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ABSTRACT 

IDENTIFICATION AND CHARACTERIZATION OF MODULATORS OF HUMAN 

MRP1 (ABCC1) AND HUMAN MRP2 (ABCC2) EXPRESSION  

VIVIAN OSEI POKU 

2021 

ATP-binding cassette (ABC) transporters are known to play a critical role in conferring 

multidrug resistance (MDR) in various cancers. Several retrospective analyses of 

chemotherapy results have reported high expression of Multidrug Resistance Protein 1 

(MRP1) and  Multidrug Resistance Protein 2 (MRP2)  in tumor cells exhibiting the MDR 

phenotype. High MRP1 and MRP2 expression in cancer patients predict a higher risk of 

treatment failure, resulting in relapse and disease recurrence as well as shortened survival 

rates. The key role of MRP1 and MRP2 play in the development of MDR makes them 

important therapeutic targets that hold a great promise for addressing multidrug resistance 

in cancer cells. Since MRP1 and MRP2 play critical roles in the regulation of various 

cellular pathways by altering the levels of several key signaling molecules, finding ways 

of modulating the activities and expression of these transporters in cancer cells is of great 

clinical interest in oncology research. We identified four novel modulators of MRP1 from 

our initial screening of 30 therapeutic compounds using an In-Cell ELISA assay. Three of 

these compounds; Amuvatinib, SB743921 HCl, TG101348 (SAR302503), which were 

identified to be ATP competitive inhibitors based on their mode of action, decreased MRP1 

expression whereas Felbamate (a recently approved FDA drug) increased MRP1 protein 

expression. Our findings revealed that these ATP competitive inhibitors decreased MRP1-

mediated calcein accumulation. These compounds inhibited the growth of HEK293 MRP1-
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overexpressing cells at clinically achievable concentrations, and also reversed MRP1- 

mediated resistance in these cells. Since regulation of the activity of activators and effectors 

of specific biochemical pathways provide a means of regulating downstream signaling, we 

investigated the effect of a novel Tie2 kinase inhibitor  and mTOR inhibitor, Everolimus, 

on MRP1 activity and expression. Tie2 is an activator of the PI3K/Akt pathway (a pathway 

known to modulate MRP1 activity and expression) whereas mTOR is a downstream 

effector of this pathway. We demonstrated using a flow cytometry-based calcein 

accumulation assay, and MTT based reversal resistance studies that Tie2 kinase inhibitor 

and Everolimus can decrease MRP1 mediated calcein efflux and reverse MRP1 mediated 

resistance towards vincristine in HEK293 MRP1-overexpressing cells. Lastly, we 

identified 49 modulators of MRP2 from our initial screening of 372 FDA-approved drugs 

from a recently approved FDA drug library representing 13.17% of total compounds 

screened. Thirty-nine (39) drugs increased MRP2 expression whereas 10 drugs lowered 

expression of MRP2 after drug treatment. Results from this screening reaffirm the 

promiscuous nature of the MRP2 transporter, and how important it is to investigate the 

interaction between both old and newly developed drugs with MRP2. The modulators 

identified from this study would be further characterized in future projects. Overall, our 

findings signify the importance of profiling drug interactions with these transporters, and 

the data obtained would provide essential information to improve combinatorial drug 

therapy and precision medicine as well as reduce drug toxicity of various cancer 

chemotherapies.
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Chapter 1.0 

1.0 Scope of the Study 

The main objective and significance of this study is to identify and characterize drugs from 

various drug libraries as modulators of Multidrug Resistance Protein 1 (MRP1) and 

Multidrug Resistance Protein 2 (MRP2) protein expression in cancer cells.  This section 

reviews important literature on ATP Binding Cassette (ABC) transporters with a focus on 

the ABCC subfamily, their structure, function, and mode of transport. It also details the 

role of ABC transporters in the development of Multidrug Resistance (MDR), the role of 

modulators in chemotherapy, and some current modulators of ABC transporters as well as 

some mechanisms through which protein expression of ABC transporters can be 

modulated. This chapter also captures relevant literature on common assays employed in 

screening for modulators of ABC transporters such as MRP1 and MRP2. In-cell ELISA 

assay, which was the main high-throughput screening tool used in this present study is 

carefully examined. Finally, this section concludes by detailing the rationale of this present 

study and the essence of identifying modulators of ABC transporters protein expression. It 

also describes how findings from this project can be utilized in curbing multidrug resistance 

and improving the effectiveness of combinatorial chemotherapy. 

 

 

 

 



2 

 

1.1 Introduction to ABC transporters 

One of the largest superfamilies of transporters reported to be present in almost every 

kingdom of life is the ATP-binding cassette superfamily of transporters (ABC 

transporters). They are described as a diverse and ubiquitous superfamily of transporters 

encoded by the ABC genes [1]. ABC transporters function basically as primary-active 

transporters, as such they require ATP hydrolysis for their transport activity [2]. These 

transporters were previously known as the traffic ATPases [2]. ABC transporters are 

reported to facilitate the transport of a broad spectrum of molecules ranging from small 

molecules to highly charged and highly hydrophobic molecules such as peptides, lipids, 

vitamins [3, 4]. Based on the direction of transport relative to the cytoplasm, ABC 

transporters can be classified as importers or exporters [5]. This superfamily of transporters 

function as both influx and efflux transporters in prokaryotes, but function mainly as efflux 

transporters in eukaryotes. As influx transporters, they are responsible for the influx or 

transport of nutrients into the cells. Moreover, as efflux transporters, they are responsible 

for the efflux of toxins and drugs across biological membranes [6]. In microorganisms, 

ABC transporters have been associated with the development of antibiotic and antifungal 

resistance [3].  

In humans, 49 ABC transporter proteins have been discovered. These transporters have 

been categorized into seven subfamilies based on their amino acid sequence and protein 

domain (Table 1.0) [7, 8]. ABC transporters have been reported to play key roles in the 

transport of drugs and their metabolites, toxins, steroids, heavy metals as well as aid in 

maintaining physiological homeostasis [9]. ABC transporters are expressed in the lungs, 

kidney, intestines, and at sacred pharmacological regions like the blood-placenta barrier, 
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blood-brain barrier, blood-testis barrier, and the blood-cerebrospinal fluid barrier [10]. 

Mutation in some ABC transporters have been associated with several human genetic 

diseases, and immune deficiencies. Examples include Cystic fibrosis (ABCC7/CFTR), 

Stargardt disease and age-related macular degeneration (ABCA4/ABCR), Tangier disease 

and familial HDL deficiency (ABCA1), Progressive familial intrahepatic cholestasis 

(ABCB11/SPGP), Dubin-Johnson syndrome (ABCC2/MRP2), Pseudoxanthoma 

Elasticum (ABCC6/MRP6), Persistent hypoglycemia of infancy (ABCC8/SUR1), 

Sideroblastic anemia (ABCB7), Adrenoleukodystrophy (ABCD1), Sitosterolemia 

(ABCG5/ABCG8), Immune deficiency  (ABCB2 /Tap1, ABCB3/Tap2) [11]. 
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Table 1.1: List of subfamilies and members of ABC superfamily 

Superfamily Subfamily Members 

  ABCA A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

A12 

A13 

 

 

 

 

ABC 

Superfamily 

 ABCB B1 

B4 

B5 

B6 

B7 

B8 

B9 

B10 

B11 

TAP2 

TAP1 

 ABCC C1 

C2 

C3 

C4 

C5 

C6 

C8 

   CFTR 

C9 

C10 

C11 

C12 

C13 
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Table 1.1 (Continued): List of subfamilies and members of ABC superfamily. 

Superfamily Subfamily Members 

 ABCD D1 

D2 

D3 

D4 

   

ABCE 

    

  

E1 

ABC 

Superfamily 

 ABCF F1 

F2 

F3 

  ABCG G1 

G4 

G2 

G5 

G8 

 

1.2 Structural organization and function of ABC transporters 

Structural analysis reveals that most ABC transporters consist of two sets of membrane-

spanning domains (MSD1 and MSD2) also referred to as the transmembrane domains 

(TMDs) and two nucleotide-binding domains (NBD1 and NBD2) [12] (Figure 1.1). The 

NBDs consist of two conserved Walker motifs (A and B) regions and a dodecapeptide 

region or linker that lies between the Walker motifs known as the C region. The Walker A 

and Walker B motifs are reported to be pivotal for ATP binding and hydrolysis [13]. The 

Walker A motif specifically binds to ß-γ phosphate of ATP to the Glycine loop of γ- 

phosphate linker, whereas the  Walker B motif interacts with the magnesium ions. Region 

C or the LSGGQ motif serves as the ABC signature motif [14]. A typical MSD consists of 

six transmembrane α-helices. The MSDs are responsible for substrate recognition and 

translocation across biological membranes [9]. In the ABC superfamily, full transporters 
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refer to transporter proteins with at least two MSDs and two NBDs, whereas transporter 

proteins with one of each domain are referred to as half transporters. Recent studies have 

revealed that some ABC transporters like ABCC1/MRP1 and ABCC2/MRP2 possess an 

extra NH2 – proximal membrane-spanning domain known as the MSD0 [15]. The MSD0 

contains five transmembrane helices and is reported to help with the retention and recycling 

of the transporter to the plasma membrane [16] (Figure 1.1).  

 

Figure 1.1 Structure of ABC transporters. 

The membrane-spanning domains; MSD0 (green), MSD1(yellow), MSD2 (red), and 

nucleotide-binding domains (NBDs). [A] The predicted topology of half ABC transporters 

like BRCP/ABCG2. [B] The predicted topology of ABC transporters like ABCB1/P-gp, 

and short MRPs (MRP 4,5,6,8). [C] The predicted topology of ABC transporters having an 

extra MSD (MSD0) like long MRPs (MRP1, 2, 3, 6, and 7). 
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1.3 The ABCC subfamily 

A total of thirteen transporters can be found in this subfamily. These transporters are 

referred to as full transporters and are grouped into the multidrug resistance protein 

subgroup (9 members), and the sulfonylurea receptor subgroup (SURs, 3 members). The 

cystic fibrosis transmembrane conductance regulator (CFTR) can also be found in this 

subfamily [17]. The summary of members of this subfamily is listed in table 1.2. Members 

of the MRP subgroup can further be categorized into long and short MRPs based on their 

predicted topology [18]. The long MRPs are described as transporter proteins that have an 

additional NH2-proximal MSD0 to their set of membrane-spanning domains (MSD1 and 

MSD2), and two nucleotide-binding domains (NBD1 and NBD2) (Figure 1.1). Examples 

of MRPs with this predicted topology include ABCC1/MRP1, ABCC2/MRP2, 

ABCC3/MRP3, ABCC6/MRP6, and ABCC10/MRP7. The short MRPs on the other hand 

consist of two membrane-spanning domains and two nucleotide-binding domains. 

Members with this predicted topology include ABCC4/MRP4, ABCC5/MRP5, 

ABCC11/MRP8, and ABCC12/MRP9 [19]. ABCC6 is reported to be associated with the 

genetic disease, Pseudoxanthoma Elasticum (PXE) [20]. This disease is characterized by 

abnormal accumulation of calcium and other minerals in the elastic fibers of connective 

tissues. Mutations in CFTR that cause protein misfolding and abnormal processing provide 

the molecular basis of genetic disease, Cystic fibrosis [21]. CFTR plays a key role in 

chloride transport. Thus mutation in this gene affects the chloride ion channel function 

resulting in dysregulation of epithelial fluid transport in the lungs, pancreas and in other 

organs leading to Cystic fibrosis.  Loss of ABCC2 activity is also reported to be associated 

with the Dubin-Johnson syndrome which is characterized by hyperbilirubinemia. 
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Moreover, members of the ABCC subfamily like ABCC1 (MRP1) and ABCC2 (MRP2) 

have been associated with the development of multidrug resistance in several carcinomas. 

Table 1.2: Summary of members of the ABCC subfamily 

ABCC 

Subgroup 

Symbol Alternative 

Name 

Tissue Localization References 

 

 

 

 

 

 

 

 

 

 

 

 

MRPs 

ABCC1 MRP1 Ubiquitous (lungs, kidney, 

placenta, blood-brain 

barrier) 

[22, 23]  

ABCC2 MRP2 Canicular membrane of 

hepatocytes. 

Apical membrane of 

proximal renal tubule 

endothelial cells 

[24, 25] 

ABCC3 MRP3 Liver, colon, intestine, 

adrenal gland 

[24] 

ABCC4 MRP4 Prostate, testis, ovary, 

intestine, pancreas, lung 

[11, 26]  

ABCC5 MRP5 Skeletal muscle, brain, 

heart  

[27] 

ABCC6 MRP6 Liver, kidney [28] 

ABCC10 MRP7 Liver, peripheral blood 

cells, intestines 

[29]  

ABCC11 MRP8 Breast, lung, colon, 

prostate, ovary 

[30] 

ABCC12 MRP9 Testicular germ cells, 

sperms 

[31] 
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Table 1.2 (Continued): Summary of members of the ABCC subfamily 

ABCC 

Subgroup 

Symbol Alternative 

Name 

Tissue Localization References 

 

 

SURs 

ABCC8 SUR1 Neuronal cells, pancreatic 

B-cells 

[32] 

ABCC9 SUR2 SUR 2A - cardiac and 

skeletal muscle 

SUR 2B - vascular smooth 

muscle 

[33, 34] 

 
CFTR ABCC7 Apical membrane of 

epithelial cells in exocrine 

glands 

[35] 

 
ABCC13  MRP10 Liver, fetal spleen, colon, 

placenta, brain, ovary, 

liver 

[36] 

 

Multidrug Resistance Protein 1 (MRP1) is a 1531 amino acid integral-membrane protein 

with a molecular weight of 190-kDa, it is encoded by the gene ABCC1 [37]. MRP1 is 

expressed at normal levels in the lungs, kidney, placenta, heart [22, 23], with lower 

expression levels observed in the colon, brain, small intestine, and peripheral blood 

mononuclear cells. High expression levels of the transporter are observed in cells at various 

pharmacological sanctuary sites like the blood-brain barrier, blood-testis barrier, and in the 

basolateral membrane of polarized cells [38] as well as in cells with high proliferative 

status such as the reactive type II pneumocytes in the alveoli of the lungs [39]. MRP1 as 

an ATP-dependent efflux transporter plays a major role in transporting broad spectrum 

substrates. These substrates include organic anions, metalloids (sodium arsenite, potassium 

antimonite), toxicants (aflatoxin B1, methoxychlor) folic acids, bilirubin, vitamins, 
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glutathione and glucuronide-conjugates of steroids, leukotrienes, and prostaglandins B12 

[18, 40, 41]. Endobiotics transported by MRP1 include doxorubicin, vincristine, paclitaxel, 

ritonavir, irinotecan, methotrexate, saquinavir [41]. Due to the ability of MRP1 to transport 

drugs from different multiple families irrespective of their molecular target, structure and 

mode of action, MRP1 has been reported to  regulate the absorption and disposition of 

drugs as well as their metabolites across cells [42]. MRP1 is also reported to be a major 

player in the regulation of several physiological processes like redox homeostasis, steroid 

metabolism, tissue defense and in the etiology of neurodegenerative and cardiovascular 

diseases [43].  

