, and % RSD in the presence of carbon supported LaO catalyst. 

    

 

Figure 2.18. Quantification of the phenolic monomers from the alkali lignin in the presence 

of subcritical water and carbon supported LaO Catalyst. 

 

Table 2.15. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of carbon supported LaO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          0.15       0.06    4.1 

Vanillin          4.26       0.34    8.0 

Isoeugenol          0.24       0.10    4.6 

Acetovanillone          0.50       0.15    7.1 

Guaiacylacetone          1.55       0.28    3.5 

Homovanillic acid          2.30       0.21    9.3 
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Figure 2.19 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of MoO catalyst. The total yield was found to be 8.46 ± 0.17 mg/g of alkali lignin 

in the presence of MoO catalyst. Table 2.16 shows the yield of each phenolic monomer, 

standard deviation and % RSD in the presence of carbon supported MoO catalyst. 

 

Figure 2.19. Quantification of phenolic monomers from the alkali lignin in the presence 

of subcritical water and carbon supported MoO catalyst. 
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Table 2.16. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of carbon supported MoO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          0.27       0.02    8.5 

Vanillin          4.35       0.39    9.1 

Isoeugenol          0.04       0.01    16.3 

Acetovanillone          0.29       0.04    14.8 

Guaiacylacetone          1.08       0.01    1.6 

Homovanillic acid          2.43       0.13    5.6 

The depolymerization of alkali lignin performed using subcritical water and zeolite 

supported catalysts.187 Figure 2.20 shows the GCMS chromatogram of phenolic monomers 

for the depolymerization of alkali lignin in the presence of subcritical water and zeolite 

supported (a) LaO (b) MoO and (c) CoO catalyst. Table 2.17 shows the 9 different phenolic 

monomers identified by using GC-MS. 

 

Figure 2.20. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and Zeolite supported (a) LaO (b) MoO and (c) CoO catalysts.  
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Table 2.17. Identified phenolic monomers and retention time in the presence of zeolite 

supported catalysts 

No Retention time (min) Phenolic monomer Molecular weight Moiety 

1 3.125 Phenol      94 H 

2 3.892 Guaiacol      124 G 

3 5.012 Ethyl guaiacol      152 G 

4 5.458 Vinyl guaiacol      150 G 

6 6.077 Vanillin      152 G 

7 6.356 Isoeugenol      164 G 

8 6.615 Acetovanillone      166 G 

9 6.883 Guaiacylacetone      180 G 

11 7.593 Homovanillic acid      182 G 

 

Figure 2.21 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of LaO catalyst. The total yield was found to be 7.95 ± 0.13 mg/g of alkali lignin 

in the presence of LaO catalyst. Table 2.18 shows the yield of each phenolic monomer, 

standard deviation and % RSD in the presence of zeolite supported LaO catalyst. 
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Figure 2.21. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and zeolite supported LaO catalyst. 

 

Table 2.18. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of zeolite supported LaO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          0.14       0.07    6.8 

Vanillin          3.37       0.24    7.2 

Isoeugenol          0.01       0.01    19.8 

Acetovanillone          0.13       0.02    17.5 

Guaiacylacetone          1.02       0.16    16.3 

Homovanillic acid          3.26       0.14    4.5 

 

Figure 2.22 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of MoO catalyst. The total yield was found to be 8.02 ± 0.07 mg/g of alkali lignin 
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in the presence of MoO catalyst. Table 2.19 shows the yield of each phenolic monomer, 

standard deviation, and % RSD in the presence of zeolite supported MoO catalyst. 

 

Figure 2.22. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and zeolite supported MoO catalyst. 

 

Table 2.19. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of zeolite supported MoO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          0.004       0.003    5.2 

Vanillin          3.23       0.17    5.3 

Isoeugenol          0.06       0.03    7.2 

Acetovanillone          0.16       0.05    7.1 

Guaiacylacetone          1.10       0.01    1.5 

Homovanillic acid          3.46       0.04    1.3 
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Figure 2.23 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of a CoO catalyst. The total yield was found to be 8.03 ± 0.10 mg/g of alkali 

lignin in the presence of a CoO catalyst. Table 2.20 shows the yield of each phenolic 

monomers, standard deviation and % RSD in the presence of zeolite supported CoO 

catalyst. 

 

Figure 2.23. Quantification results of phenolic monomers from the alkali lignin in the 

presence of subcritical water and zeolite supported CoO catalyst. 

Table 2.20. The yield of phenolic monomers, standard deviation, and % RSD in the 

presence of zeolite supported CoO catalyst. 

Phenolic monomer Yield (mg/g of alkali lignin)       STD  % RSD 

Guaiacol          0.03       0.02    18.6 

Vanillin          3.22       0.03    1.2 

Isoeugenol          0.04       0.02    14.8 

Acetovanillone          0.15       0.005    3.7 

Guaiacylacetone          1.08       0.03    2.8 

Homovanillic acid          3.49       0.24    7.0 
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Figure 2.24 shows the yield of six major phenolic monomers from the alkali lignin in the 

presence of different types of catalysts. The vanillin and homovanillic acid showed the 

highest conversion yield in the presence of subcritical water and different types of catalysts.  

 

Figure 2.24. The yield of major phenolic monomers for the depolymerization of alkali 

lignin in the presence of subcritical water and different types of catalysts. 

 

Figure 2.25 shows the total yield of phenolic monomers for the depolymerization of alkali 

lignin in the presence of subcritical water and catalyst. The Ni-Graphene showed the 

highest conversion yield in the presence of subcritical water. Table 2.21 shows the total 

yield of phenolic monomers from the alkali lignin in the presence of different catalysts. 
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Figure 2.25. The total yield of phenolic monomers for the depolymerization of alkali lignin 

in the presence of subcritical water and catalysts. 
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Table 2.21. The total yield of phenolic monomers from the alkali lignin in the presence of 

a different catalysts. 

No    Name of Catalyst Total Yield (mg/g of alkali Lignin) 

1    5% V/Zeolite            33.76 ± 0.44  

2    1.7% V/ZrO2 (Sulfate)            33.96 ± 0.22 

3    10% V-Ni/Zinc            17.42 ± 0.37  

4    1.7% V/ZrO2 (Neutral)            21.97 ± 0.36 

5    Ni-Graphene            40.84 ± 0.27 

6    Ni-Zinc                                                          24.57 ± 0.14 

7    5% V/Ni-Graphene            31.21 ± 0.16 

8    1.7% V/Zeolite                                             30.90 ± 0.40 

9    CoO (carbon supported)            7.19 ± 0.08 

10    LaO (carbon supported)            9.01 ± 0.21 

11    MoO (carbon supported)            8.46 ± 0.17 

12    LaO (zeolite supported)                          7.95 ± 0.13 

13    MoO (zeolite supported)                           8.02 ± 0.07 

14    CoO (zeolite supported)                             8.03 ± 0.10 

15    No Catalyst            24.06 ± 0.27 

 

2.4. Role of Subcritical water and Catalysts in depolymerization of alkali lignin 

The unique properties of subcritical water behave like an acid and base catalyst. The 

solubility of the lignin increases in subcritical conditions because of decreasing density and 

viscosity. The rate of diffusion will increase with the combination of subcritical water and 

catalyst. The depolymerization reactions at higher temperature lead to the formation of 

char, corrosion of the reaction vessel, damage the catalysts, and increase the 

repolymerization.188 The catalysts prevent the formation of char and repolymerization 

reaction.  
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Zeolite (HZSM-5, Si/Al ratio was 30/1) and carbon supported catalysts play an important 

role in the depolymerization of lignin. Zeolite supported metal catalyst used for this study 

helps to control the reaction in the mixture to achieve the more stable products and increase 

the product yield because of acidic sites as well as pores. The acidic sites are responsible 

for breaking down the cross-linkages to get the desired products. The volume created by 

the pores helps to prevent the repolymerization reactions.189 Metals used for generating 

hydrogen, and metal oxide through the metal hydrolysis reactions. This hydrogen helps in 

reductive depolymerization of lignin when using supported metal catalysts during 

hydrothermal liquefaction. The hydrogen breakdown to produce a hydrogen atom and a 

radical. The hydrogen radicals help to break the ether linkages to get the monomers and 

hydrogen atom used for the stabilizing phenoxide ion to get the stable products. In the  

hydrothermal liquefaction process, the hydrogen gas is produced in-situ and absorbed by 

the surfaces of the supported-metal catalysts which causes the dissociation of the hydrogen 

gas into atom and radical.188 Hydrogen can be produced from the cheap and available water 

via metal hydrolysis.190 The generation of hydrogen at high-temperature increase and 

promote the hydrodeoxygenation (HDO).191 

The acid and alkali catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, 

Na2CO3, K2CO3, KOH, NaOH, and Ca (OH)2 were widely used in the depolymerization of 

lignin.192 However, the uses of homogeneous acid and alkali catalysts had a corrosion effect 

on liquefaction equipment,193 need additional separation steps and require high cost for 

recovery of the catalysts.194 The heterogeneous catalysts used for this study were 

hydrothermally stable at high temperature, environmentally friendly, easy to recover, and 

safe to dispose of. 193 
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2.5. The possible pathways and mechanism of Alkali lignin in the presence of 

subcritical water and catalysts 

The complete detailed mechanism for the depolymerization of alkali lignin still unclear. 

There are few literatures showed the possible pathways for the depolymerization of lignin 

in the presence of base and acid catalyst. The lignin depolymerization mechanism and 

cleavage of the β-O-4 bond were studied by using a lignin dimer.195  The subcritical water 

source of proton and OH-. β-O-4 dimer forms the α-carbon cation in the presence of acid 

followed by loss of formaldehyde via cleavage of C-C bond to form the vinyl ether. Vinyl 

ether undergoes hydrolysis to form the aldehyde and guaiacol. β-O-4 dimer in the presence 

of base undergoes E2 elimination at β, γ carbons to form the enol product which can be 

tautomerized into an aldehyde, and guaiacol.195 The aldehyde undergoes hydrolysis to form 

the vanillin. Another possible way is hydrogen gas produced in-situ in hydrothermal 

liquefaction and adsorbed by the metal catalysts. Hydrogen gas dissociates into hydrogen 

atom and hydrogen radical at subcritical water condition. Hydrogen radical helps to cleave 

the β-O-4 linkage to get the phenolic monomers from the lignin.188 Hydrogen atom helps 

to stabilize the phenoxide ion. Figure 2.26 shows the possible pathways of lignin 

depolymerization in the presence of subcritical water and catalysts.  
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Figure 2.26. The possible pathways of lignin depolymerization in the presence of 

subcritical water and catalyst.  
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2.6. Summary 

Product yield was calculated according to the following equation.  

                        YPhenolic monomer (wt%) =  
𝑊 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑙𝑖𝑐 𝑚𝑜𝑛𝑜𝑚𝑒𝑟

𝑊 𝑜𝑓 𝑎𝑙𝑘𝑎𝑙𝑖 𝑙𝑖𝑔𝑛𝑖𝑛
 × 100 %                      (1)      

Y represents the yield of phenolic monomers and W is the weight of phenolic monomers 

and alkali lignin.     

The Ni-Graphene catalyst showed the highest yield 41.16 ± 0.27 mg/g. The possible 

explanation for showing the highest yield is the high surface area of the Ni-Graphene. The 

total weight percent was calculated by using equation 1 and found to be 62% conversion 

in the presence of Ni-Graphene catalyst. The 10 % V-Ni/Zinc showed the lowest 

conversion yield than the without catalyst treatment because of the lowest surface area. 

The 5 % V/Zeolite (33.28 ± 0.44 mg/g) and 1.7% V/ZrO2 (sulfate) (34.46±0.22 mg/g) 

catalysts showed the almost same conversion yield for the depolymerization of alkali 

lignin. The possible reason for the lowest yield at 15 minutes reaction time is, 

repolymerization of lignin and secondary decomposition of products. 