MRP2 (ABCC2) on the other hand is also known as canalicular multi-specific organic 

anion transporter 1 (cMOAT) [44]. It functions as an ATP-dependent unidirectional efflux 

pump and is highly expressed in the liver where it governs the elimination of bilirubin 

glucuronides and drug conjugates into the bile. MRP2 is also involved in renal elimination 

in the kidneys, and distribution of its substrates in the placenta and the gastrointestinal tract 

[45]. It is involved in the transport of numerous clinically important compounds across 

multiple drug classes such as antibiotics, HIV drugs, antihypertensives, and anticancer 

agents as well as conjugates of lipophilic substances with glutathione, glucuronate, and 

sulfate [46]. MRP2 plays a critical role in conferring resistance to various 

chemotherapeutics as such it has been implicated in multidrug resistance (MDR) of several 

cancers like ovarian, colorectal, lung carcinomas. Moreover, the absence of functional 

MRP2 protein leads to Dubin-Johnson syndrome (DJS) associated with conjugated 

hyperbilirubinemia [47]. 
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 As members of the long MRPs subgroup, MRP1 and MRP2 possess two nucleotide-

binding domains (NBDs) and two membrane-spanning domains (MSDs), and an additional 

third N- terminal membrane-spanning domain (MSD0) which comprises of 5 

transmembrane spanning helices  [26, 48] (Figure 1.1[C]). Studies have shown that MSD0 

facilitates interactions between the transporter and other protein partners [49]. Structural 

analysis has shown that when these transporters are not bound to any substrate or ATP, 

they assume an inward-facing conformation, while the NBDs are widely separated and the 

translocation pathway remains continuous with the cytoplasm [50]. On the other hand, the 

MSDs get closer to form a high- affinity substrate binding pocket to which the substrate 

binds. The NBDs move closer to each other and align themselves for dimerization. ATP 

binds to the NBDs, leading to dimerization of the NBDs which causes a conformational 

change that results in rearrangement of the MSDs to the outward-facing conformation of 

the transporter (rotates and opens towards the extracellular space). Sequentially, the 

residues forming the substrate-binding site tend to be pulled apart as the extracellular ends 

of the helices of the MSDs peel outward leading to a significant reduction in the binding 

affinity of the substrate to the transporter. As a result, the substrate is released into the 

extracellular space [50]. ATP hydrolysis begins which causes the dissolution of the closed 

NBD dimer conformation. The MSDs move into the open conformation as ADP (adenosine 

diphosphate) and phosphate is released [2]. A pictorial diagram of the transport mechanism 

of ABC transporters like MRP1 based on the ATP-switch model is shown in Figure 1.2. 
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Figure 1.2 Mechanism of ATP mediated transport of ABC exporters based on the 

ATP switch model.  

The substrate (blue rectangle) binds to the high-affinity binding pocket formed by the 

MSDs (yellow and red). This leads to a conformational change in the NBDs (green and 

pink), ATP (turquoise hexagon) binds and subsequent NBDs dimer closure occurs. A 

conformational change in the MSDs transpires upon the NBDs dimer closure, resulting in 

the rotation and opening of the TMDs to the extracellular space, and subsequent substrate 

translocation (Step II). The closed NBD dimer conformation is annulled as ATP hydrolysis 

commences, leading to conformational changes in the MSDs (Step III). The MSDs move 

into the open NBDs dimer conformation as ADP (adenosine diphosphate) and phosphate 

is released (Step IV). 

 

1.4 Multidrug resistance and Cancer 

Cancer is described as the abnormal and uncontrolled growth of cells. The United States 

recorded approximately 599,274 deaths due to cancer in 2018 [51]. Moreover, 18.1 million 

new cancer cases were recorded globally in the same year [52]. Although several cancer 

treatment options exist, one of the most effective treatment modalities for metabolic tumors 

is chemotherapy. Chemotherapy is a type of systemic treatment that involves the use of 
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drug formulations to target, control, and kill tumor cells [53]. Although oncology drug 

development has seen a paradigm shift from the low-budget, government-supported 

research effort to a high-stakes, multi-billion dollar industry [53], the challenge and 

limitations of chemotherapy experienced by early research still exist. One of the major 

challenges posed to the effectiveness and success of the chemotherapeutic regime is 

Multidrug Resistance (MDR). Multidrug resistance is described as a phenomenon in which 

tumor cells develop resistance to several drugs that may vary in both structure and mode 

of action [54]. Research has revealed that there are several mechanisms involved in the 

development of MDR. These include; cellular changes in cells that reduce the ability of the 

cytotoxic drug to kill cells such as changes in the cell cycle, elevated repair of DNA 

damage, decreased apoptosis occurrence, and altered drug metabolism, decreased uptake 

of water-soluble drugs including cisplatin and folate antagonists that need the service of 

transporters for cell entry, and increased energy-dependent efflux of hydrophobic drugs 

that can diffuse through the plasma membrane into the cell [55]. Studies have shown that 

the efflux of hydrophobic cytotoxic drugs by energy-dependent transporters like the ABC 

transporters is most common among the mentioned mechanisms. ABC transporters are 

major players in the absorption, excretion, metabolism, and elimination of drugs and their 

metabolites. For instance, ABC transporters like P-gp, MRP1, MRP2, and BCRP among 

others play pivotal roles in phase O and phase III of drug metabolism [5].  In phase O, these 

transporters are known to regulate the entry and extrusion of drugs before they reach their 

pharmacological target [5]. Moreover, ABC transporters are responsible for the complete 

elimination of metabolized molecules in phase III [5]. Transporters like P-gp have been 

associated with the transport of cationic drugs and their metabolites, whereas MRP2 and 
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BCRP are implicated in the transport of conjugate anionic drugs like conjugated 

glutathione across the plasma membrane [56]. The pharmacological aim of administering 

chemotherapeutic agents is to ensure the delivery of active compounds as much as possible 

to the molecular target in cancer cells to institute sufficient cellular damage to cause cell 

death. However, reduction in the intracellular drug accumulation has been reported to be 

one of the key factors that decrease the amount of active drug component that reaches these 

tumor cells [57]. Due to the essential role played by ABC transporters in drug metabolism, 

cancer cells in their intelligence overexpress these transporters as a means of protection 

against chemotherapeutic drugs and to ensure their survival.  This is accomplished as the 

overexpressed transporters cause substantial reductions in the intracellular concentration 

of the anticancer drugs resulting in reduced bioavailability and decreased pharmacological 

toxicity and potency in cancer patients. As such, MDR remains one of the major barriers 

to the effectiveness of chemotherapy and is reported to be responsible for a larger 

percentage (about 90%) of cancer related deaths. Thus there is the need for more critical 

and careful research  to be conducted into the role of ABC transporters in MDR. 

Although recent advancement in cancer research has explored the role of transporters like 

P-gp and BCRP in MDR to a greater extent, the role of transporters like MRP1 and MRP2 

are severely understudied. Recently, several retrospective analyses of chemotherapy results 

have reported high expression profiles of MRP1 and MRP2 [58, 59]. In addition, 

overexpression of MRP1 and MRP2 has been associated with higher incidence of treatment 

failure, resulting in cancer relapse and poor survival rates in some cancer patients [60, 61]. 

MRP1 is reported to confer resistance to anticancer drugs like methotrexate (MTX), 

anthracyclines (doxorubicin), etoposide, vincristine, paclitaxel, vinblastine among others 
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[41]. MRP2 also confers resistance to anticancer drugs like cisplatin, irinotecan, 

methotrexate, teniposide, mitoxantrone [46]. Aside from anticancer drugs, MRP1 and 

MRP2 also affect the bioavailability and efficacy of various antivirals, antimalarials, and 

antibiotics [19, 62]. The US food and drug administration recommendation in 2017 greatly 

encouraged the need to profile drug-transporter interactions for drugs in clinical trials with 

MDR transporter proteins like BRCP and P-gp [63]. But this recommendation excluded 

MRP1 and MRP2 although several studies have shown the effect of overexpression of 

MRP1 and MRP2 in MDR. Nonetheless, there is no specific recommendation for these 

transporters (MRP1 and MRP2) in the current FDA or EMA guidelines. Considering the 

essential role of MRP1 and MRP2 as well as their contribution to MDR, it is of great 

importance to explore the pharmacological essence and impact of these transporters by 

investigating their biochemical interactions with both new and promising drug targets.  

 

1.5 Role of modulators in chemotherapy 

The key role of ABC transporters in MDR cannot be overemphasized, as such finding ways 

of curbing the menace of ABC transporters in chemotherapy is of great importance to 

oncology research. Since ABC transporters are also essential for regulating cellular 

function and cellular balance, great consideration must be taken in considering the possible 

solutions in managing their role in MDR development. One approach that has been 

proposed by researchers is to completely shut down the efflux activity of these pumps. 

Although the aforementioned approach seems laudable since overexpression of the ABC 

transporter greatly hinders the bioavailability of the therapeutic drugs, this approach would 

be suicidal to the cells. This is because ABC transporters also play vital roles in tissue 
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defense and maintaining the physiological balance of cells. Thus, a complete shutdown of 

these transporters would mean a collapse in physiological stability and equilibrium. An 

alternate approach that provides a superior advantage is the modulation of the activity of 

ABC transporters in cancer patients through biochemical modulation. Biochemical 

modulation involves the modification of pathways and molecular targets by therapeutic 

agents to enhance the selective cytotoxic effect of anticancer drugs on tumor cells as well 

as to decrease their toxic side effects on normal cells [64, 65]. In clinical oncology research, 

biochemical modulation can also be described as a phenomenon in which the cytotoxicity 

of an active chemotherapeutic agent is modulated by one or several agents that may not 

have inherent cytotoxicity against a given normal or tumor cell population [66]. 

Modulation via this approach can result in the reduction of the cytotoxicity impact of the 

anticancer drug on normal tissues, and an elevation in the cytotoxicity effects of the 

anticancer agent on tumor cells. Furthermore, biochemical modulation can also be 

employed by using exogenously supplied metabolites to ensure selective manipulation of 

tumor cell metabolism to ensure the more selective response to the action of anticancer 

agents [67]. Several forms of biochemical modulation have been explored in oncology 

research and cancer therapy. This includes modulation to overcome drug resistance in drug-

resistant cells, modulation of the transport of anticancer agents, modulation of intracellular 

thiol levels to affect the extent of damage caused by radiation or chemical DNA damaging 

agents, increasing the sensitivity and exposure of tumor cells to chemotherapeutic agents 

by modulating the cytokine profile of tumor cells and normal cells [66]. With regards to 

overcoming MDR in refractory cancer cells, ligands that interact with ABC transporters 

can be grouped into substrates, inhibitors, activators, and inducers. Substrates are small 
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molecules or drugs that are effluxed by the transporters. Inhibitors are described as 

molecules that decrease or impair the activity of the transporter either by binding directly 

or indirectly to it. Inducers are molecules that enhance the expression levels of the 

transporter either by altering protein or gene expression levels. Activators are described as 

molecules that are reported to elevate the activity of the transporter. Activators exert their 

effect by binding to the transporter protein and cause a conformational change which 

provokes the transport of a substrate [68]. Via biochemical modulation, the activity of a 

specific transporter can be modulated without impacting the physiological steadiness of 

normal cells. Moreover, the biochemical modulation approach makes it possible to 

combine two or more pharmacological agents that may work by different molecular 

mechanisms at their respective effective doses without unacceptable side effects. As such, 

an anticancer drug that inhibit the activity of a specific transporter can be used together 

with a chemotherapeutic agent that is known to be a substrate of the transporter, yet has 

superior therapeutic potency against tumor cells. In this instance, the inhibitor can be used 

to decrease the efflux activity of the transporters, allowing the more potent anticancer drug 

to accumulate at the appropriate intracellular concentration and be bioavailable to elicit its 

effect. Thereby enhancing the effectiveness of combinatorial drug therapy. Combinatorial 

therapy is described as the use of two or more pharmacologic agents administered 

separately or in a fixed- dose as a single formulation.  

1.6 Current modulators of MRP1 and MRP2 

 MRP1 and MRP2 were discovered several years after the initial characterization of P-gp, 

yet there is little scientific information on modulators of MRP1 and MRP2 compared to 
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the diverse range of modulators for P-gp that have been well explored and characterized. 

Some current modulators of MRP1 and MRP2 are shown in table 1.3 
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Table 1.3: Summary of the current modulators of MRP1/ABCC1 and MRP2/ABCC2 

Protein/ 

Gene 

name 

Substrates Inhibitors Inducers Activators Reference 

 

 

 

 

 

 

 

 

 

 

 

 

 

  MRP1 

(ABCC) 

Vinca alkaloids 

(vinblastine, 

vincristine), 

anthracyclines 

(doxorubicin, 

daunorubicin), taxanes 

(paclitaxel), 

epipodophyllotoxins 

(etoposide, teniposide), 

camptothecins 

(topotecan, 

methotrexate, 

irinotecan) 

glucuronosylbilirubin, 

estradiol-17-β-D-

glucuronide, etoposide-

glucuronide, SN-38-

glucuronide, 

leukotrienes C4, D4 and 

E4, glutathione 

disulfide, prostaglandin 

A2-SG, 

hydroxynonenal-SG, 

aflatoxin B1-epoxide-

SG, cyclophosphamide-

SG, doxorubicin-SG, 

estrone-3-sulfate, 

dehydroepiandrosterone-

3-sulfate,  

sulfatolithocholyl 

taurine), difloxacin, 

grepafloxacin, folic acid, 

L-leucovorin, 

mitoxantrone, 

curcuminoids, sodium 

arsenate, sodium 

arsenite, potassium 

antimonite, fenitrothion, 

methoxychlor, aflatoxin 

B1, calcein, fluorescein, 

Fluo-3, BCECF, 

indinavir, adefovir 

Sulfinpyrazone, 

biricodar, 

probenecid, 

MK571, LTC4, 

cyclosporin A, 

verapamil, PSC 

833, 

benzbromarone, 

indomethacin, 

probenecid, 

agosterol A and 

analogs, 

verapamil 

derivatives, 

flavonoids 

derivatives 

(genistein and 

flavopiridol), 

raloxifene-

based inhibitors 

(LY117018, 

LY329146, and 

indomethacin), 

piperazine and 

piperidine-

based 

compounds as 

dual MRP1/P-

gp inhibitors 

(N, N-

disubstituted 

piperazines), 

isoxazole-based 

compounds 

(LY402913), 

quinazoline- 

and 

quinaxoline-

derived 

molecules  

Dexamethasone,  

Rifampicin,  

Sulindac, Tert- 

Butylhydroquinone 

(TBHQ), 

quercetin,  

Vinblastine  

Verapamil 

and 

derivatives 

[69], [70] 

 [71],[72] 

[73], [74] 

[75], [76]  

[77], [78]  

[79], [80] 

[81] 

 Table adapted from [75] and [82] 
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  Table 1.3 (Continued): Summary of the current modulators of MRP1/ABCC1 and 

MRP2/ABCC2 

Protein/Gene 

name 

Substrates Inhibitors Inducers Activators Reference 

     

 

 

 

 

 

 

   MPR2 

(ABCC2) 

Bilirubin-

glucuronides, 

GSSH, GSH, 

including 

cotransport, 

estradiol-17-β-d-

glucuronide, 

acidic bile salts. 

Anionic drug 

conjugates, 

cisplatin, 

doxorubicin, 

epirubicin, 

etoposide, 

indinavir, 

phenytoin, 

ritonavir, 

saquinavir, 

sulfinpyrazone, 

vinblastine 

Probenecid, 

Cyclosporine, 

PSC833, MK571, 

delavirdine, 

efavirenz, 

emtricitabine, 

benzbromarone, 

probenecid,  

  [82], 

[83]  

  Table adapted from [75] and [82] 

 

Several decades of research have focused on overcoming MDR via pharmacological 

inhibition of ABC transporters like MRP1 and MRP2. However, there has been limited 

success due to high non-specific toxicity, low multidrug reversal effects, low potency, and 

undesirable off-target effects. Hence, contemporary clinical research strategies aim at 

identifying new selective modulators of ABC transporters that are more potent, well-

tolerated, and have limited non-specific toxicity. Moreover, taking a critical look at the 

modulators identified for P-gp, MRP1, and MRP2 in literature, it can be ascertained that 

the current knowledge base on MRP1 and MRP2 is still narrow. Thus, it is expedient for 

more research to be conducted to identify more potent modulators of MRP1 and MRP2 as 
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these transporters also play an essential role in MDR development. Interestingly, most 

research studies that aimed at identifying such modulators investigated the impact of these 

therapeutic agents on MRP1 and MRP2 activity but hardly examined their effect on protein 

or gene expression levels of MRP1 and MRP2. Thus it is needful to explore how such 

therapeutic agents may affect protein or gene expression levels since this may also reveal 

other molecular targets that may be of great therapeutic importance in our fight against 

MDR and cancer. 