In the hydrothermal liquefaction (HTL) process with subcritical water hydrogen, is helps 

in reductive depolymerization of lignin with supported catalysts. The in-situ hydrogen 

breaks down to produce the hydrogen radical and atom. The hydrogen radical initiates the 

depolymerization of lignin in the reaction and the hydrogen atom stabilizes the 

intermediate phenolic moiety in the reaction solution. A small amount of acetic acid was 

added at the stage of extraction and used as hydrogen donating solvent to stabilize the 

phenoxide ion in the depolymerization reaction 196.   

In the HTL, process the hydrogen gas adsorbed by supported-metal catalysts surfaces and 

generates the hydrogen radical and atom. The hydrogen radical attacks the ether cross-
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linkages within the lignin polymer and cleaves the ether bonds results in the production of 

phenolic monomers from the lignin polymer. 

The depolymerization of alkali lignin with subcritical water and Ni-Graphene catalyst is a 

potential method to produce the aromatic phenols from the alkali lignin. The performed 

reaction time (10 min) and reaction temperature (240℃) is lesser than other traditional 

methods 197. The main advantage of this method was the usage of the green and most 

environmentally friendly, cheap, and universal solvent (subcritical water) for the 

depolymerization of alkali lignin instead of hazardous chemicals 198. These reaction 

conditions and solvent prevent the repolymerization reaction, secondary decomposition, 

and formation of char in the reaction. 

2.7. Conclusion 

In this study, depolymerization of alkali lignin was investigated with subcritical water and 

different types of catalysts in relatively mild reaction conditions (240 ℃ for 10 minutes). 

The cleavage of β-O-4 bond promoted by the catalysts (Ni-Graphene, 5% V/Zeolite, and 

1.7% V/ZrO2 (Sulfate). The catalysts were able to convert the high molecular weight lignin 

into low molecular weight monomers in the presence of subcritical water. Among all the 

catalysts Ni-Graphene catalyst showed the best performance in terms of phenolic 

monomers yield. Ni-Graphene showed the 62% conversion of phenolic monomers from 

the alkali lignin. The treatment of alkali lignin with subcritical water and catalysts is green 

and eco-friendly to produce the greener chemical such as guaiacol, vanillin, acetovanillone, 

guaiacylacetone, and homovanillic acid. This study revealed that the reaction temperature, 

time, and solvent (subcritical water) played an important role in the lignin conversion and 

the production of phenolic monomers. To conclude, that the depolymerization of alkali 
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lignin with subcritical water and Ni-Graphene catalyst is a great potential method to obtain 

the value-added phenolic monomers.                                                                                                                                                                                       
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                                                CHAPTER THREE  

 

 

OPTIMIZATION OF REACTION CONDITIONS FOR THE 

DEPOLYMERIZATION OF ALKALI LIGNIN IN THE PRESENCE OF 

SUBCRITICAL WATER AND CATALYST 

 

3.1. Introduction 

 

Biomass is an organic material derived from living matter. Biomass is a renewable and 

alternative source for the production of chemicals.199 The production of bio-waste materials 

from agriculture and industries is a main cause of pollution. There are few technologies 

developed for the destruction of these wastes into harmless and useful chemicals.200 

Lignocellulose is a plant-derived biomass and it consists of three types of components 

cellulose, hemicellulose, and lignin. Lignin is a complex biopolymer and building blocks 

of different aromatic phenols. Lignin is one of the raw materials for the production of 

aromatic chemicals.60 Lignin is an effective source of biofuel and specialty chemicals such 

as phenolic monomers including phenols, guaiacols, syringol, and catechols.201 These are 

well-known “green chemicals” that can be used as food additives and bio preservatives, 

pharmaceutical products, and industrial products for resins and plastics.201  Lignin contain 

hydroxyphenyl propane units such as p-coumaryl, coniferyl, and sinapyl alcohols are 

connected with ether and carbon-carbon bonds.154 It contains many oxygen functional 

groups phenolic compounds, hydroxyl, carbonyl group, carboxyl, ester, and ether bonds. 

-O-4 linkage is a dominant bond in the lignin structure. So, the main strategy is breaking 

the -O-4 linkage in the lignin.202 Phenolic chemicals can be obtained from the lignin by 

chemical decomposition processes. These phenolic monomers are used for the synthesis of 
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resins. Phenolic resins are used for the preparation of laboratory countertops, electric 

circuit boards, and adhesives. Approximately 50 million tons of lignin was produced every 

year worldwide as a by-product of the paper industry.203 The industrial application of lignin 

is to substitute petroleum-derived phenol for the synthesis of phenol-formaldehyde (PF) 

resin.26  

In recent years, many literatures on lignin liquefaction were studied using the aqueous-

based solution or an organic solvent as the reaction medium.25, 204, 205 The depolymerization 

of lignin in sub/supercritical fluids such as methanol 206, 207, and ethanol 208 has been studied 

by many researchers to obtain bio-oil products or phenolic chemicals with low molecular 

weights. The depolymerization of switchgrass lignin was studied using formic acid as a 

hydrogen source overnight at 350 C in a sand bath.209 The lignin degradation including 

hydrolysis, lignin catalytic cracking, lignin reduction, and oxidation have been reported 

and studied the utilization of lignin in the future.4, 210, 211 All these methods require a high 

temperature, high pressure, longer reaction time, and chemicals for the depolymerization 

of lignin.  

 In this study, the lignin conversion was carried out in the presence of subcritical water and 

catalysts. Optimized the reaction conditions such as temperature, time, and pressure using 

the catalysts. The water in the liquefaction process could be an alternative reaction medium 

that serves as the reagent, solvent, and catalyst due to its unique properties under sub-and 

supercritical conditions. The density and dielectric constant of water decreases at the 

subcritical condition and it is influences the yield of phenolic monomers and promotes the 

degradation of lignin.212 Subcritical water can hydrolyze many of the organic compounds 

that are catalyzed by enhanced ionic-water products and can achieve the water-molecule 
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hydrothermal cleavage while providing a homogeneous phase for the organic-substance 

dissolution reactions.213 From the previous objective of this study, selected the best 

catalysts (Ni-Graphene, 1.7% V/ZrO2 (Sulfate) and 5% V/Zeolite) for the 

depolymerization of alkali lignin in the presence of subcritical water. The optimized 

reaction temperature was 240C, time was 10 min and pressure was <21.5Mpa. This 

reaction temperature, pressure, and time were lesser than reported literatures.  