 

1.7 Mechanisms for protein expression regulation 

Proteins represent one of the abundant macromolecules in living systems. This group of 

macromolecules has the most diverse range of functions across the various classes of 

macromolecules [84]. Proteins synthesis involves the conversion of information on the 

DNA (deoxyribonucleic acid) into messenger RNA (ribonucleic acid, mRNA) through a 

process called transcription. After which the information on the mRNA is then converted 

into a protein sequence via translation (Figure 1.3). The protein sequence then determines 

the protein folding, its conformation, biochemical role, stability, and half-life [84]. The 

protein expression levels for a specific protein of interest in the eukaryotic cell can be 

regulated at the gene expression level through transcriptional control or by regulating the 

translation process. 
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Figure 1.3 Protein synthesis illustrating transcription and translation steps 

[85] 

 

1.8 Transcriptional regulation  

Transcriptional control in the eukaryotic cell can be achieved by transcription factors (TFs) 

activation, TFs binding with specific DNA recognition sequences, and chromatin 
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remodeling [84]. TFs bind to their target site at once to form the transcription complex, 

thus they can regulate several genes disseminated in the genome [86]. TFs can be activated 

through small molecules that physically bind or allosterically alter the protein structure 

[84]. These small molecules act as modulators of protein expression and function by 

depending on specific transcription factors to exert their effect on their target [86].TFs can 

also be activated through cellular signaling pathways that create post-transcriptional 

protein modifications (PTMs). For instance, translation of the transcription factor, hypoxia-

inducible factor (HIF-1α and HIF-2α), can be elevated by signaling through the 

phosphatidylinositol 3 kinase (PI3K)/Protein kinase B (PKB/Akt) or the PI3K-Akt 

pathway [87]. The PI3-Akt signaling pathway also regulates a lot of downstream 

transcription factors like NF-kappa B (NF-kB) and activator protein 1 (AP-1) that play key 

roles in cell proliferation, cell survival among others in carcinogenesis [88]. TFs activation 

is greatly pleiotropic and has many cellular effects, as such several downstream target 

genes can be inactivated or activated based on the cell type and environmental conditions. 

TFs possess the capacity to rapidly and selectively find their target site. Thus they can bind 

to the target DNA site to either institute recruitment of the transcription machinery onto 

the promoter region of the gene of interest or hinder the recruitment of the transcriptional 

machinery [84]. This can either upregulate or suppress gene expression which in turn 

affects translation and protein synthesis.  

One way in which transcription can be regulated is via rearrangement of the chromatin 

structure. Chromatin consists of nucleosomes. Nucleosomes are described as DNA 

wrapped around a histone octamer. Modification to chromatin structure during 

transcription can be achieved by histone modifications, eviction or repositioning of 
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histones by histone chaperones, chromatin remodeling, and histone variant exchange [84]. 

Thus, Post-transcriptional modifications (PTMs) in the form of covalent modifications can 

be made on the histone tails by histone modifiers. The modifications alter the interaction 

and contact between histones and the DNA. Major modifications include acetylation and 

methylation of lysine residues. ATP-dependent chromatin remodelers can also use the 

energy from ATP hydrolysis to facilitate chromatin remodeling, which can be achieved 

through nucleosome sliding, nucleosome displacement, or incorporation and exchange of 

histone variants [89]. 

 

1.9 Translational regulation 

Translation describes the process of converting the information on the messenger RNA 

(mRNA) into a protein sequence. The integrity of protein synthesis must be greatly upheld 

to ensure minimal error during the process to warrant the synthesis of a functional protein. 

Ribosomes are the machinery that ensures the integrity of protein synthesis is upheld with 

great care.  It achieves this by matching the code from the template mRNA strand to the 

right amino acid. Due to the critical role the ribosomes play, the ribosome filter hypothesis 

by Mauro and Edelman in 2002 proposes that ribosomes function as translation 

determination factors [90]. As such, based on the specific ribosomal proteins and rRNA 

sequence in the ribosome complex, they filter and select for specific mRNA that should be 

translated. Thus, regulating the translation of these genes into proteins. Considering how 

the transcription and translation programs regulate protein expression, it can be seen that 

small-molecules if well-investigated and employed can offer the opportunity to modulate 
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protein expression levels through either of the aforementioned mechanisms. Hence this 

project seeks to provide a methodological alternative to the identification and 

characterization of modulators of MRP1 and MRP2 protein expression levels by screening 

various therapeutic agents from different drug libraries.  

1.10 In vitro assays to screen for modulators of ABC transporters 

Identification of interactions between new and promising drugs with ABC transporters is 

very essential for drug development. Studying drug-transporter interactions would provide 

essential information on how these transporters can impact drug disposition, efficacy, and 

toxicity. It would also create a pivotal platform to assist in the selection and optimization 

of new drug candidates. In vitro studies of ABC transporters and their interaction can be 

carried out via membrane-based assays or cell-based assays. Membrane-based assays 

involve the use of membranes made from cells expressing ABC transporters to study the 

efflux function of these transporters [75]. Membrane-based assays include membrane 

vesicular transport assays, ATPase assays, and photoaffinity labeling assays [69]. Cell-

based assays, on the other hand, are performed using intact cells, such assays include; 

protein determination assays (In-cell ELISA, western blot), flow cytometry assays, 

cytotoxicity assays among others.  

 

1.10.1 In-Cell ELISA assay (ICE) 

One of the valuable assays for rapidly characterizing a wide range of cell signaling 

parameters in the development of targeted therapeutics is the In-Cell ELISA assay (ICE). 

ICE is also known as In-cell western assay, Cell-based ELISA, Cytoblot, or FACE (Fast 
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Activated cell-based ELISA). It is cell-based immunocytochemistry that allows the 

quantification of target proteins or post-translational modifications of target proteins in 

cultured cells (adherent and non-adherent cells). This assay is based on the principle that 

using target-specific antibodies, proteins can be detected in fixed and permeabilized 

cultured cells. Moreover, the ICE assay bypasses the protein harvesting, lysate preparation, 

electrophoretic separation, and electrophoretic transfer steps of western blot.  Thus, it 

provides a simple and rapid platform for immunodetection of target proteins using 

antibodies. Since this assay requires no protein separation, the primary antibodies used 

must be highly specific for the protein of interest.  This technique also demands the 

segregation of signals due to the protein of interest from the normalization signal due to a 

reference protein (Actin, Tubulin, Glyceraldehyde -3 – phosphate – dehydrogenase 

(GAPDH) into two detection channels [91]. To achieve greater precision, normalization 

can be done to correct for well-to-well variation in cell numbers. This can be achieved by 

normalizing signals from the protein of interest to an internal control protein/ reference 

protein or cell using a cell tag staining (example Cell tag 700) or cell labeling with a 

reactive dye. In addition to being simple and rapid, ICE has the added advantage of 

amalgamating the specificity of western blot and the replicability and high throughput of 

ELISA. As such it can be performed in either 96 or 384 well-formatted plates.  Studies 

have also shown that ICE yields similar results to western blot whilst providing superior 

replicability and precision [91, 92]. Due to its flexibility and high throughput nature, it can 

be used for various screening purposes. In this project, ICE was adapted as the major high-

throughput tool for screening the various drug libraries that were explored. 
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1.10.2 Western blot assay 

Changes in the protein expression levels of cells after stimulation can be determined using 

traditional western blot. It is one of the common assays used in the detection and 

quantification of proteins in biomedical research [93]. In this immunodetection technique, 

proteins are first separated and then identified using target-specific antibodies [94]. The 

procedure involves the preparation of whole cell lysate from harvested cells and the 

separation of proteins based on their molecular weight. The separation of proteins in the 

whole cell lysate can be achieved by conducting electrophoresis. The proteins are then 

transferred unto a membrane (normally a nitrocellulose or polyvinylidene difluoride 

(PDVF)) and exposed to labeled target-specific antibodies [94]. The membrane is then 

washed to get rid of unbound antibodies. Antibodies that bind to the protein of interest give 

rise to a signal band that is specific for the protein of interest. This band can be detected 

using a chemiluminescent or fluorescent substrate. The signal can then be developed as a 

film or detected using a camera-based detection. Although the film detection technique is 

reported to be robust and sensitive, its dynamic range of quantification is poor compared 

to the camera-based detection which offers superior sensitivity and excellent quantification 

range [95]. In the western blot assay, the amount of protein present in the sample is 

representative of the intensity and thickness of the signal band that is visualized. To cater 

for differences in the electrophoresis loading, detection of housekeeping protein like; 

tubulin, actin, and GAPDH is performed [96]. Normalization of target signals can be done 

using reference signals obtained either from housekeeping proteins (HKPs) after 

immunochemical staining or using the total protein  (TP) intensity on blotting membranes 

after total protein staining [93]. Advantages of this assay include the fact that, it is sensitive 
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and the same protein transfer blot can be used for a different analysis of multiple proteins 

[75]. However, due to the several processing steps in the western blot assay, it is known to 

be a low-throughput and labor-intensive technique [91].  

 

1.10.3 Fluorescence accumulation assays using flow cytometry analysis 

The impact of a therapeutic agent on the activity of an ABC transporter can be assessed by 

measuring the intracellular accumulation of a fluorescent substrate in cells that overexpress 

the ABC transporter of interest, in the presence or absence of a test compound. As such, 

fluorescence accumulation assays are one of the tools that have gained popularity in 

understanding how various test compounds/drugs can impact the functional activity of 

ABC transporters. It is based on the analogy that, there would be a low accumulation of 

fluorescent substrate in non-treated cells that overexpress ABC transporters like MRP1, P-

gp, and MRP2 among others. This is because the fluorescent substrate is effluxed out of 

the intracellular space by the transporter resulting in low fluorescence. However, in the 

presence of an inhibitor of the transporter, there would be a high accumulation of the 

fluorescent substrate.  This is because the inhibitor dampens/decreases the efflux activity 

of the transporter, thus leading to an increase in the intracellular fluorescence 

accumulation. Low intracellular fluorescence accumulation can also be observed in the 

presence of inducers or activators. Since activators only induce conformational changes, 

they require less incubation time in eliciting their effect, inducers on the other hand would 

require de novo synthesis of the transporter thus they need extended incubation time to 

elicit their effect [97]. In most studies, detection using fluorescent substrate is preferred 

over radioactive and analytical tools like mass spectrometry because it provides superior 
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sensitivity, greater convenience, and lower cost [98]. Visualization of a fluorescent 

substrate can be achieved using a fluorescence microscope, however, this method does not 

give a quantitative measurement of parameters. A spectrophotometer with fluorescence 

abilities can also be used but this approach is also limited by its low sensitivity [98]. One 

method that is reported to offer greater sensitivity whilst allowing quantitative 

measurement of intracellular accumulation of fluorescent substrates is flow cytometry [99-

101].  Flow cytometry involves the use of fluorescent dyes and fluorescent antibodies that 

can bind to specific cellular components such as proteins on cell membranes or cell surface 

molecules among others. It is based on the principle that fluorescently labelled cells when 

passed through a light source get excited to a higher energy state. On returning to the 

ground/rest state, the fluorochromes emit light energy at higher wavelengths. The 

fluorescence emitted is collected by the flow cytometer, spectrally filtered and detected 

using a photomultiplier tube [102]. Thus, this technique allows quantitative measurement 

of single cells/particles or cellular constituents at high-speed rates [82]. Since test 

compounds that emit inherent fluorescence at emission wavelengths similar or close to the 

fluorescent substrate can interfere with quantification, it is needful to consider the 

background fluorescence of the compounds of interest during quantification. Flow 

cytometry can be used to measure the fluorescence and optical characteristics relevant for 

the studying of mammalian cells, as such it has become an essential tool for studying the 

regulation and interaction of cell systems [75]. Recent advancement in flow cytometry 

assays has also paved the way for the use of multiple fluorochromes that emit light at 

specific and varying wavelengths but share similar excitation wavelengths. This has 

created a platform that enables the measurement of different cell properties concurrently 
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[102]. Hence, in the study of ABC transporters, flow cytometry has been commonly 

employed in understanding and characterization of the interaction between therapeutic 

agents and ABC transporters. Commonly used fluorescent substrates include calcein 

acetoxymethyl ester (Calcein-AM) and rhodamine 123, with Calcein-AM being the ideal 

reference fluorescent substrate for P-gp and MRP1 studies [103].  

 

1.11 The rationale of the study 

There is no doubt that the discovery of modulators of ABC transporters has had several 

potential therapeutic benefits especially for patients with drug-resistant tumors. Even 

though most identified modulators of ABC transporters had significant effects on 

regulating its transport activity, one of the key challenges encountered in clinical trials has 

been the efficacy and safety of these modulators. Some dreadful side effects and elevated 

levels of patient toxicities have been reported due to adverse pharmacokinetic interactions 

with administered anticancer drugs. For instance, the coadministration of cyclosporin A 

and etoposide to a patient with acute T-lymphocytic leukemia in relapse resulted in 

progressive hyperbilirubinemia and mental confusion [104]. Therefore, there is a need for 

more potent, low toxic, and well-tolerated drugs. Moreover, a critical review of literature 

on modulators of ABC transporters like MRP1 reveals that although most MRP1 

modulators could influence transporter activity, little is known about their impact on the 

gene and protein expression levels of these transporters. Thus, further research must be 

conducted to investigate how current and future therapeutic agents that interact with ABC 

transporters may affect their protein and gene expression levels. This would provide 
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essential data on drug-transporter interactions, which is important for clinical trials. 

Moreover, therapeutic agents that show the ability to decrease protein expression could be 

used together with drugs that are known to be efficacious in treating cancer but are 

unfortunately substrates of these transporters. Thus in the presence of the drug that 

decreases protein expression of the transporter, the more potent drug would have higher 

bioavailability to exert its effect on the cancer cells, thereby enhancing combinatorial drug 

therapy. Identification of modulators of ABC transporters like MRP1 and MRP2 would 

also enable the scientific community and the pharmaceutical industry to gain greater insight 

into the causes of treatment failure and relapses experienced by cancer patients, as well as 

provide a possible therapeutic approach to enhance effectiveness of chemotherapy. Aside 

from cancer treatment, findings from such studies would provide great enlightenment for 

the treatment of other diseases in which these transporters are implicated whilst deepening 

our understanding of the pharmacological and physiological nature of these transporters.  
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Chapter 2.0 

Novel ATP competitive inhibitors downregulate Multidrug resistance protein 1 

(MRP1) expression in MRP1- overexpressing cells 

Abstract 

Multidrug resistance protein 1 (MRP1) is an integral membrane protein that serves as an 

ATP-dependent drug efflux pump. It plays a pivotal role in the efflux of a wide variety of 

endogenous and exogenous substrates such as toxic chemicals, drugs, and their metabolites 

out of cells.  Overexpression of MRP1 confers resistance against commonly used 

chemotherapeutic agents in tumor cells. In chemotherapy, the emergence of the 

combinatorial therapeutic approach led to a major improvement in survival rates of several 

cancers, however multidrug resistance (MDR) has been a major challenge to its 

effectiveness. Thus it is of great clinical interest to identify compounds which can modulate 

MRP1 expression and activity without perturbing physiological homeostasis. Using an In-

Cell ELISA assay we screened 30 drugs which consisted of both clinically tested anticancer 

drugs and recently approved FDA drugs to investigate their effect on MRP1 expression. 