3.2. Experimental procedure      

3.2.1. Materials 

Alkali Lignin was purchased from Sigma Aldrich (St. Louis, MO). Catalysts for this study 

was obtained from Dr. Gu, Department of Agriculture and Bio-system Engineering. Acetic 

acid for the protonation was purchased from Sigma Aldrich (St. Louis, MO). Ethyl acetate 

(99.9%) was purchased from the Fisher Scientific store for the extraction of phenolic 

monomers. O-Terphenyl internal standard purchased from Sigma Aldrich (St. Louis, MO). 

Deionized water is used as a solvent for the lignin depolymerization reactions. 

3.2.2. Method 

The depolymerization of alkali lignin reaction was conducted using the Subcritical Helix 

H2O instrument from Applied Separation (Allentown, PA). 24ml of stainless-steel vessel 

used for the loading catalyst and alkali lignin. 250mg of alkali lignin and 25mg of catalyst 

were loaded into the vessel and passed 21ml of distilled water through the reservoir. The 

temperature conditions were 2000C and 2400C and allowed the reaction at these 

temperatures for 5,10 and 15 minutes. The reaction mixture was collected into the glass 

vial after the reaction time and filtered under a vacuum. 0.2 ml of acetic acid was added 

for the protonation of phenoxide ion.  Ethyl acetate was used for the liquid-liquid 
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extraction. The organic layer was collected from the aqueous layer and concentrated under 

N2 gas. 1.5 ml of sample was collected into the GC vial for the GC-MS analysis. 100l of 

O-Terphenyl was added as an internal standard for the quantification. 

3.2.3. GC-MS Analysis 

Phenolic monomers from the alkali lignin were identified and quantified by GC-MS. 

5977B MSD and 7890B GC system from Agilent Technologies (Wilmington, DE) used 

for the product analysis. This GC-MS was equipped with a 30m*250µm*0.25µm film 

thickness DB-5 MS capillary column. Hydrogen gas is used as a carrier gas at a constant 

flow rate of 1.2 ml/min. The initial temperature of the oven was 50C held for 0 min and 

then programmed from 50C to 200C at 20C/min with an isothermal held for 1 min and 

from 200C to 300C at 40C/min held for 2 min. The injection volume was 2l. The ion 

source was electron impact (EI) and total ion chromatogram (TIC) used in GC-MS. The 

compounds were identified by comparing the data with the NIST library. 

3.3. Results and Discussion 

3.3.1. Identification of Products and Quantification 

The optimization of reaction conditions for the depolymerization of alkali lignin was 

studied using three different types of catalysts and subcritical water. The catalysts were 

used for this study were Ni-Graphene, 1.7% V/ZrO2 (Sulfate), and 5% V/Zeolite. The 

depolymerization of alkali lignin was studied at 200C and 240C for 5-, 10-, and 15-

minutes reaction time. 12 different phenolic monomers were identified from the alkali 

lignin using Gas Chromatography-Mass Spectrometry (GC-MS). The quantification of 

major phenolic monomers was studied using their standard calibration curves. The 

quantified phenolic monomers were guaiacol, vanillin, acetovanillone, guaiacylacetone, 
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isoeugenol, and homovanillic acid. Figure 3.1 shows the GC-MS chromatogram of 

phenolic monomers from the alkali lignin in the presence of subcritical water and Ni-

Graphene catalyst at (a) 5 (b) 10 and (c) 15 minutes reaction time. Figure 3.2 shows the 

quantification results of phenolic monomers at 5,10-, and 15-minutes reaction time. Figure 

3.3 shows the yield of phenolic monomers at 200C and 240C in the presence of Ni-

Graphene catalyst. From figure 3.2 quantification data, 10 minutes reaction time showed 

the highest conversion of phenolic monomers from the alkali lignin. 

From figure 3.3 quantification data 240C showed the highest conversion yield from the 

alkali lignin. So, the optimized reaction temperature was 240C, and the reaction time was 

10 minutes. The optimized pressure was <21.5 Mpa.  

    

Figure 3.1. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water and Ni-Graphene catalyst for (a) 5 (b) 10 and (c) 15 minutes 

reaction time. 
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      Figure 3.2. The yield of phenolic monomers in the presence of subcritical water and  

Ni-Graphene catalyst for 5, 10, and 15 minutes reaction time.       

        

Figure 3.3. The yield of phenolic monomers for the depolymerization of alkali lignin in 

the presence of subcritical water and Ni-Graphene catalyst at 200 ℃ (blue) and 240 ℃ 

(Orange). 
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Figure 3.4 shows the GC-MS chromatogram of phenolic monomers from the alkali lignin 

in the presence of subcritical water and 1.7% V/ZrO2 (Sulfate) catalyst for 5-, 10-, and 15-

minutes reaction time. Figure 3.5 shows the yield of phenolic monomers at 5,10-, and 15-

minutes reaction time. Figure 3.6 shows the quantification results of phenolic monomers 

at 200C and 240C.  From the figure 3.5 quantification data, the 10 minutes reaction time 

was showed the highest conversion of phenolic monomers from the alkali lignin. From the 

figure 3.6 quantification data 240C showed the highest conversion of phenolic monomers 

from the alkali lignin. So, the optimized reaction temperature was 240C, and the reaction 

time was 10 minutes. The optimized pressure was <21.5 Mpa. 

 

                             

      Figure 3.4. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

      presence of subcritical water and 1.7% V/ZrO2 (Sulfate) catalyst for (a) 5 (b) 10 and  

      (c) 15 minutes reaction time.   
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Figure 3.5. Yield of phenolic monomers in the presence of subcritical water and 1.7% 

V/ZrO2 (Sulfate) catalyst for 5-, 10-, and 15-minutes reaction time.  
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Figure 3.6. The yield of phenolic monomers for the depolymerization of alkali lignin in 

the presence of subcritical water and 1.7 % V/ZrO2 (Sulfate) catalyst at 200 ℃ and 240 ℃. 