We identified a total of 7 modulators, of which 4 test compounds increased the protein 

expression levels of MRP1 whereas 3 test compounds decreased the protein expression of 

MRP1. Four of the modulators identified (Amuvatinib, SB743921 HCl, TG101348 

(SAR302503), Felbamate) have never been reported as modulators of MRP1, thus these 

compounds were selected for further characterization in this study. Three of the novel 

modulators of MRP1 discovered (Amuvatinib, SB743921 HCl, and TG101348 

(SAR302503)) decreased MRP1 protein expression and were identified to be ATP 
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competitive inhibitors based on their mode of action. Felbamate (recently approved FDA 

drug) increased MRP1 protein expression. Further characterization of our novel 

modulators using In-Cell ELISA assay showed that SB743921 HCl and Amuvatinib 

decreased MRP1 protein expression in a concentration and time-dependent manner. 

Calcein AM accumulation assay performed to ascertain the impact of the selected hit 

compounds on MRP1 efflux activity revealed that TG101348 (SAR302503), Amuvatinib, 

and SB743921 HCl decreased MRP1 efflux activity. Cell viability and reversal of MRP1-

mediated resistance to vincristine studies carried out using MTT assay also showed that 

TG101348(SAR302503) and Amuvatinib were more potent at reversing MRP1-mediated 

resistance. The discovery of key and novel modulators of MRP1 is a step in the right 

direction to aid revert MDR in cancer patients. Findings from this project would provide 

essential information to improve combinatorial drug therapy and precision medicine as 

well as reduce drug toxicity of various cancer chemotherapies.  

 

Keywords: ABC transporters; multidrug resistance; MRP1; ABCC1; MRP1 modulators; 

In-Cell ELISA; protein expression;  anticancer drug; FDA approved drug; drug profiling;  

drug-transporter interactions 

1) SB743921 HCl (PubChem CID: 49867937); 2) Amuvatinib (PubChem CID: 

11282283); 3) TG101348 (SAR302503) (PubChem CID: 16722836); 4) Felbamate 

(PubChem CID: 3331)  
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1.0 Introduction 

Cancer is the second leading cause of mortality and morbidity globally. In 2018, 

approximately 18.1 million new cancer cases, and an estimated 9.6 million cancer-related 

deaths were recorded worldwide [1]. Although several treatment modalities exist for cancer 

therapy, chemotherapy remains the standard treatment method for various types of cancers. 

Chemotherapy is described as the use of drug formulations to target, control, and kill tumor 

cells in a systemic treatment module [2]. Even though chemotherapy has been successful 

and beneficial in cancer therapy, the challenge of multidrug resistance (MDR) limits its 

effectiveness. MDR is a phenomenon in which cells develop resistance to several drugs 

that may differ in structure, molecular target, and mode of action [3]. Studies into the 

development of MDR revealed several mechanisms that are implicated in this 

phenomenon. These mechanisms include; cellular changes in cells that minimize the ability 

of cytotoxic drugs to kill cells such as elevated repair of DNA damage and evasion of 

apoptosis among others. The other mechanisms reported include decreased uptake of 

water-soluble drugs (folate antagonists and cisplatin) that utilize transporter proteins for 

cell entry and increased energy-dependent efflux of hydrophobic drugs through the plasma 

membrane of cells [3]. One superfamily of transporters whose overexpression has been 

implicated in MDR is the ATP-Binding Cassette superfamily of transporters (ABC 

transporters). ABC transporters represent a diverse and ubiquitous superfamily of 

transporters that utilize ATP hydrolysis for their transport activities [4]. This group of 

transporters is known to facilitate the transport of a variety of molecules ranging from small 

molecules to highly charged and hydrophobic molecules including peptides, vitamins, 

toxins, drugs, and their metabolites across biological membranes [5].   
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ABC transporters are present in every phylum of life. Based on their direction of transport 

relative to the cytoplasm, they can be categorized into importers and exporters [6]. In 

prokaryotes, this group of transporters can function as importers or exporters, however, 

they function solely as exporters in eukaryotes.  A total of 49 ABC transporters have been 

identified in the human genome. These transporters have been classified into seven 

subfamilies (A-G) based on their protein domain and amino acid sequence [7, 8]. ABC 

transporters like P-glycoprotein (P-gp), Multidrug resistance protein 1 (MRP1), and Breast 

cancer resistance protein (BCRP) have been reported to play pivotal roles in the absorption, 

excretion, metabolism, and elimination of drug and their metabolites [6]. In phase O and 

phase III of drug metabolism, these transporters regulate the entry and extrusion of drugs 

before reaching their pharmacological target as well as ensure the complete elimination of 

metabolized molecules [6]. As major players in drug metabolism, the overexpression of 

some ABC transporters have been implicated in reduced intracellular accumulation and 

therapeutic potency in anticancer drugs in cancer patients [9]. The prototypical ABC 

transporter is characterized by a transport core consisting of four main domains; two sets 

of membrane-spanning domains (MSDs) and two sets of cytosolic nucleotide-binding 

domains (NBDs) [10]. The MSD comprises six transmembrane α-helices that form the 

substrate-binding site/s and facilitate substrate translocation across the plasma membrane 

[11]. The NBDs on the other hand consists of the Walker motifs (Walker A and Walker B) 

that bind to ATP for ATP hydrolysis [12]. Upon ATP binding and hydrolysis, the NBDs 

dimerize to cause conformational changes that result in the rearrangement of the MSDs to 

an outward-facing conformational and subsequent efflux of the substrate. MRPs in the 

ABCC subfamilies possess an extra NH2-proximal membrane-spanning domain known as 
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the MSD0 [13]. The MSD0 is reported to aid the trafficking, retention and recycling of the 

transporter to the plasma membrane [14].  

MRP1 is a 190-kDa ATP-dependent efflux transporter [15]. It is expressed in the lungs, 

kidney, small intestines, and at pharmacological sanctuary sites including the blood-brain 

barrier, blood-testis barrier, and the blood placenta barrier [15-18]. MRP1 localizes at the 

plasma membrane and governs the absorption and deposition of a broad spectrum of 

substrates [19]. Substrates of MRP1 include heavy metals, toxins, drugs, and metabolites 

[20, 21]. The pharmacological aim of administering an anticancer drug is to ensure the 

maximum delivery of its active component to the desired therapeutic target in tumor cells, 

to initiate enough cellular destruction to cause cell death [9]. However, the overexpression 

of ABC transporters like MRP1 facilitates the efflux of such administered anticancer drugs 

leading to decreased bioavailability and therapeutic potency of these drugs. As such, 

overexpression of MRP1 has been implicated in MDR of many carcinomas and has been 

reported to be associated with the elevated risk of treatment failure leading to cancer relapse 

and low survival rates among cancer patients [22]. In addition to conferring resistance to 

anticancer drugs like paclitaxel, etoposide, and doxorubicin, MRP1 also affects the 

bioavailability and efficacy of antivirals, antimalarials, antibiotics [23]. Aside the critical 

role MRP1 plays in MDR, it also aids in maintaining physiological homeostasis by 

regulating redox homeostasis, steroid metabolism among others [24]. MRP1 also acts as a 

key player in the etiology of neurodegenerative diseases like Alzheimer's disease and 

cardiovascular diseases [24].  

Biochemical modulation plays a key role in chemotherapy. It is described as the process in 

which pathways or molecular targets are biochemically modified by therapeutic agents to 
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enhance the selective cytotoxic effect of anticancer agents on cancer cells but decrease their 

toxic side effects on normal cells [25, 26]. Biochemical modulation offers a means of 

regulating the activity of ABC transporters like MRP1 without perturbing the physiological 

balance in normal cells. Moreover, modulators also have the added advantage of boosting 

oral availability and enhancing the penetration of drugs that are transported by MRP1 in 

tissues [27]. In this present study, we screened 30 drugs consisting of both anticancer and 

recently approved FDA drugs to ascertain their effect on MRP1 protein expression levels 

using In-Cell Enzyme-Linked Immunosorbent assay (In-Cell ELISA) assay. We identified 

4 novel drugs that modulated MRP1 protein expression in MRP1-overexpressing cells. 

These drugs included 3 novel ATP competitive inhibitors that down-regulated MRP1 

protein expression and one FDA approved drug that increased MRP1 protein expression. 

The ability of test compounds to modulate MRP1 activity and reverse MRP1-mediated 

resistance was further explored using established methods. 
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2.0 Materials and methods 

2.1 Chemicals  

Test compounds consisting of anticancer and FDA approved drugs were procured from 

Selleck Chemicals (Houston, TX), and APExBIO Technology LLC (Houston, TX). 

MK571 was acquired from APExBIO Technology LLC (Houston, TX), thiazolyl blue 

tetrazolium bromide (MTT) was procured from Sigma-Aldrich (St. Louis, MO) and 

Calcein acetoxymethyl ester (Calcein AM) was obtained from Corning Life Sciences 

(Corning, NY). 

 

2.2 Cell lines and cell culture 

HEK293/pcDNA3.1 and HEK293/MRP1 cells were a kind gift from Dr. Suresh V. 

Ambudkar (NIH, Bethesda, MD). Dulbecco’s modified Eagle medium (DMEM) (GE 

Healthcare, Marlborough, MA, USA) supplemented with 10% fetal bovine serum (FBS) 

was used to grow the HEK293 cell lines. Cell lines were cultured in a humidified incubator 

maintained at 5% CO2 at 37 °C. This incubation condition was retained in all subsequent 

cell culture procedures. 

 

2.3 Screening of compounds using  In-Cell ELISA  assay  

In-Cell ELISA assay was used to screen the test compounds for modulators of MRP1 

protein expression. HEK293/pcDNA3.1 and HEK293/MPR1 cells were seeded at a cell 

density of 5 x 104 cells per well in 96-well plates with DMEM containing 10% FBS, treated 
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with drugs (10 uM), and 0.1% DMSO (controls) after 24 hours, Cells were incubated for 

48 hours after drug treatment at 37 °C. At the end of the incubation period, treatments were 

removed and cells were rinsed twice with 150 μl of PBS. Cells were fixed with 3.7% 

paraformaldehyde and permeabilized with Triton X-100. The cells were blocked using fish 

gel (MB-066-0100, Rockland) and incubated overnight at 4 °C with monoclonal anti-

MRP1 antibody (1:500; IU5C1, MA516079, Thermo Fisher Scientific) or anti-α tubulin 

antibody (1:1000; T5168, Sigma -Aldrich) used as the internal control. Horseradish 

peroxidase-conjugated goat anti-mouse secondary antibody (Thermo Fisher Scientific) was 

incubated for an hour at room temperature. Target proteins were detected with 

chemiluminescence using Super signal West Dura® Extended Duration Substrate 

(21EAPI34076, Thermo Fisher Scientific) and read using Hidex Sense Beta Plus plate 

reader (Turku, Finland). Experiments were conducted in two independent studies, with 

treatments performed in duplicates.  

 

2.4 Determination of the concentration-dependent activity of selected hit compounds 

on MRP1 protein levels using  In-Cell ELISA  assay  

HEK293 MRP1 overexpressing cells and HEK293/pcDNA3.1 cells were seeded in 96-well 

plates as described earlier. Cells were treated with varying concentration of test 

compounds;1 µM, 5 µM, 10 µM, 20 µM and incubated at 37 °C for 48 hours. Final DMSO 

concentration was maintained at less than 0.2% (v/v). Cells were fixed, permeabilized, and 

blocked as detailed earlier. Incubation with monoclonal anti-MRP1 antibody (1:250; 

IU5C1, MA516079, Thermo Fisher Scientific) and anti-α tubulin antibody (1:1000, T5168, 
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Sigma-Aldrich) was conducted overnight at 4 °C. Horseradish peroxidase-conjugated goat 

anti-mouse secondary antibody incubation was performed for an hour at room temperature. 

Target proteins were detected using western blotting luminol reagent (Santa Cruz 

Biotechnology, sc-2048), and read using Hidex Sense Beta Plus plate reader (Turku, 

Finland). Treatments were done in triplicates. 

 

2.5 Time-dependent activity of selected hit compounds on MRP1 Protein levels using  

In-Cell ELISA assay. 

HEK293/MRP1 and HEK293/pcDNA3.1 cells were seeded as detailed above and treated 

with 10µM of test compounds and incubated for various time points; 12, 24, and 48 hours 

at 37°C. Controls were treated with 0.1% DMSO. Cells were fixed, permeabilized, and 

blocked as indicated earlier. After which, cells were incubated with monoclonal anti-MRP1 

antibody (1:250; IU5C1, MA516079, Thermo Fisher Scientific) and anti-α tubulin 

antibody (1:1000, T5168, Sigma-Aldrich) was conducted overnight at 4 °C. Followed by 

incubation with horseradish peroxidase-conjugated goat anti-mouse IgG (H+L) for an hour 

at room temperature. Western blotting luminol reagent (Santa Cruz Biotechnology, sc-

2048) was used for detection of target proteins, and plates were read using Hidex Sense 

Beta Plus plate reader (Turku, Finland). Treatments were performed in triplicates. 

 

2.6 Flow cytometric measurements  of  intracellular Calcein accumulation  

Flow cytometry was conducted to determine the effect of selected drugs on MRP1 

mediated efflux of calcein-AM. Calcein-AM was used as the fluorescent substrate for the 
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accumulation assay, with MK571 as the positive control. HEK293/MRP1 cells were 

prepared in serum-free medium at a cell density of 7×105 cells/ml and treated with test 

compounds (10μM final concentration), MK571 (25 μM final concentration), and DMSO 

(0.1% final concentration for controls). Cells were incubated at 37 ⁰C for 10 minutes. After 

incubation, the cells were treated with Calcein-AM (0.25 µM)  and incubated for additional 

30 minutes. Ice-cold PBS buffer (3 ml) was added to halt the reaction, after which cells 

were centrifuged and washed twice with cold PBS. Cells were then resuspended in a cold 

PBS buffer containing 1% paraformaldehyde. Detection of intracellular accumulation of 

calcein-AM was done using a BD Accuri C6 flow cytometer ( BD Biosciences, San Jose, 

CA) with excitation at 480 nm, and emission and 533/30 nm. Fluorescence intensities are 

representative of the mean value collected from 10,000 events.  Treatments were done in 

duplicates and conducted in three independent experiments. 

 

2.7 Cytotoxicity of selected test compounds 

The sensitivity of HEK293/MRP1 and HEK293/ pcDNA3.1 cells towards the selected test 

compounds were determined using the MTT colorimetric assay. Cells were seeded at a cell 

density of 5 × 103 per 100 ul of culture medium in 96 well plates. After 24 hours, cells were 

treated with 100ul of test compounds at varying concentrations. The final DMSO 

concentration was kept at 0.05%. Cells were then incubated for 72 hours, after which 100 

ul of the spent culture medium was carefully removed. Cells were then treated with MTT 

(0.5 mg/ml) for 4 hours. The formazan crystals were dissolved by the addition of 100 ul of 

15% SDS containing 10 mM HCl and absorbance at 570 nm was recorded using a Hidex 
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Sense Beta Plus plate reader (Turku, Finland). Treatments were done in triplicates, and 

experiments were performed in two independent studies. 

 

2.8 Resistance reversal assay 

The ability of test compounds to reverse MRP1 mediated resistance towards the 

chemotherapeutic drug, vincristine was analyzed using the MTT colorimetric assay. Cells 

were seeded in 96 well plates at a cell density of 5 × 103  per 100 ul of culture medium. 

After 24 hours, cells were treated with 50 ul of test compounds at selected concentrations 

prepared in a culture medium. After an hour, 50 ul of vincristine at varying concentrations 

was added to the cells. Final DMSO was maintained at 0.2%, and cells were incubated for 

72 hours. At the end of the incubation period, 100 ul of the spent culture medium was 

carefully removed. Cells were treated with MTT (0.5 mg/ml) for 4 hours. The formazan 

crystals were dissolved by the addition of 100 ul of 15% SDS containing 10 mM HCl and 

absorbance at 570 nm was recorded using a Hidex Sense Beta Plus plate reader (Turku, 

Finland). Treatments were done in triplicates, and experiments were performed in two 

independent studies.  