Figure 3.7 shows the GC-MS chromatogram of phenolic monomers from the alkali lignin 

in the presence of subcritical water and 5% V/Zeolite catalyst at 5-, 10-, and 15-minutes 

reaction time. Figure 3.8 shows the quantification results of phenolic monomers at 5,10-, 

and 15-minutes reaction time. Figure 3.9 shows the quantification results of phenolic 

monomers at 200C and 240C. From the figure 3.8 quantification data the 10 minutes 

reaction time was showed the highest conversion of phenolic monomers from the alkali 

lignin. From the figure 3.9 quantification data 240C showed the highest conversion of 

phenolic monomers from the alkali lignin. So, the optimized reaction temperature was 

240C, and the reaction time was 10 minutes. The optimized pressure was <21.5 Mpa. 
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Figure 3.7. GC-MS chromatogram of phenolic monomers from the alkali lignin in the 

presence of subcritical water 5% V/Zeolite catalyst for (a) 5 (b) 10 and (c) 15 minutes 

reaction time 
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Figure 3.8. The yield of phenolic monomers for the depolymerization of alkali lignin in 

the presence of subcritical water and 5% V/Zeolite catalyst for 5, 10, and 15 minutes 

reaction time. 
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Figure 3.9. The yield of phenolic monomers for the depolymerization of alkali lignin in 

the presence of subcritical water 5% V/Zeolite catalyst at 200 ℃ and 240 ℃. 

3.4. Summary 

Table 3.1 shows the total yield of phenolic monomers for the depolymerization of alkali 

lignin in the presence of subcritical water and three types of catalysts for 5, 10, and 15 

reaction time. The 10 minutes reaction time showed the highest conversion yield from the 

lignin comparative 5 and 15 minutes reaction time. GC-MS chromatogram concludes that 

the 10 minutes reaction time showed the highest selectivity comparative 5 and 15 minutes 

reaction time. The possible reason for the low yield at 15 minutes reaction time is, 

repolymerization of lignin and secondary decomposition of products. Table 3.2 shows the 

total yield of phenolic monomers at 200℃ and 240℃ in the presence of three types of 

catalysts. The 240℃ reaction temperature showed the highest yield in the presence of three 
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catalysts. The temperature and reaction time plays an important role in the 

depolymerization of alkali lignin. The major phenolic monomers obtained by cleavage of 

β-O-4 bond in the presence of subcritical water and catalyst are vanillin and homovanillic 

acid.  

Table 3.1. The total yield of phenolic monomers from the alkali lignin at 240℃ for 5-, 10-

, and 15-minutes reaction time. 

      Yield (mg/g of lignin)  

Catalyst         5 min     10 min     15 min 

Ni-Graphene        11.89 ± 0.14        41.16 ± 0.27 16.95 ± 0.11 

5% V/Zeolite        13.90 ±0.07        33.28 ± 0.44 17.51 ± 0.12 

1.7%V/ZrO2(Sulfate)        13.36 ± 0.11        34.46 ± 0.22 26.96 ± 0.26 

 

Table 3.2. The total yield of phenolic monomers from the alkali lignin at 200 and 240℃  

                  Yield (mg/g of lignin)  

Catalyst    200℃      240℃ 

Ni-Graphene   17.90 ± 0.19  41.16 ± 0.27 

5% V/Zeolite   18.03 ± 0.13  33.28 ± 0.44 

1.7% V/ZrO2 (Sulfate)   18.72 ± 0.11  34.46 ± 0.22 

 

3.5. Conclusion 

Optimized the reaction conditions for the depolymerization of alkali lignin in the presence 

of subcritical water and three different types of selected catalysts. Studied the 

depolymerization reactions at 200C and 240C for 5, 10- and 15-min reaction time and 

conclude that the 240C reaction temperature and 10 min reaction time was the selective 

conditions for the depolymerization of alkali lignin. The optimized pressure was <21.5 

MPa. These reaction times, temperatures, and pressure were lesser than reported literatures. 

This approach is a low cost, green, and environmentally friendly. 



78 
 

                                                  CHAPTER FOUR 

EXTRACTION AND DEPOLYMERIZATION OF LIGNIN FROM THE PINE 

SAWDUST AND PISTACHIO SHELLS BIOMASS 

4.1. Introduction 

Lignocellulosic biomass is the world’s most abundant renewable resource to produce 

biofuels, biomaterials, and chemicals.214 The main components of biomass are cellulose, 

hemicellulose, and lignin.215 Biomass is an alternative source to replace fossil fuels and 

reduce global warming.216 Biomass include food crops, grassy and woody plants, residues 

from agriculture or forestry, oil-rich algae, and organic component of municipal and 

industrial wastes.217  

Pine sawdust, a common waste material from many forestry and industrial sectors.218 Pine 

sawdust is an excellent raw material for biorefinery.219 Pistachio shells (PS) is a potential 

alternative lignocellulosic biomass and generated in considerable amounts, as the annual 

production of pistachios in the last 10 years is between 800 to 900 ktones.220 Pistachios is 

cultivated in Iran, the Middle East, the United States, and Mediterranean countries.221 Iran 

is the largest pistachio producer in the world, yielding about 40% of the global production 

in the year of 2009.222 The U.S. is the second-largest country and produces 27% of the total 

global production.222 Pistachio shells are mostly used for animal feed or wood fuel.221 This 

lignocellulosic biomass is an alternative source of 25.2% of Lignin.223 Pistachio shells are 

used for the production of activated carbon by pyrolysis and gasification.221 

Lignin is a naturally available biomass and aromatic polymer.224 Lignin has a 3-D 

amorphous structure consisting of methoxylated phenylpropane units.  Lignin is bonded 

together by C-C, -, -1, -5, and -O-4 linkages.225 Lignin is a source of phenolic 
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monomers, which is widely used in the preparation of resins and polymers. Lignin can be 

used in binders and additives in cement. Lignin is applicable in many areas such as 

emulsifiers, dyes, synthetic flooring, dispersal agents, and paints.226  

There are several techniques used for the extraction of lignin from the biomass such as 

using ionic liquids, acids, alkaline solutions, organic solvents, and hydrogen peroxide. In 

this study, the biomass used for the extraction of lignin were pistachio shells and pine 

sawdust. Herein, organic solvents are used for the extraction of lignin from the pistachio 

shells and pine sawdust.  

There are several methods reported for the depolymerization of lignin such as pyrolysis, 

acid-catalyzed depolymerization, base-catalyzed, enzymatic depolymerization, using ionic 

liquids, supercritical CO2 depolymerization, and metal-catalyzed depolymerization.227 In 

the pyrolysis method, lignin is subjected to temperature in the range of 300-1000 C in the 

absence of air.228 In this study, subcritical water and catalyst were used for the 

depolymerization of extracted lignin. Subcritical water is defined as, water that exists in a 

liquid state above its boiling point and below its critical temperature. This technique is the 

environmentally friendly and green approach for the depolymerization of lignin. 
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Graphical Abstract: 

 

 

4.2. Materials 

Pine sawdust and Pistachio shells biomass were obtained from the Department of 

Agricultural and Biosystem Engineering, South Dakota State University. These biomasses 

were blended and reduced the particle size to 850 µm. The extraction solvents methyl 

isobutyl ketone, ethanol, and H2SO4 were purchased from the Fisher Scientific store. The 

catalyst (Ni-Graphene) was obtained from the Department of Agricultural and Biosystem 

Engineering for depolymerization reaction. DMSO-d6 was purchased from the Fisher 

Scientific store (Fair Lawn, New Jersey).  

4.3. Experimental procedure 

4.3.1. Extraction of Lignin from Pine sawdust and Pistachio shells 

The biomass used for the extraction of lignin were pistachio shells and pine sawdust. The 

Accelerated Solvent Extractor (ASE Dionex model 350, Thermo-Fisher, Sunnyvale, CA) 

was used for the extraction of lignin from the biomass. The 34 ml of stainless-steel cells 

were used for the loading biomass. Biomass samples (0.5 -1 g) were loaded into the cell 
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and cell packed with Diatomaceous earth. The ASE bottles were used for the collecting 

sample. The solvent mixture used for the extraction was Methyl Isobutyl ketone and 

ethanol in the ratio of 7:3 (v/v %) as a solvent A and water and 0.1 M H2SO4 used as a 

solvent B. The following conditions were used for the extraction of lignin from the 

pistachio shells and pine sawdust.  

• Temperature: 200C 

• Pressure: 1400-1530 psi 

• Heat time: 9 min 

• Static time: 60 min 

• Purge time: 300 sec 

• Rinse volume %:  100 

• Cycles: 2 

The liquid fraction was collected after the digestion process and added water to separate 

two phases and collected the organic phase from the aqueous phase. The organic phase was 

separated and concentrated overnight in a fume hood and dried the sample in the oven at 

50C for 30 minutes and weighed the sample. The extracted lignin was confirmed with the 

1H NMR, FTIR, and TGA analysis.  

4.3.2. Sample Preparation 

Figure 4.1 shows the sample preparation for the extraction of lignin from the pine sawdust 

and pistachio shells biomass.    
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Figure 4.1. Sample preparation for the extraction of lignin from the biomass 

4.3.3. Experimental setup 

Figure 4.2 shows the stepwise process for the extraction of lignin from the pine sawdust 

and pistachio shells biomass.  

 

             Figure 4.2. Stepwise process for the extraction of lignin from the biomass 
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Figure 4.3 shows the extraction of lignin from the different temperature conditions. The 

three different temperature conditions were used for the extraction process. The 

temperatures were used for this process was 140°C, 170°C, and 200°C. The extraction 

yield was showed at 140°C is 6.63%. 170°C is 17.3%, and at 200°C is 23.5%. The highest 

extraction yield was achieved at 200°C for 60 min.  

 

          

               Figure 4.3. Extraction of lignin from biomass at different temperatures. 

 

4.3.4. Depolymerization of Extracted lignin from Pistachio shells  

The depolymerization of extracted lignin was performed in the Helix Subcritical H2O 

instrument (Applied separation, Allentown, PA) using subcritical water and catalyst. The 

Ni-Graphene catalyst was used for the depolymerization process. 0.2500 g of extracted 

lignin and 0.025 g of Ni-Graphene was loaded into the 24 ml stainless-steel vessel. The 

optimized conditions from previous studies were applied for the process. 21 ml/min 

distilled water passed into the stainless-steel vessel. The temperature was used for the 
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reaction was 240C for 10 minutes. The reaction mixture was collected after the reaction 

and filtered under a vacuum. The acetic acid was added to the filtrate for the protonation 

of phenoxide ion. The phenolic monomers extracted using ethyl acetate. The sample was 

concentrated under N2 gas. The concentrated sample was analyzed by using GC-MS.  

4.4. Results and Discussion  

4.4.1. Characterization of extracted lignin 

The extracted lignin was confirmed by using Fourier transform infrared spectroscopy 

(FTIR), thermal gravimetric analysis (TGA), and 1H NMR. These techniques provide 

detailed qualitative information on structural futures including functional groups and types 

of chemical bonds. 

4.4.1.1. FTIR Spectroscopy 

FTIR spectroscopy is a popular technique for the identification of functional groups present 

in the lignin. The extracted sample dissolved in DMSO for the analysis. FT-IR 

measurements of extracted lignin were taken using the Nicolet iS5 Thermo Scientific 

instrument.  The typical functional groups present in the lignin such as hydroxyl, carbonyl, 

methoxy, carboxyl, and aromatic and aliphatic C-H, can be identified in the FTIR spectrum. 

Figure 4.4 shows the FTIR spectrum of extracted lignin from the pine sawdust, and Figure 

4.5 shows the FT-IR spectrum of extracted lignin from pistachio shells. Figure 4.6 shows 

the FT-IR spectrum of commercial lignin. Table 4.1 shows the identified functional groups 

and their frequency range. 
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     Figure 4.4. FT-IR spectrum of extracted lignin from pine sawdust biomass.  