 

2.9 Statistical analysis 

Statistical analysis was performed using GraphPad Prism TM software (GraphPad 

Software version 8.4.3, San Diego, CA, USA). The differences between mean values were 

analyzed using linear mixed model analysis. Sidak correction was applied for multiple 

comparisons, statistical testing was performed at a 5% level of significance.  
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3.0 Results 

3.1 Screening for modulators of MRP1 protein expression using In-Cell ELISA assay 

In-Cell ELISA also known as In-cell western assay or Cytoblot is a cell-based 

immunocytochemistry assay that allows quantification of target proteins in cultured cells. 

It merges the specificity of western blot, the replicability, and the high-throughput nature 

of ELISA. To identify modulators of MRP1 protein expression levels, we screened 30 

drugs (consisting of both clinically tested anticancer and recently approved FDA drugs) 

using In-Cell ELISA assay in HEK293 MRP1-overexpressing cells. The MRP1 protein 

expression in HEK293/MRP1 treated with 0.1% DMSO was considered as the baseline for 

computing the percent modulation for the test compounds. The screening was conducted 

in 96-well format in two independent studies. The percent modulation of MRP1 protein 

expression by the test compounds from the two independent studies is represented in Figure 

2.1. A test compound was considered as a “Hit compound” if its calculated percent 

modulation is ≥ 30% in the positive (+) or negative (-) direction. Test compounds that 

showed percent modulation ≥ 30% are presented as red dots in Figure 2.1, whereas drugs 

that showed percent modulation < 30% are represented by black dots. The screening 

process identified a total of 11 hit compounds that modulated the protein expression of 

MRP1 ≥ 30%. The identified hit compounds, their therapeutic targets, and specific percent 

modulation are listed in table 2.1.  
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Figure 2. 1. Screening of compounds using In-Cell ELISA assay. 

 HEK293/MRP1 cells were treated with 10 µM of test compounds and incubated for 48 

hours. MRP1 protein expression was detected using a monoclonal anti-MRP1 antibody 

(1:500; IU5C1, MA516079, Thermo Fisher Scientific). Alpha-tubulin protein (used as an 

internal control) was detected using mAb α-tubulin (1: 1000; T5168, Sigma – Aldrich). 

Secondary antibody; mAb-goat-anti-mouse (1:1000) was used. Treatments were 

performed in duplicates and experiments were conducted in two independent studies. Red 

dots represent drugs that showed ≥ 30% modulation of   MRP1  protein expression. Black 

dots represent drugs that showed < 30% modulation of MRP1 protein expression. 
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Table 2.1 Modulatory effect of drugs on MRP1 protein expression 

 

Compound Target % Modulation on MRP1 

 protein expression 
a
 

Saracatinib (AZD0530) 

Linifanib (ABT-869) 

Zonisamide 

Axitinib* 

XMD8-92 

PI-103 

Vandetanib (Zactima) 

Amuvatinib*** 

Epirubicin HCl* 

Trichostatin A (TSA) 

LY294002 

Sunitinib Malate (Sutent) 

SU11274 

Nutlin-3 

PCI-24781* 

Iniparib (BSI-201) 

Vismodegib (GDC-0449)* 

SB 743921 HCl*** 

Irinotecan* 

Atazanavir sulfate 

Bumetanide 

VER-50589 

Felbamate*** 

Bcr-Abl 

CSF-1R 

T-type calcium channels  

c-Kit 

ERK 

Autophagy 

VEGFR 

c-Kit 

Topoisomerase 

HDAC 

Autophagy 

c-Kit 

c-Met 

E3 Ligase  

HDAC 

PARP 

Hedgehog 

Kinesin 

Topoisomerase 

HIV protease 

Na+-K+-Cl- cotransporter  

HSP  

NMDA receptor 

-2.88 ± 0.08 

-12.23 ± 0.14 

0.47 ± 0.16 

-40.80 ± 0.09 

5.17 ± 0.09 

13.88 ± 0.04 

-12.09 ± 0.12 

-50.70 ± 0.01 

75.19 ± 0.07 

-25.00 ± 0.10 

-12.67 ± 0.06 

21.04 ± 0.05 

-27.38 ± 0.02 

-18.15 ± 0.07 

-44.22 ± 0.1 

-7.239 ± 0.11 

-56.79 ± 0.12 

-60.30 ± 0.05 

76.98 ± 0.09 

20.85 ± 0.12 

-10.51 ± 0.02 

-20.25 ± 0.09 

93.54 ± 0.20 

a 
Mean ± SEM of n ≥ 2 independent experiments.  

* Hit compounds – showed ≥ 30% modulation 

***Hit compounds characterized – showed ≥ 50% modulation 
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Table 2.1 (Continued) Modulatory effect of drugs on MRP1 protein expression 

a Mean ± SEM of n ≥ 2 independent experiments.  

* Hit compounds –showed ≥ 30% modulation 

***Hit compounds characterized – showed ≥ 50% modulation 

 

Out of the 11 hits identified, 5 test compounds increased the protein expression levels of 

MRP1 and 6 test compounds decreased the protein expression of MRP1. For detailed 

characterization, hit compounds that modulated protein expression of MRP1 ≥ 50% were 

considered. Seven of the hit compounds showed modulation of MRP1 protein expression 

≥ 50%. Among these hits, three compounds (Vismodegib, Epirubicin HCl, and Irinotecan) 

have already been reported to modulate MRP1 in other studies [28-30]. Thus, these 

compounds were not further characterized. In this study, we focused on characterizing the 

other 4 novel test compounds that to the best of our knowledge have not been reported for 

their activity as modulators of MRP1 protein expression (Table 2.2). This included 3 ATP 

competitive inhibitors; SB743921 HCl, Amuvatinib, TG101348 (SAR302503), and an 

FDA approved drug, Felbamate. SB743921 HCl, Amuvatinib, and TG101348 

(SAR302503) decreased MRP1 protein expression levels by 60.30%, 50.70%, and 55.11% 

Compound Target % Modulation on MRP1 

 protein levels 
a
 

Tadalafil (Cialis) 

PF-04217903 

Telaprevir (VX-950)* 

Saxagliptin (BMS-477118Onglyza) 

Pimobendan (Vetmedin)* 

TG101348 (SAR302503)*** 

Vatalanib 2HCl (PTK787) 
 

PDE 

c-Met 

HCV Protease 

DPP-4 

PDE 

JAK 

c-Kit  

-0.97 ± 0.02 

-4.50 ± 0.06 

41.90 ± 0.03 

13.84 ± 0.04 

34.03 ± 0.04 

-55.11 ± 0.06 

24.68 ± 0.01 
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respectively, with  SB743921 HCl eliciting the highest negative modulation of MRP1 

protein levels. Felbamate on the other hand increased MRP1 protein expression levels by 

93.54 % in the HEK293 overexpressing MRP1 cells. The chemical structures of the 

selected compounds are shown in Figure 2.2.  

 

Table 2.2 Chemotherapeutic targets, % modulation of MRP1 protein expression for 

selected and characterized Hit compounds 

Compound Chemotherapeutic 

targets 

% Modulation MRP1  

protein levels 
a
 

Effect on MRP1  

protein levels 

SB743921 HCl  Kinesin 

  

60.30 ± 0.05 Decrease 

Amuvatinib 

  

C-kit 50.70 ± 0.01 Decrease 

TG101348 

(SAR302503) 

JAK 

  

55.11 ± 0.06 Decrease 

Felbamate N-Methyl-D-aspartate 

(NMDA) receptor 

93.54 ± 0.20 Increase 

 

  

a 
Mean ± SEM of n ≥ 2 independent experiments  
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Figure 2.2 Chemical structures of selected hit compounds 

SB743921 HCl 
TG101348 (SAR302503) 

Amuvatinib Felbamate 
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3.2 Concentration and time-dependent activity of selected hit compounds for MRP1 

In order to determine if the modulatory effects observed for our selected compounds were 

concentration and time-dependent and to identify the conditions that produce the maximum 

modulatory effect, we conducted concentration and time-dependent studies using the In-

Cell ELISA assay. HEK293 MRP1 overexpressing cells were treated with varying 

concentration (1  µM, 5 µM, 10 µM, 20 µM) of the test compounds for the concentration-

dependent studies. In the time-dependent studies, cells were treated with 10 µM of test 

compounds, and were incubated at various time points; 12 hours, 24 hours, and 48 hours. 

As shown in Figure 2.3A; expression levels of MRP1 were further reduced by increasing 

concentrations of SB743921 HCl and Amuvatinib. Drug treatment of 20 µM exhibited 

strongest modulatory effect and resulted in 75.62 % and 85.28% reduction in MRP1 

expression by SB743921 HCl and Amuvatinib, respectively. TG101348 (SAR302503) 

showed highest downregulation of MRP1 protein expression at 10 µM. Treatment with 

Felbamate also showed concentration dependence and highest modulatory effect on MRP1 

expression levels was observed in case of 10 µM drug treatment. Regarding time-

dependence studies, as presented in Figure 2.3B, all drug treatments demonstrated time-

dependence and the highest modulatory effect was observed with 48 hour treatment. 

Therefore, in case of  SB743921 HCl, Amuvatinib and TG101348, MRP1 expression levels 

were reduced by 62.83%, 49.29% and 49.28% respectively by 48 hour drug treatment. In 

the case of Felbamate, MRP1 expression levels were increased by 77.90% by 48 hour drug 

treatment. 
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Figure 2.3 Concentration and time-dependent activity of selected hit compounds on MRP1 protein 

expression using In-Cell ELISA assay. 

[A] Concentration dependent activity of test compounds on MRP1 protein expression; HEK293/MRP1 

cells were treated with 1 µM, 5 µM, 10 µM and 20 µM of test compounds and incubated for 48 hours. [B] 

Time dependent activity of selected hit compounds on MRP1 protein expression, HEK293/MRP1 cells 

were treated with 10 µM of test compounds and incubated for 12, 24, 48 hours. Treatments were performed 

in triplicates and data analyzed using linear mixed model and Sidak post hoc test. Data is represented as 

mean ± S.D.  *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 compared to control. 
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3.3 Effect of test compounds on MRP1 efflux activity using calcein accumulation assay  

Overexpression of MRP1 has been associated with the increased efflux of multiple classes 

of therapeutic agents across biological membranes. This results in the low bioavailability 

and reduced pharmacological potency of such compounds. We investigated the effect of 

the selected compounds on MRP1 efflux activity of calcein-AM using a flow cytometry-

based assay. Calcein-AM is a well-known substrate of MRP1. This non-fluorescent 

compound is converted into a highly fluorescent molecule when its acetoxymethyl ester 

(AM) component is cleaved off by cellular esterases. Using flow cytometry, the 

intracellular calcein fluorescence accumulation can be ascertained. In this assay, 

HEK293/MRP1 cells were treated with 10 µM of the test compounds for 10 minutes before 

the treatment with calcein-AM was conducted for an extra 30 minutes. Our results as 

presented in Figure 2.4 shows that 25 µM of MK571 (commonly used MRP1 inhibitor) 

increased intracellular calcein-AM by 3.85-fold compared to the no treatment control. 

Among the selected compounds; SB743921 HCl, Amuvatinib, and TG101348 

(SAR302503) significantly increased the calcein accumulation by 3.51-fold, 1.75-fold, and 

2.52-fold respectively with  SB743921 HCl exhibiting highest modulatory effect on MRP1 

activity compared to no treatment control. Felbamate, on the other hand, did not have any 

significant impact on calcein accumulation as compared to the no treatment control.  
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Figure 2.4 Effect of selected hit compounds on MRP1 mediated calcein efflux.  

HEK293/MRP1 cells were treated with 10 µM of the test compounds, and 25 µM of 

MK571 (positive control) for 10 minutes at 37°C before treatment with 0.25 µM calcein-

AM for 30 minutes. Flow cytometric measurements of intracellular calcein-AM was 

conducted at 488 nm and 533/30 nm for excitation and emission wavelengths, respectively. 

Experiments were done as duplicates in three independent experiments and presented as 

mean ± S.E.M. Data was analyzed using a linear mixed model and Sidak post hoc test. *P 

< 0.05; **P < 0.01; ***P < 0.001 compared to control. 
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3.4 In vitro cytotoxicity of selected test compounds 

The half-maximal inhibitory concentration (IC50) is a measure of the effectiveness of a 

specific compound to inhibit a specific biochemical or biological function. Results from 

the cytotoxicity studies using MTT as shown in table 2.3, reveals that Amuvatinib was the 

most potent in inhibiting the growth of HEK293/MRP1 cells with an average IC50 of 2.64 

µM. TG101348 (SAR302503) with an average IC50 of 3.26 µM was also very potent in 

inhibiting the growth of HEK293/MRP1 cells. SB743921 also showed an inhibitory effect 

on HEK293/MRP1 cells with an average IC50 of 9.35 µM. Felbamate had the least growth 

inhibitory effect on HEK293/MRP1 cells with an average IC50 of 47.23 µM. Thus from 

table 2.3, we can infer that most HEK293/MRP1 cells survived when treated with 

felbamate hence requiring very high concentration of the drug to inhibit 50% of the cell 

growth. As expected HEK293/pcDNA 3.1 was very sensitive to the cytotoxic activity of 

all the test compounds as compared to HEK293/MRP1 cells since they do not overexpress 

MRP1, thus these cells can easily be impacted by the cytotoxicity of the drugs. Overall, the 

three ATP competitive inhibitors that decreased MRP1 protein expression were also very 

potent in inhibiting the cell growth of HEK293 MRP1-overexpressing cells.  
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Table 2.3 Cytotoxicity of selected hit compounds on HEK293/pcDNA3.1 and 

HEK293/MRP1 cells  

Cell Line Drug IC50 
a
 (µM) 

   

 
SB743921 HCl 6.84 ± 0.73 

HEK293/pcDNA3.1 Amuvatinib 0.45 ± 0.25 

 
TG101348 (SAR302503) 2.05 ± 0.34 

 
Felbamate 14.92 ± 2.06 

 
SB743921 HCl 9.35 ± 0.12 

HEK293/MRP1 Amuvatinib 2.61 ± 0.64 

 
TG101348 (SAR302503) 3.26 ± 0.21 

 
Felbamate 47.23 ±0.64  

a 
Mean ± SEM of n ≥ 2 independent experiments  

 

3.5 Effect of selected test compounds on MRP1-mediated drug resistance 

One of the major setbacks of the current modulators of MRP1 is the fact that they exhibit 

low MDR reversal effects. Thus, we investigated the ability of the selected compounds to 

reverse MRP1 mediated resistance towards vincristine. HEK293 MRP1-overexpressing 

cells were treated with varying concentrations of vincristine in the presence or absence of 

non-cytotoxic concentrations of the test compounds. MK571 was used as positive control. 

As shown by the IC50 and fold resistance listed in table 2.4. HEK293 MRP1-overexpressing 

cells in the absence of MK571 demonstrated very low sensitivity to the cytotoxicity effect 

of vincristine, giving a high fold resistance of 20.51 fold. HEK293/pcDNA3.1 
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contrastingly exhibited very high sensitivity towards vincristine, thus gave a very low fold 

resistance. In the presence of MK571 inhibitor (25 µM), the fold resistance in the MRP1-

overexpressing cells drastically decreased from 20.51  to 3.64-fold resistance. From the 

results obtained, two of the selected compounds; Amuvatinib and TG101348 

(SAR302503) at 1 µM reversed MRP1-mediated resistance towards vincristine in 

HEK293/MRP1 cells. TG101348 (SAR302503) strongly decreased the fold resistance to 

7.16-fold, whilst Amuvatinib also reduced the fold resistance to 9.13-fold. This indicated 

that our selected test compounds may be able to reverse MRP1 mediated resistance. 

Contrastingly, treatment of HEK293/MRP1 with SB743921 HCl elevated the resistance of 

the cells against vincristine.  

Table 2.4 Effect  of selected hit compounds on the IC50 values of vincristine in 

HEK293/MRP1 cells 

Cell line/Treatment IC50

a
 (nM) 

  Vincristine Fold 

resistance
b
 

HEK293/pcDNA3.1 3.11 ± 0.23 1 

HEK293/MRP1  62.25 ± 7.21 20.51 

HEK293/MRP1 + MK571 [25 µM] 11.30 ± 1.00 3.64 

HEK293/MRP1  + Amuvatinib [1µM] 28.42 ± 2.85 9.13 

HEK293/MRP1  + TG101348 [1 µM] 22.26 ± 4.78 7.16 

HEK293/MRP1  + SB743921 HCl [0.5 µM] 151.57 ± 20.75 48.78 

a  
Mean ± SEM  of at least three independent experiments performed in triplicates.  

b
 Fold resistance determined by dividing the IC50 value for each treatment by the IC50 

value of  HEK293/pcDNA3.1 with vincristine alone. 
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4.0 Discussion 

Recent advancement in chemotherapy has contributed to the improvement of survival rates 

of several cancers. However, MDR has been a prime opponent to this treatment modality. 

The occurrence of MDR in several carcinomas has limited the effectiveness of 

chemotherapy. The efflux activity of overexpressed MRP1 in tumor cells has been a key 

contributor to this phenomenon. The substrate family of MRP1 spans multiple drug classes, 

this includes conventional chemotherapeutic drugs such as etoposide, doxorubicin, 

paclitaxel among others [28]. It also affects the efficacy of antivirals, antibiotics, 

antimalarials among others [23]. As such, the overexpression of MRP1 by tumor cells is 

used as a survival and protection strategy to reduce the intracellular drug concentration and 

accumulation of such drugs to render them less potent by reducing their bioavailability. 

This goes a long way to reduce the cytotoxic effect of such drugs on cancer cells. This 

phenomenon in cancer cells has led to the elevated risk of treatment failure, and decreased 

survival rates of patients, thus pose a huge challenge to the pharmaceutical industry and 

clinical oncology researchers.  

Modulating the expression and function of MRP1 via biochemical modulation has become 

one of the powerful tools used by cancer researchers to overcome MPR1-mediated MDR. 

Biochemical modulation provides the platform for scientists to modulate the function and 

the transport in tumor cells without perturbing physiological homeostasis in normal cells. 

By using the biochemical modulation toolbox, two or more pharmacological agents that 

may work via varying molecular mechanisms and may have different molecular targets can 

be combined at their respective effective doses to achieve a common goal without eliciting 

any unacceptable side effects. Based on this principle, an inhibitor of MRP1 can be 
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combined with another chemotherapeutic agent with superior potency against tumor cells 

in one formulation. In this instance, the inhibitor can impede the efflux activity of MRP1 

to ensure that the other anticancer drug is bioavailable to yield the desired response and 

effect. Although some modulators of MRP1 have been identified in recent times, 

challenges like non-specific toxicity, low multidrug reversal effects, and undesirable off-

target effects limit their effectiveness. Thus, there is the need to identify more potent, well-

tolerated modulators with significant MDR reversal effects and limited non-specific 

toxicity.  

In this present study, we successfully screened 30 drugs which consisted of both anticancer 

and FDA drugs using an In-cell ELISA assay to identify modulators of MRP1 in HEK293 

MRP1-overexpressing cells. We identified 7 hit compounds (drugs that modulated MRP1 

protein expression above 50%) representing 23.33% of the total compound screened. Three 

of the hit compounds; Epirubicin HCl, Felbamate, and Irinotecan increased the protein 

expression of MRP1. Four of the hit compounds; Vismodegib (GDC-0449), TG101348 

(SAR302503), Amuvatinib, and SB743921 HCl decreased MRP1 protein expression in 

HEK293/MRP1 cells. Epirubicin HCl is an anthracycline that targets topoisomerase II [31]. 

Epirubicin HCl prevents DNA segregation and DNA synthesis by stabilizing the DNA – 

topoisomerase complex [32-36]. This antineoplastic agent is used in the treatment of breast 

cancer, and a known substrate of MRP1 [29]. Irinotecan is a derivative of Camptothecin 

that elicits its antitumor activity by inhibiting topoisomerase I (a nuclear enzyme that 

regulates the unwinding of DNA during replication) [37]. It is used in the treatment of 

metastatic colorectal cancer [38-41] and has been reported to be a substrate of MRP1 [28]. 

Vismodegib is a recently approved FDA drug that inhibits the hedgehog signaling pathway 
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[42]. This orally bioavailable small molecule is used in the treatment of locally advanced 

and metastatic unresectable basal cell carcinoma (BCC) [42]. Vismodegib is among the 

few small molecules that have been reported to inhibit the activity of MRP1 [30]. Since the 

impact of Epirubicin HCl, Irinotecan, and Vismodegib on MRP1 have already been 

reported in other studies, we focused on characterizing other hit compounds whose 

modulatory effects on MRP1 had not been reported.  

The novel drugs identified in our initial screening included; SB743921 HCl, Amuvatinib, 

TG101348 (SAR302503), and Felbamate. Except for Felbamate; SB743921 HCl, 

Amuvatinib, and TG101348 (SAR302503) based on their mode of action have been 

reported to be ATP competitive inhibitors. ATP competitive inhibitors are inhibitors that 

act by competing with ATP to block the activity of their targets [43]. These inhibitors are 

also known as Type 1 inhibitors. SB743921 HCl is a novel kinesin spindle inhibitor that 

elicits its function by impeding functional mitotic spindle formation in cell mitosis by 

hydrolyzing ATP [44], thereby regulating cell division. SB743921 HCl has been reported 

to show a strong inhibitory effect on ERK and AKT activity in chronic myeloid leukemia 

(CML) cells [45]. Although SB743921 HCl has been reported to have a strong inhibitory 

effect on tumor cells, its interaction with MRP1 as well as its effect on MRP1 activity and 

expression is yet to be reported. Amuvatinib on the other hand is an orally bioavailable 

small molecule that is reported to inhibit the activity of the MET receptor tyrosine kinase, 

c-KIT, and platelet-derived growth factor receptor (PDGFR) by competing with ATP for 

binding at the catalytic site [46]. This multi-targeted tyrosine inhibitor is currently in phase 

II clinical trials for the treatment of solid tumors [47, 48]. A recent study in our lab group 

that aimed at identifying novel inhibitors of MRP1 using a doxorubicin-based screening 
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assay revealed that Amuvatinib may inhibit MRP1 activity, however, its impact on MRP1 

protein expression as well as its ability to reverse MRP1 mediated resistance has never 

been reported. TG101348 (SAR302503) is an orally bioavailable selective inhibitor of 

Janus-associated kinase 2 [49-51]. It elicits its inhibitory effect by competing with JAK2 

for ATP binding , this results in JAK2 inactivation and subsequent inactivation of the JAK-

STAT pathway. Thereby inducing apoptosis in tumor cells. This ATP competitive inhibitor 

of  JAK2 was recently approved for the treatment of adult patients with intermediate-2 or 

high-risk primary or secondary myelofibrosis in the United States, and it is currently in 

phase III clinical trial for myelofibrosis treatment globally [49]. TG101348 (SAR302503) 

has also been reported to enhance the cytotoxic effect of imatinib (a well-known  drug for 

the treatment) of Chronic myeloid leukemia (CML) in residual CML cells [52]. It is also 

reported to impede growth of Hodgkin lymphoma and mediastinal large-cell lymphoma in 

both in vitro and in vivo studies [53]. Despite the success of TG101348 (SAR302503) in 

treatment of tumor cells, its interaction with MRP1 is yet to be reported. 

 In this study, we demonstrated using In-Cell ELISA assay that the ATP competitive 

inhibitors; SB743921 HCl, Amuvatinib, TG101348 (SAR302503) significantly 

downregulated the protein expression of MRP1 in HEK293 MRP1-overexpressing cells. 

For the first time, we report that SB743921 HCl and Amuvatinib demonstrate a 

concentration and time-dependent activity in modulating MRP1 protein expression with 

greater significance observed at concentrations above 10 µM and incubation periods above 

24 hours. We also showed that TG101348 (SAR302503) exhibited significant 

downregulation of  MRP1 protein expression at 10 µM and after 48 hours incubation 

period. Felbamate, an antiepileptic FDA approved drug, was also reported for the first time 
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to significantly increased the expression levels of MRP1 in HEK293 MRP1- 

overexpressing cells in this study. Significant upregulation of MRP1 protein expression 

was observed at concentrations above 10 µM and after 48 hours of incubation when cells 

were treated with felbamate. Although these drugs modulated MRP1 protein expression, 

further research must be conducted to evaluate if  SB743921 HCl, TG101348 

(SAR302503) are inhibitors of MRP1 and whether Felbamate is a substrate of MRP1. 

Moreover, further studies to determine the mechanism of interaction between these novel 

modulators and MRP1 would be a step in the right direction.  Nonetheless, it is possible to 

speculate that SB743921 HCl may downregulate MRP1 protein expression by obstructing 

the PI3/Akt signaling pathway. This is because the PI3/Akt signaling pathway has been 

reported to modulate MRP1 expression in human acute myeloid leukemia [54], and 

SB743921 HCl has also been reported to strongly inhibit this pathway [45]. However, 

further studies are needed to verify the involvement of the PI3/Akt pathway in the 

modulatory effect of SB746921 HCl on MRP1.  

We also evaluated the effect of these novel modulators on MRP1 efflux activity using the 

flow cytometry-based calcein accumulation assay. Our results demonstrate that SB743921 

HCl, TG101348 (SAR302503) can strongly inhibit MRP1 mediated calcein efflux. 

Amuvatinib which was previously reported to inhibit MRP1 mediated doxorubicin efflux 

in small cell lung cancer cells (H69AR) [55], also inhibited MRP1 mediated calcein efflux 

in HEK293 MRP1-overexpressing cells in this study. These results indicate that 

Amuvatinib may be able to inhibit efflux of several substrates of MRP1, making it an 

interesting therapeutic agent to explore in further studies. Contrastingly, we did not observe 

any significant inhibition in MRP1-mediated calcein efflux when cells were treated with 
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felbamate and compared to the no treatment control. This may be to the fact that the 

presence of felbamate upregulates MRP1 protein expression in these cells, as such increase 

the overall efflux of calcein as observed.  

We also showed that the three novel modulators that decreased MRP1 protein expression 

in this study are also able to inhibit the growth of HEK293 MRP1-overexpressing cells at 

clinically achievable concentrations (Table 2.3). This observation may be in synchrony 

with their ability to decrease MRP1 protein expression in these cells. Felbamate (average 

IC50 – 47.23 µM) on the other hand, was the least potent in inhibiting the growth of 

HEK293/MRP1 among the novel modulators identified. This may be because felbamate 

increases MRP1 protein expression as observed earlier in this study, thus it is easily 

effluxed by the transporter as such enhancing the survival of these cells and requiring a 

higher dose of drug treatment to achieve the half-maximal inhibitory effect. However, 

further research is needed to elucidate and verify the mode of interaction and action 

between felbamate and MRP1.  

One of the major limitations of current modulators of MRP1 is the inability of these 

modulators to reverse MRP1-mediated resistance. Thus, we investigated the ability of our 

identified novel modulators (SB743921 HCl, Amuvatinib, TG101348 (SAR302503)) to 

reverse MRP1- mediated resistance against vincristine in HEK293 MRP1-overexpressing 

cells. Amuvatinib and TG101348 (SAR302503) were most effective in reversing MRP1- 

mediated resistance in HEK293 MRP1 overexpressing cells (Table 2.4). TG101348 

(SAR302503) sensitized HEK293/MRP1 cells to the cytotoxic effects of vincristine, 

thereby reducing the average IC50 from 62.25µM to 22.26 µM with a fold reduction from 

20.51 to 7.16-fold resistance. Amuvatinib also reversed MRP1 mediated resistance towards 
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vincristine by decreasing the average IC50 from 62.25µM to 228.42 µM with a fold 

reduction from 20.51 to 9.13-fold resistance. Contrastingly, we observed that SB743921 

HCl enhanced resistance of HEK293 MRP1-overexpressing cells towards vincristine. Our 

results demonstrate that Amuvatinib and TG101348 (SAR302503) can reverse MRP1 

mediated MDR in MRP1 overexpressing cells. It would be of interest to investigate the 

ability of Amuvatinib, TG101348 (SAR302503) to reverse MDR mediated by MRP1 and 

other ABC transporters in other cell lines.  

Findings from this project indicate that the test compounds; SB743921 HCl, Amuvatinib, 

and  TG101348 (SAR302503) decreased MRP1 protein expression and its efflux activity,  

with Amuvatinib and  TG101348 (SAR302503) exhibiting high potency in reversing 

MRP1-mediated MDR. Therefore these aforementioned drugs can be used in the 

development of combinatorial drug therapy with an anticancer drug that is potent in 

targeting and treating cancer cells but is a substrate of MRP1. As such in cancer cells 

overexpressing the MRP1 transporter, administration of such formulations allow the 

modulator to downregulate the MRP1 expression levels enabling the anticancer drug to 

accumulate at the appropriate concentration and be bioavailable to elicit its desired effect. 

These interventions would go a long way to aid in our fight against tumor chemoresistance 

mediated by MRP1.  Our novel modulator, Felbamate which increased MRP1 protein 

expression in this study can also be used in the treatment of diseases whose etiology 

involves the down-regulation of MRP1 expression levels. For instance, Alzheimer’s 

disease is a neurodegenerative disorder that is pathologically characterized by the 

accumulation of beta-amyloid peptide (Aß) in the brain of its patients [56]. Studies by 

Krohn and his colleagues revealed that deficiency of MRP1/ABCC1 in mice models that 



77 

 

expressed Swedish human Aß precursor protein (APPswe) and mutant presenilin-1 (PSI) 

(APP/PSI mice x Abcc1-/-) resulted in elevated levels of cerebral beta-amyloid peptide 

(Aß) but did not affect the expression levels of enzymes responsible for the production of 

Aß from APP [57]. However, treatment with an MRP1 inducer, thiethylperazine resulted 

in decreased Aß levels in APP/PS1 mice brains. These results demonstrated the role of 

MRP1 in the clearance of Aß and its sequential accumulation in the brain. Thus in disease 

states like Alzheimer’s disease, drugs with a high potency of inducing and increasing 

MRP1 expression levels are desirable. Therefore,  our novel modulator, Felbamate which 

increased MRP1 protein expression in HEK293 MRP1 overexpressing cells in this study 

and is currently used for the treatment of Epilepsy can be a good candidate for treating such 

disorders. It would be a step in the right direction to investigate how Felbamate can be used 

in targeting and treating disorders in which MRP1 expression levels are down-regulated.   

In summary, we investigated the modulatory effect of a unique set of drugs on MRP1 

protein expression. We identified four novel modulators of MRP1 protein expression in 

HEK293 MRP1-overexpressing cells. We report for the first time that novel ATP 

competitive inhibitors; SB743921 HCl, Amuvatinib, TG101348 (SAR302503) 

downregulate MRP1 protein expression and activity. Findings from our work suggest that 

the identified modulators may limit toxicity and increase the effectiveness of overcoming 

MRP1 mediated MDR. Thus the drugs can be explored in combinatorial drug therapy 

aimed at targeting tumors with the MDR phenotype conferred by MRP1 overexpression. 