                                      

     Figure 4.5. FT-IR spectrum of extracted lignin from pistachio shell biomass. 

           

 

 

95
4.

53

10
56

.1
6

13
11

.3
8

14
07

.4
6

14
37

.1
5

16
60

.7
6

23
58

.9
4

29
13

.2
7

29
97

.1
3

34
45

.0
0

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

%
T

 1000   1500   2000   2500   3000   3500   4000  
Wav enumbers  (cm-1)

95
4.

25

10
55

.6
1

13
11

.0
1

14
07

.3
7

14
37

.1
1

16
63

.4
4

29
12

.9
1

29
96

.5
7

34
43

.3
5

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

%
T

 1000   1500   2000   2500   3000   3500   4000  
Wav enumbers  (cm-1)



86 
 

     

Figure 4.6. FT-IR spectrum of commercial lignin  

Table 4.1. Functional group assignment of FTIR analysis of extracted lignin from pine 

sawdust and pistachio shells biomass. 

Absorption band (cm-1) Functional group 

3445 O-H stretching vibration due to alcohols 

2358-2997 C-H stretching in methyl and methylene groups 

1660.76 C=O stretching in aromatic carbonyl 

1437.15 Aliphatic CH2 vibrations 

1407.46 Aromatic skeletal and C-H in-plane deformation 

1311.38 Aliphatic C-H stretch in CH3 

1056.16 Aliphatic ether C-O and alcohol C-O stretching 

954.53 Aromatic C-H out of plane deformation 

 

4.4.1.2. 1H NMR Spectroscopy  

1H NMR spectroscopy used for the qualitative analysis of the extracted lignin from the 

biomass. The extracted lignin sample was dissolved in DMSO-d6 solvent for the analysis. 
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600 MHz Bruker Spectro spin NMR (Billerica, MA) used for the characterization of lignin. 

1H NMR spectroscopy provides the qualitative assay for the frequencies of linkages and 

the composition of H/G/S units in the lignin analysis. 1H NMR is used for the detection of 

the chemical environment of the proton. In the spectra, the signal observed around 7.5 ppm 

can be assigned to aromatic protons of H units, and the other two chemical shifts 7.5 ppm 

and 6.5 ppm are attributed to aromatic protons in G and S units. The signals in the range 

of 4.0-3.5 ppm are attributed to the proton in methoxy groups. The signal in the range of 

0.5-1.0 ppm is attributed to -CH3 proton and 1.0-1.5 from -CH2 proton. Figure 4.7 shows 

the 1H NMR spectrum of extracted lignin from pistachio shells (green), pine sawdust (red), 

and commercial lignin (blue). Table 4.2 shows the assigned functional groups and their 

chemical shifts.  

           

Figure 4.7. 1H NMR spectrum of extracted lignin from pistachio shells (green), pine 

sawdust (red) and commercial lignin (blue) 
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                              Table 4.2. Functional group and chemical shift 

Chemical shift (ppm)     Group 

       0.5-1.0      -CH3 

       1.0-1.5      -CH2 

       3.5-4.0      -OCH3 

       6.5-7.5       Aromatic -H 

  

 

4.4.1.3. Thermogravimetric analysis (TGA) 

The thermo-gravimetric analysis was to determine the thermal stability and decomposition 

temperature of the extracted lignin from pine sawdust and pistachio shell biomasses. TGA 

measurements were taken using TG/DTA220 Seiko (Tokyo, Japan) Instruments operating 

in a nitrogen environment. Samples for each measurement were maintained at 14  5 mg, 

and scans were performed from 25 to 560C at 10C/min to observe the thermal 

degradation and stability of each lignin based on its sources. TGA curves reveal the weight 

loss percentage of materials with respect to the temperature of thermal degradation. 

Thermal degradation data indicates weight loss. Lignin structure is composed of mostly 

aromatic rings having various branching, these chemical bonds lead to a wide range of 

degradation temperature from 100 to 560 C. Figure 4.8 shows the TGA plots of extracted 

lignin from pine sawdust and pistachio shells and commercial lignin obtained under 

nitrogen atmosphere at 10℃/min. Degradation of the lignin sample is divided into three 

stages. In stage one, the initial weight loss step occurred at 30-120C due to the evaporation 

of water absorbed. Stage two is seen to take place around 180-350C and is attributed to 

the degradation of components of carbohydrates in the lignin samples, which are converted 

into gases. The final stage of the degradation occurred over a wide range of temperatures 
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above 350C. Within this stage, degraded volatile products derived from lignin including 

phenolics and alcohols.  

               

 

 Figure 4.8. TGA plots of extracted lignin from pine sawdust and pistachio shells and 

commercial lignin obtained under nitrogen   atmosphere at 10℃/min         

4.4.1.4. Identification of Phenolic monomers using GC-MS 

Phenolic monomers from the lignin were identified by GC-MS. 5977B MSD and 7890B 

GC system from Agilent Technologies (Wilmington, DE) used for the GC-MS analysis. 

This GC-MS was equipped with a 30m*250µm*0.25µm film thickness DB-5 MS capillary 

column. Hydrogen was employed as a carrier gas at a constant flow rate of 1.2 ml/min. The 

initial temperature of the oven was 50C held for 0 min and then programmed from 50C 

to 200C at 12C/min with an isothermal held for 1 min and from 200C to 300C at 

20C/min held for 1 min. The injection volume was 2l. The ion source was electron 
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impact (EI) and used total ion chromatogram (TIC) used in GC-MS. The compounds were 

identified by comparing the data with the NIST library. Figure 4.9 shows the GC-MS 

chromatogram of depolymerization products of extracted lignin from pistachio shells and 

Figure 4.10 shows the relative abundance of phenolic monomers from the pistachio shell 

lignin. 

Table 4.3 shows the identified phenolic monomers from the extracted lignin from the 

pistachio shell biomass. 12 different phenolic monomers were identified from the extracted 

lignin at 240C for 10 min reaction time with subcritical water and Ni-Graphene catalyst. 