Drugs that showed little to low modulatory effect on MRP1 in our initial screening may 

have a lower risk of being interfered by MRP1-mediated MDR.  
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Chapter 3 

Tie2 kinase and mTOR targeted agents modulate MRP1 activity in MRP1-

overexpressing  cells 

Abstract 

Chemotherapy is the only systemic treatment for many cancers. Overexpression of MRP1 

in cancer cells facilitates the efflux of administered chemotherapeutic drugs, thereby 

reducing their intracellular drug concentration and bioavailability. This results in tumor 

cells becoming unresponsive and resistant to therapeutic agents. The development of 

multidrug resistance in cancer cells leads to increased risk of treatment failure and reduced 

survival chances of cancer patients. Finding ways of regulating the activities of MRP1 in 

overexpressed cells is of great pharmacological importance. We report that Tie2 kinase 

inhibitor and mTOR inhibitor, Everolimus modulate MRP1 activity in MRP1-

overexpressing cells. Tie2 kinase inhibitor and Everolimus decreased MRP1 mediated 

calcein efflux in HEK293 MRP1-overexpressing cells. However, these compounds did not 

affect the protein expression of MRP1 in HEK293 MRP1-overexpressing cells. In 

resistance reversal studies, Tie2 kinase inhibitor and Everolimus reversed MRP1-mediated 

resistance towards vincristine in these cells. Overall, data from this study indicates Tie2 

kinase inhibitor and Everolimus holds great potential for the development of therapeutics 

targeting MRP1-mediated multidrug resistance.  

 

 Keywords: ABC transporters; multidrug resistance; MRP1; ABCC1; MRP1 modulators; 

anticancer drug; drug profiling;  drug-transporter interactions, Tie2, mTOR 
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1) Tie2 Kinase Inhibitor  (PubChem CID: 23625762); 2) Everolimus (PubChem CID: 

6442177) 

1.0 Introduction 

Cancer is a global public health challenge with high morbidity and mortality. The potential 

of tumor cells to develop resistance to mechanistically and structurally discrete 

chemotherapeutic agents has become one of the major hindrances to the chemotherapy 

regime. This phenomenon is described in clinical cancer research as Multidrug resistance 

(MDR). The ATP binding cassette (ABC) transporters have been reported to be key players 

in the MDR development of several carcinomas. This superfamily of transporters is 

responsible for the efflux of a wide range of substrates in eukaryotes. These substrates 

include xenobiotics, toxins, drugs, and their metabolites [1]. Due to the essential role 

played by ABC transporters, cancer cells take advantage of their pivotal function to ensure 

their survival against administered anticancer drugs. This they achieve by overexpressing 

ABC transporters like P-glycoprotein (P-gp), Multidrug resistance protein 1 (MRP1), and 

Breast cancer resistance protein (BCRP). As such administered chemotherapeutic drugs 

are challenged by the efflux activity of these transporters as they serve as the first line of 

defense in tumor cells. The removal of drugs and their metabolites by the overexpressed 

ABC transporters across the plasma membrane has been associated with decreased 

bioavailability and reduced therapeutic efficacy of anticancer drugs on tumor cells.  

ABC transporters are a type of ATP-binding cassette pumps encoded by the ABC genes 

[2]. This superfamily of transporters is grouped into seven subfamilies, subfamilies A-G in 

humans. Most ABC transporters are characterized by a core unit consisting of membrane-

spanning domains (MSDs) which consist of six hydrophobic α-helices, and nucleotide-
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binding domains (NBDs). The NBDs form the powerhouse of the transporter, as it is 

responsible for ATP binding and hydrolysis for the generation of energy. The MSDs use 

the energy generated to facilitate substrate recognition and substrate translocation across 

the plasma membrane [3]. In recent times, the overexpression of the MRP1 transporter has 

been associated with the development of MDR in several carcinomas including ovarian 

cancer [4], childhood neuroblastoma, acute lymphoblastic leukemia[5]. MRP1 is a member 

of the ABCC subfamily of ABC transporters. It is encoded by the gene ABCC1 [6]. MRP1 

localizes at the basolateral membrane and is expressed in the epithelial cells of organs like 

the adrenal gland, testes, kidney, gastrointestinal tract, and at pharmacological sacred sites 

like the blood-brain barrier, blood-cerebrospinal fluid barrier, and the blood-testes barrier 

[7, 8]. Substrates of MRP1 include; heavy metals, leukotrienes, prostaglandins, glutathione 

(GSH), and glucuronide-conjugates of steroids [9, 10]. MRP1 also transports drugs from 

various drug classes including; anthracyclines (doxorubicin), folate-based antimetabolites 

(methotrexate), antivirals (saquinavir), antibiotics (difloxacin), plant alkaloids (etoposide, 

paclitaxel) among others [11]. Due to the critical role MRP1 plays, and its ability to interact 

with a wide range of drug families; its overexpression has been a destructive tool used by 

cancer cells to efflux administered drugs out of the intracellular space in cancer patients 

rendering these drugs less bioavailable to exert the desired effect. This phenomenon has 

created a huge barrier to the effectiveness of chemotherapy and reduced survival rates of 

cancer patients [12]. 

Finding ways of regulating the activities of MRP1 in overexpressed cells is of great 

pharmacological essence. One approach is to curb this canker is to completely shut down 

the efflux transporter, MRP1. Although this strategy may seem laudable; it would be 
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suicidal for the cells as MRP1 is a key regulator of physiological homeostasis in cells. 

MRP1 aids to maintain the GSH/GSSG (Oxide GSH) ratio to ensure redox homeostasis in 

cells [13]. Moreover, the transport activity of MRP1 helps to prevent the accumulation of 

toxicants and the buildup of estrogen-like compounds in the testes which aid to prevent 

testicular feminization and protect developing spermatozoa  [8, 14]. MRP1 also functions 

to protect the heart by facilitating the efflux of toxic products of oxidative stress from the 

mitochondria and cardiomyocytes [15]. From the aforementioned roles played by MRP1 

in maintaining physiological balance in cells, the complete shutdown of the transporter 

would cause significant perturbations in the physiological balance of cells. An alternative 

approach that can be utilized to regulate the activity of the transport in tumor cells without 

disturbing the physiological equilibrium, is to use the biochemical modulation toolbox. 

Biochemical modulation involves the use of therapeutic agents including small molecules 

to achieve selective manipulation of tumor cell metabolism or signal transduction pathways 

to ensure the more selective response of tumor cells to the action of anticancer drugs [16].  

The phosphoinositide 3 kinases/Akt (PI3K/Akt) signal transduction pathway has been 

reported as one of the cellular pathways that regulate the expression levels of MRP1 [17, 

18]. PI3K is a lipid kinase involved in the regulation of biological events such as migration, 

metabolism, survival, and also activates a lot of downstream proteins [19]. Serine 

(Ser)/Threonine (Thr) kinase also known as Akt or protein kinase B regulate the expression 

and activity of numerous proteins including MRP1 [20, 21]. This pathway has been 

reported to be involved in MDR observed in breast cancer, lung cancer. ovarian cancer, 

melanoma, and hepatocellular carcinoma [18-23]. As such, this pathway offers a great 

avenue for the development of novel strategies to target MRP1 in MDR.  Moreover, 
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exploring the impact of activators and downstream effectors of this pathway on MRP1 

activity and expression would aid in identifying potential therapeutic targets for the 

development of more efficacious and specific therapeutics for targeting MRP1 mediated 

MDR and treating cancer patients [18]. Tunica interna endothelial cell (Tie2) tyrosine 

kinase receptor is an endothelial cell-specific receptor which activates the PI3/Akt pathway 

in normal endothelial cells [22]. It has been associated with the extravascular compartment 

of several tumors such as inflammatory breast cancer, leukemia, gastric, and thyroid tumors 

[23]. mTOR (mammalian target of rapamycin) on the other hand is a serine/threonine 

kinase that modulates the diverse nutritional and environmental cues like amino acids, 

growth factors, cellular stress among others in cells [24]. Moreover, mTOR is also reported 

to function downstream the PI3K/Akt signaling pathway and has been involved in the 

etiology of several cancers [24, 25]. In this study, we investigated the effect of a novel 

inhibitor of Tie2 (Tie2 kinase inhibitor) and mTOR inhibitor (Everolimus) on MRP1 

activity and protein expression in MRP1-overexpressing cells using established methods. 

We also determined the ability of these drugs to reverse MRP1-mediated resistance in 

MRP1-overexpressing cells.  
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2.0 Materials and methods 

2.1 Chemicals  

Test compounds were procured from APExBIO Technology LLC (Houston, TX). MK571 

was acquired from APExBIO Technology LLC (Houston, TX), thiazolyl blue tetrazolium 

bromide (MTT) were procured from Sigma-Aldrich (St. Louis, MO).and Calcein 

acetoxymethyl ester (Calcein-AM) was obtained from Corning Life Sciences (Corning, 

NY). 

 

2.2 Cell lines and cell culture 

HEK293/pcDNA3.1 and HEK293/MRP1 cells were a kind gift from Dr. Suresh V. 

Ambudkar (NIH, Bethesda, MD) respectively. Dulbecco’s modified Eagle medium 

(DMEM) (GE Healthcare, Marlborough, MA, USA) supplemented with 10% fetal bovine 

serum (FBS) was used to grow the HEK293 cell lines. Cell lines were cultured in a 

humidified incubator maintained at 5% CO2 and 37 °C. This incubation condition was 

retained in all subsequent cell culture procedures. 

 

2.3 Flow cytometry-based calcein accumulation assay 

The effect of Tie2 kinase inhibitor and Everolimus on MRP1 mediated efflux of calcein-

AM was ascertained using flow cytometry. HEK293 MRP1-overexpressing cells were 

prepared in serum-free medium at a cell density of  7 × 105 cells/ml and treated with 10 

µM of test compounds for 10 minutes at 37 °C. Cells were then treated with calcein-AM 
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(0.25 µM) for 30 minutes. Final DMSO concentration was maintained at 0.1% (v/v). MRP1 

mediated efflux activity was stopped using ice-cold PBS buffer (3 ml). Cells were 

collected, washed twice with PBS, and resuspended in a cold PBS buffer containing 1% 

paraformaldehyde. Intracellular calcein-AM fluorescence was detected using BD Accuri 

C6 flow cytometer ( BD Biosciences, San Jose, CA) with excitation and emission at 480 

nm and 533/30 nm respectively. Fluorescent intensity was determined as a mean of 10000 

events. Treatments were done in duplicates and experiments were performed in three 

independent studies. 

 

2.4  Determination of concentration-dependent activity on MRP1 protein expression 

using western blot assay.  

 HEK293/MRP1 and HEK239/pcDNA 3.1 (parental control) cells were seeded at 7x105 

cells per well in 6-well plates with DMEM containing 10% FBS and incubated for 24 

hours. Cells were treated with varying concentrations of drugs; 5 µM, 10 uM, 20 µM,  and 

0.1% DMSO for controls, and incubated for  48 hours at 37 °C. At the end of the incubation 

period, the spent media was removed and cells were rinsed with 1000 μl of PBS. The cells 

were lysed with lysis buffer containing radioimmunoprecipitation assay buffer (RIPA 

Buffer, Thermo Fisher Scientific, Waltham, MA) supplemented with 1× halt protease 

inhibitor cocktail (to inhibit the activity of cell proteases). Protein concentration was 

determined with the bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific, 

Waltham, MA) using bovine serum albumin as standard. Proteins (20 μg) were loaded in 

each well and sodium dodecyl sulfate (SDS) page electrophoresis was conducted on 8.0% 
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mini SDS gels, after which proteins were transferred to  Immobilon PVDF membranes 

(EMD Millipore, Burlington, MA) for 4 hours. The membrane was blocked with 5% 

bovine serum albumin (BSA) in Tris Buffered Saline -Tween 20 (TBS-T,0.1%),  and 

washed with TBS-T (0.1%; 3× per 10mins). Followed by incubation (4 °C, overnight) with 

monoclonal MRP1 antibody [EPR21062](ab233383) and anti-GAPDH antibody (Thermo 

Fisher Scientific, AM4300) dissolved in TBS-T (0.1%) with BSA (1%)  at 1:250 and 

1:1000 dilutions respectively. The membrane was washed with TBS-T (0.1%, 3× per 

10mins) and incubated with secondary antibody using horseradish peroxidase-conjugated 

goat anti-mouse IgG(H+L) (Thermo Fisher Scientific) for alpha-tubulin detection, and 

horseradish peroxidase-conjugated goat-anti-rabbit IgG(H+L) (Thermo Fisher, Scientific) 

for MRP1 detection. Target proteins were detected using Western blotting luminol reagent 

(Santa Cruz Biotechnology, sc-2048). Signals were quantified using Image Studio Lite 

version 5.2 and normalized by using the intensity of the corresponding protein band relative 

to the GAPDH band. 

 

2.5 In vitro cytotoxicity assay 

The cytotoxicity effect of the test compounds was investigated by using the MTT 

colorimetric assay. HEK293/MRP1 and HEK293/pcDNA3.1 cells were seeded in 96 well 

plates at a cell density of 5 ×103 per 100 ul of culture medium and incubated overnight. 

Cells were treated with varying concentrations of the test compound diluted in medium and 

were incubated for 72 hours. At the end of the incubation period, 100 ul of spent media 

was carefully decanted. MTT (0.5 mg/ml) treatment was conducted for 4 hours. Dissolution 

of formazan crystals was done by the addition of 100 ul of 15% SDS containing 10 mM 
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HCl, absorbance was read at 570 nm using a Hidex Sense Beta Plus plate reader (Turku, 

Finland). Treatments were performed in triplicates and repeated in two independent 

experiments.  

 

2.6 MDR reversal activity of test compounds 

Reversal of resistance effect of  Tie2 kinase inhibitor and Everolimus was determined using 

MTT assay. Cells were seeded at a cell density of 5×103 per 100 ul of culture medium in 

96 well plates and incubated for 24 hours at 37°C to allow cells to attach. Drug treatment 

was then conducted by treating cells with 150 ul of test compounds at selected non-

cytotoxic concentrations. The addition of varying concentrations of vincristine (50 µl) was 

conducted after an hour. MTT treatment (0.5 mg/ml) was conducted for 4 hours. The 

formazan crystals were dissolved by the addition of 100 ul of 15% SDS containing 10 mM 

HCl and absorbance at 570 nm was recorded using a Hidex Sense Beta Plus plate reader 

(Turku, Finland). Treatments were done in triplicates, and experiments were performed in 

two independent studies. 

 

2.7 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism TM software (GraphPad 

Software version 8.4.3, San Diego, CA, USA). The differences between mean values were 

analyzed using linear mixed model analysis. Sidak correction was applied for multiple 

comparisons, statistical testing was performed at a 5% level of significance. 
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3.0 Results 

3.1 Effect of test compounds on MRP1 efflux activity 

Calcein-AM is a common substrate of MRP1 and is widely used to study MRP1 mediated 

efflux. When the acetoxymethyl ester (AM) moiety of calcein is cleaved by esterases in 

cells, calcein becomes fluorescent. The impact of MRP1 efflux activity was investigated 

using flow cytometry. The structures of Tie2 kinase inhibitor and Everolimus are shown in 

Figure 3.1. As shown in Figure 3.2, HEK293 MRP1-overexpressing cells in the absence of 

MK571 showed very low retention of calcein whilst in the presence of MK571 (25µM), 

the accumulation of calcein strongly increased by 3.85 fold . HEK293/MRP1 cells in the 

presence of Tie2 kinase inhibitor and Everolimus also increased the accumulation of 

calcein in the cells approximately by 3.96-fold and 3.83-fold respectively. The fold 

increase in calcein accumulation in the presence of the test compounds was very 

comparable to the positive inhibitor, MK571. This finding suggests that Tie2 kinase 

inhibitor and Everolimus may decrease MRP1 efflux activity leading to the increase in 

calcein observed. 

 

 

 

 

 

 

 

 

 

Tie2 Kinase Inhibitor Everolimus 

Figure 3. 1 Chemical structures of test compounds 
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Figure 3.2 Effect of test compounds on MRP1 efflux activity.  

HEK293/MRP1 cells were treated with 10 µM of the test compounds and 25 µM of MK571 

(positive control) for 10 minutes at 37 °C before treatment with 0.25 µM calcein-AM for 

an hour, Flow cytometric measurements of intracellular calcein-AM was conducted at 488 

nm and 533/30 nm for excitation and emission wavelengths, respectively. Experiments 

were done as duplicates in three independent experiments and presented as mean ± S.E.M. 