The reaction time and temperature are very low comparative other depolymerization 

reactions. Subcritical water is used for the depolymerization of lignin. This solvent is green 

and environmentally friendly comparative other solvents.                                    

  

   Figure 4.9. GC-MS chromatogram of phenolic monomers from the pistachio shell lignin 
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Table 4.3. Identified phenolic monomers and retention time of Pistachio shell lignin. 

No Retention time (min) Phenolic monomer Relative abundance (%) 

1    3.319 Phenol          0.63 

2    4.429 Guaiacol          1.15 

3    7.384 Syringol          2.02 

4    7.574 m-Hydroxy benzaldehyde          2.23 

5    7.948 Vanillin          5.52 

6    8.548 Propyl guaiacol          1.95 

7    10.584 Syringaldehyde          12.82 

8    10.958 Methoxy eugenol          2.41 

9    11.290 Coniferyl aldehyde          4.13 

10    11.545 Synapyl alcohol          3.85 

11    12.050 Trimethoxybenzylalcohol            4.93 

12    13.569 Synapaldehyde          3.51 

  

 Figure 4.10. The relative abundance of phenolic monomers from the pistachio shell lignin 
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4.5. Conclusion 

The extraction of lignin from the pine sawdust and pistachio shells were studied using 

organic solvents. The yield was found from the pistachio shell was 23.57  3.38 % and 

from the pine sawdust was 22.86  1.52%. The depolymerization of extracted lignin from 

pistachio shell was studied using subcritical water and Ni-Graphene catalyst at 240C for 

10 minutes. The phenolic monomers from the lignin were identified using GC-MS. The 

total yield of phenolic monomers was found to be 45.2% from the extracted lignin from 

the pistachio shell. 
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                                                      CHAPTER FIVE 

                                   CONCLUSION AND FUTUREWORK 

The renewable energy sources brought the special attention to replace the nonrenewable 

resources such as coal, natural gas, and fossils. Utilization of nonrenewable sources for the 

production of chemicals impact on the environment as well as human health. It is necessary 

to use the renewable energy sources such as biomass, solar energy, and wind to save the 

nature and reducing global warming. Biomass is a promising resource to produce the 

chemicals and biofuels for future generation and replacing the fossils. Biomass is an 

organic material that comes from plants and animals. Lignocellulosic biomass is a plant 

derived material and excellent source for the generating biofuel, chemicals, and energy. 

Lignocellulosic biomasses consist of cellulose, hemicellulose, and lignin. 

This dissertation is completely focused on utilization of lignin to produce value added 

aromatic chemicals for the various industrial application. Lignin is a highly complex 

biopolymer and copolymer of coniferyl alcohol, synapyl alcohol, and p-coumaryl alcohol. 

These monomers are excellent chemicals to synthesis of resins and polymers. The 

challenging question is to break the chemical bonds in lignin to produce the aromatic 

monomers. There are several techniques such as acid catalyzed depolymerization, base 

depolymerization, pyrolysis, ionic liquid depolymerization, and sub-and supercritical fluid 

depolymerization reported for the depolymerization of lignin. But these methods have few 

drawbacks such as high operating conditions (temp and pressure), uses of chemicals, and 

special designed equipment for the process.  

The first part of this dissertation is that to develop the ecofriendly method for the 

depolymerization of lignin. In this study, the green solvent (subcritical water) and catalyst 
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used for the depolymerization process. Subcritical water and catalysts were promoting the 

depolymerization of lignin. The operating conditions were used for this study was 240°C 

and 10 minutes reaction time. The different types of heterogeneous catalysts were used for 

this study. The Ni-Graphene catalyst showed the highest yield of phenolic monomers from 

the lignin. 12 different phenolic monomers were identified by using GC-MS. The major 

phenolic monomers were identified as vanillin and homovanillic acid. The reaction 

temperature, pressure, and time lower than traditional methods. The conclusion of the first 

objective is that developed the viable, green, and environmentally friendly technique to 

produce bio-oil and value-added chemicals. 

The second part of this study was to optimize the conditions for the depolymerization of 

lignin. The depolymerization of lignin studied at 200 and 240°C for 5, 10, and 15 minutes 

rection time using subcritical water and selected catalysts. The highest conversion yield 

was found at 240°C for 10 minutes reaction time. The possible reason for showing the 

lower yield at 200° C and 15 minutes reaction time is repolymerization of lignin. Increased 

in temperature resulted in an increased the phenolic monomers.  

The final part of this study was to extract the lignin from the waste biomaterial and perform 

the depolymerization of extracted lignin using subcritical water and Ni-Graphene catalyst. 

The biomass was used for the extraction of lignin was pine sawdust and pistachio shells. 

These biomasses consist high percentage of lignin. The ASE instrument used for the 

extraction of lignin from the biomass. The solvents were used for the extraction of lignin 

were MIK, H2SO4, ethanol, and water. The extraction of lignin was performed at 140°C, 

170°C, and 200°C for 60 minutes reaction time. The highest extraction of lignin was 

observed at 200°C for 60 minutes reaction time. The extraction yield was found from the 
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pine sawdust was 22.86 ± 1.52% and pistachio shell was 23.57 ± 3.38%. The 

depolymerization of extracted lignin was performed using subcritical water and Ni-

Graphene catalyst at 240°C for 10 minutes reaction time. The 12 different phenolic 

monomers with 45.2% yield were found from the extracted lignin. This study concludes 

that the utilization of biowaste materials to produce the valuable chemicals will bring the 

more profit to the industries and decrease the global warming as well as environmental 

pollution.  

The future work includes, this depolymerization method using green solvent (subcritical 

water) and catalyst need to be evaluated to determine the applicability of the process on 

industrial scale. The future generation needs to be more focusing on green chemistry to 

save the environment and utilization of waste biomaterials to produce the greener 

chemicals. The proposed methods and conditions help to study the depolymerization of 

lignin and extraction of lignin from the biomass in the future. The detailed mechanism of 

the cleavage of bonds in lignin need to be investigate in the future. The characterization 

and behavior of the catalysts used for this study need to be study in the future. The 

applications of subcritical water as a green solvent need to be explore in the future.     
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