Data was analyzed using a linear mixed model and Sidak post hoc test. *P < 0.05; **P < 

0.01; ***P < 0.001 ; ****P < 0.0001 compared to control. 
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3.2 Effect of test compounds on MRP1 protein expression levels 

To determine the influence of Tie2 kinase inhibitor and Everolimus on MRP1 protein 

expression, we conducted a western blot assay using varying concentrations of the test 

compounds (5 µM, 10 µM, 20 µM) (Figure 3.3A). The protein expression levels of MRP1 

was not significantly impacted when HEK293 MRP1-overexpressing MRP1were treated 

with 5 µM, 10 µM, and 20 µM of test compounds and compared to the protein expression 

levels of the control (Figure 3.3B). 

 

  

[A] 
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Figure 3.3 Effect of test compounds on MRP1 protein expression. 

 [A] Shown are representative western blots of whole-cell lysates (20ug of protein/lane) 

prepared from HEK293/pcDNA3.1 and HEK293/MRP1 cells treated with varying 

concentrations of test compounds (5 µM, 10 µM, 20 µM), and 0.2% DMSO (controls) for 

48 hours. MRP1 proteins were detected with monoclonal anti MRP1 antibody 

[EPR21062](ab233383, Abcam) and anti-GAPDH antibody (Sigma-Aldrich) at a dilution 

of 1:250 and 1:1000 respectively. Secondary antibodies; mAb - anti-rabbit and mAb-anti-

goat were used at a dilution of 1:1000. Whole cell lysates were run on 8% SDS gel for one 

hour before being transferred to the pretreated PVDF membrane. Three independent 

experiments were conducted, and data presented as mean ± S.E.M. [B] Protein band density 

was analyzed using the Image Studio Lite (LI-COR Biotechnology) software and corrected 

for uneven sample loading and transfer using GAPDH as the loading control. Data was 

analyzed using a linear mixed model and Sidak post hoc test.  

[B] 
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3.3 Impact of test compounds on MRP1-mediated resistance 

Although recent advancement in chemotherapy has resulted in improved survival rates of 

cancer patients, multidrug resistance (MDR) in tumor cells possess a great limitation on its 

success. Thus, we investigated the ability of Tie2 kinase inhibitor and Everolimus to 

reverse MRP1 mediated resistance towards vincristine. Vincristine is a commonly used 

anticancer drug, that is used in the treatment of several carcinomas. Unfortunately, MRP1 

is reported to mediate the resistance of tumor cells to vincristine. As presented in Figure 

3.4, HEK293 MRP1-overexpressing in the absence of MRP1 (solid red) demonstrated very 

high resistance to vincristine cytotoxic effect giving a fold resistance of 19.96 folds (Table 

3.1). The parental cell line HEK293/pcDNA3.1(dotted blue) which does not overexpress 

MRP1 showed low resistance to vincristine (Figure 3.4). In the presence of MK571 (25 

µM), HEK293/MRP1 cells became more sensitive to the cytotoxic effect of MK571 

resulting in reducing the fold resistance observed in these cells to 3.75 fold resistance 

(Table 3.1). Our test compounds also reversed MRP1 mediated resistance towards 

vincristine in HEK293/MRP1 cells. Everolimus (dotted purple) and Tie2 kinase inhibitor 

(dotted orange) decreased vincristine resistance to 7.01-fold resistance  and 8.91-fold 

resistance respectively (Figure 3.4, Table 3.1). 
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Figure 3.4 Effect of Tie2 kinase inhibitor and Everolimus on drug sensitivity of 

HEK293 MRP1-overexpressing cells towards vincristine.  

Cells were treated with increasing concentrations of vincristine in the absence or presence 

of a non-cytotoxic concentration of test compounds. MK571 (25 µM) served as the positive 

control. MTT assay was conducted to determine cell viability after 72 hours. Data is 

representative of three independent experiments and expressed as mean ± SEM. 
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Table 3.1 Effect of selected Tie2 Kinase Inhibitor and Everolimus on the IC50 values 

of vincristine in HEK293/MRP1 cells 

Cell line/Treatment IC50
a (nM) 

  Vincristine Fold resistanceb 

HEK293/pcDNA3.1 3.11 ± 0.23 1.00 

HEK293/MRP1  62.02 ± 4.33 19.96 

HEK293/MRP1 + MK571 [25 µM] 11.65 ± 1.79 3.75 

HEK293/MRP1  + Everolimus [5 µM] 21.78 ± 3.34 7.01 

HEK293/MRP1  + Tie2 Kinase Inhibitor [1] µM 27.67 ± 1.09 8.91 

a  Mean ± SEM  of at least three independent experiments performed in triplicates.  

b Fold resistance determined by dividing the IC50 value for each treatment by the IC50 

value of HEK293/pcDNA3.1 with vincristine alone. 
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4.0 Discussion 

Chemotherapy is the standard treatment for systemic cancer in both metastatic and locally 

advanced carcinomas. Although chemotherapy has been beneficial for treating cancer, 

patients perpetually experience recurrence after therapy and exhibit a multidrug-resistant 

phenotype [26]. The development of the multidrug-resistant phenotype in tumor cells is 

resulted in tumor cells becoming unresponsive and insensitive to a variety of 

chemotherapeutic agents [27]. This phenomenon is termed Multidrug resistance (MDR). 

MDR has become one of the major challenges to the success of chemotherapy. The 

overexpression of  ABC transporters like MRP1 has been associated with the development 

of MDR in tumor cells. MRP1 like other ABC efflux transporters utilizes energy from ATP 

hydrolysis to facilitate the efflux of its substrate across biological membranes. 

Overexpression of MRP1 has been associated with increased drug efflux resulting in 

reduced intracellular effective drug concentration of a wide range of anticancer agents 

(doxorubicin, vincristine, methotrexate), thereby contributing to MDR and elevated 

chemotherapeutic failure [17, 28]. Recent studies have aimed at identifying novel strategies 

to modulate the structure and function of MRP1 in order to regulate its activity in the MDR 

of tumor cells. Some modulators like MK571, ONO-1078, probenecid, indomethacin have 

been identified in recent times [29], yet some dreadful side effects and elevated patient 

toxicities due to these modulators have limited the possibility of translating these promising 

therapeutics from the bench side to the clinic. Thus there is the need for more potent and 

safer MRP1 modulators.  

Regulating effectors of signaling pathways that have been reported to be associated with 

MDR can aid discover new and ideal strategies for developing targeted therapeutics for 
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MRP1-mediated MDR. In this study, we successfully explored the effect of novel Tie2 

kinase inhibitor and mTOR inhibitor, Everolimus, on MRP1 activity and expression in 

HEK293 MRP1-overexpressing cells. To the best of our knowledge there no evidence 

indicating the interaction between Tie2 kinase inhibitor and MRP1. Thus we report for the 

first time that Tie2 kinase inhibitor downregulates MRP1 mediated calcein efflux in 

HEK293 MRP1- overexpressing cells. Tie2 kinase inhibitor is an optimized compound of 

SB203580 which is highly selective for the Tie2 tyrosine kinase receptor [30]. Tie2 kinase 

inhibitor is reported to show inhibitory activity against Tie2 and also inhibit angiogenesis 

in MOPC-315 plasmacytoma xenograft model [30]. Tie2 tyrosine kinase receptor is also 

known as angiopoietin-1 receptor or Tek. The Ang-Tie2 system is reported to play roles in 

endothelial cell survival and proliferation, vascular plasticity, and angiogenesis [31]. It is 

also reported to activate the Akt in the P13/Akt signaling pathway which is known to 

modulate the activity of MRP1 expression and activity. Tie2 has been implicated in several 

tumors [23]. For instance, studies by Martin et al. showed that Tie2 signaling is associated 

with MDR in human glioma cells by upregulating ABC transporters [23]. Thus the 

downregulation of MRP1 efflux activity by Tie2 kinase inhibitor observed in this present 

study may be mediated via disruption of the Tie2 signaling pathway and subsequent 

deactivation of the PI3/Akt pathway signaling. However, it will be of great interest to 

ascertain the mechanism of action and interaction of the Tie2 kinase inhibitor and the 

MRP1 inhibitor. In addition to downregulating the MRP1 efflux activity, Tie2 kinase 

inhibitor also strongly reversed MRP1- mediated resistance in HEK293 MRP1-

overexpressing cells. Treatment of cells with Tie2 kinase inhibitor reversed resistance 

against vincristine by decrease the average IC50 from 62.02 µM (vincristine only treatment) 
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to 27.67 µM with the corresponding reduction in fold resistance from 19.96-fold resistance 

to 8.91-fold resistance. As such, Tie2 kinase inhibitor may be a potent candidate for 

modulating MRP1 mediated chemoresistance in tumor cells.  Treatment of HEK293 

MRP1-overexpressing cells with 5 µM, 10 µM, 20 µM of Tie2 kinase inhibitor did not 

yield any significant alteration on MRP1 expression in this cell line. Studies by Martin and 

his colleagues also reported that Tie2 upregulation did not have any significant impact on 

mRNA levels of MRP1/ABCC1 in human glioma cells [26]. Thus considering our results 

from this study and the observation reported from the previous study [26], modulation of 

Tie2 signaling may affect MRP1 activity but not modulate its expression levels. However, 

it would be enlightening to investigate the effect of Tie2 kinase inhibitor on MRP1 

expression levels in other cell lines. Findings from this study suggest that the Tie2 kinase 

receptor may be a potential molecular target for the development of efficacious and specific 

therapeutics for targeting and treating MRP1 mediated MDR. 

The use of Rapamycin and rapalogs (inhibitors of mTOR) have proven promising clinical 

efficacy in chemotherapy. In this study, we demonstrated that rapamycin analog, 

Everolimus down-regulates the MRP1 mediated calcein efflux in HEK293 MRP1-

overexpressing cells.  Everolimus elicits its function by binding to cyclophilin, FKBP-12 

which in turn binds to mTOR and forms the mTORC1 complex when it is associated with 

raptor and MLST8 and inhibits downstream signaling [32]. mTORC1 complex is 

implicated in the regulation and ordination of cell cycle progression, growth, and 

metabolism [33-37]. mTORC1 is a downstream effector of the PI3/Akt pathway which has 

been reported to modulate ABC transporters including MRP1. Thus Everolimus may elicit 

its effect on MRP1 by modulating this pathway. In this present study, we demonstrate that 
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Everolimus can also reverse MRP1 mediated calcein efflux in HEK293 MRP1-

overexpressing cells. Everolimus in this present study successfully decreased the fold 

resistance of HEK293 MRP1-overexpressing cells towards vincristine from 19.96-fold 

resistance to 8.91-fold resistance. Although Everolimus has been previously reported to 

downregulate MRP1 expression levels in cisplatin-resistant gastric cancer cell line [38], 

treatment of HEK293 MRP1-overexpressing cells with 5 µM, 10 µM, 20 µM of 

Everolimus did not significantly alter protein expression levels in this study. It is not 

uncommon to observe cell line-specific effects of a drug, moreover, the HEK293 MRP1-

overexpressing cells were generated by transfection as such these cells can possess very 

different membrane dynamics and molecular profiles. 

In summary, we successfully demonstrated the effect of novel Tie2 kinase inhibitor and 

mTOR inhibitor, Everolimus, on MRP1 activity and expression on HEK293 MRP1-

overexpressing cells. We showed that these drugs downregulate MRP1 activity and can 

reverse MRP1-mediated resistance. Thus these therapeutic agents are good candidates for 

developing combinatorial therapeutic strategies for the modulation of MRP1 mediated 

tumor chemoresistance.  
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Chapter 4 

Identification of FDA approved drugs as modulators of Multidrug Resistance Protein 

2 (MRP2/ABCC2) expression levels in MRP2-overexpressing cells 

Abstract 

Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that 

plays a pivotal role in the efflux of a wide variety of physiological substrates across the 

plasma membrane. Several studies have shown that MRP2 can significantly affect the 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many 

therapeutic drugs as well as chemicals found in the environment and diet. This transporter 

can also efflux newly developed anticancer agents that target specific signaling pathways 

and are major clinical markers associated with multidrug resistance (MDR) of several types 

of cancers. MDR remains a major limitation to the advancement of the combinatorial 

chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 also 

reduces the efficacy of various drug classes such as antivirals, antimalarials, and 

antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to 

profile drug-transporter interactions for all new and promising drugs. Thus, this current 

research seeks to identify modulators of MRP2 expression levels using cell-based assays. 

A unique recently-approved FDA library (372 drugs) was screened using a high throughput 

In-Cell ELISA assay to determine the effect of these therapeutic agents on protein 

expression levels of MRP2. A total of 49 FDA drugs altered MRP2 expression levels by 

more than 50% representing 13.17% of the compounds screened. Among the identified 

hits, fifty-four (54) drugs increased expression levels whereas 12 drugs lowered expression 



112 

 

levels of MRP2 after drug treatment. Our findings from this initial screening showed that 

modulators of MRP2 peregrinates multiple drug families, and signifies the importance of 

profiling drug interactions with this transporter. Data from this project provides essential 

information to improve combinatorial drug therapy and precision medicine as well as 

reduce drug toxicity of various cancer chemotherapies. 

 

Keywords: ABC transporters; multidrug resistance; MRP2; ABCC2; MRP2 modulators; 

FDA approved drug; In-Cell ELISA;  drug profiling;  drug-transporter interactions 
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1.0 Introduction 

MRP2 (ABCC2) is a member of the ATP-binding cassette superfamily of transporters, 

MRP1 and MRP2 are homologous members of this superfamily [1]. In humans, it is 

encoded by the gene ABCC2 [2]. Structurally, MRP2 is a 190-kDa membrane protein 

consisting of 1545 amino acids. The predicted membrane topology consists of 17 

transmembrane spanning domains (MSD0, MSD1, MSD2) which are linked together by 

conserved linker regions, and two highly conserved nucleotide-binding domains (NBD1 

and NBD2) that serve as substrate – binding sites [3] as shown in Figure 4.1. 

 

 

Figure 4.1: The full-length model of the MRP2 protein 

 The model was generated using the open-source tool 

Protter(http://wlab.ethz.ch/protter/start/) 
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Whilst MRP1 localizes at the basolateral membrane of endothelial cells, MRP2 localizes 

at the apical membrane of polarized cells of hepatocytes, renal proximal tubular cells, 

enterocytes, and syncytiotrophoblasts of the placenta [4]. It is known to play critical roles 

in the export of conjugated bile salts in the liver as well as transport of physiological 

important substrates such as glutathione-S-conjugates, 17-beta-glucuronsyl estradiol, 

leukotriene C4 [5]. Overexpression of MRP2 is associated with multidrug resistance of 

tumor cells such as hepatocellular, ovarian, colorectal, lung, breast, and gastric carcinomas 

[6], where it pumps drug conjugates and drug complexes across the plasma membrane into 

the extracellular space [5]. Thus affecting the bioavailability and efficacy of anticancer 

drugs like cisplatin and methotrexate. Aside cancer drugs, MRP2 also affects the efficacy 

of a broad spectrum of drug classes including HIV drugs (lopinavir), antibiotics(ampicillin, 

azithromycin), and antihypertensives(Olmesartan, Temocaprilate) [7]. With MDR being a 

major impediment to the chemotherapy regime and the overexpression of the MRP2 

transporter being a major factor in this phenomenon, it is of great clinical interest to find 

ways of addressing this canker. Two main approaches have been proposed by researchers. 

One of which, is to completely block the efflux or pump activity of the transporter in these 

cells [8]. However, this approach would be destructive to the cells since it may also impede 

some important physiological activities of the transporter, thereby jeopardizing the overall 

wellbeing and physiological homeostasis of the cell or tissue. Another possible approach 

that was proposed, was to modulate the activity of this transporter using biochemical 

modulation. Using biochemical modulation, exogenously supplied metabolites can be used 

to selectively manipulate the activity of MRP2 in tumor cells to ensure the more selective 

response of cancer cells to the action of administered anticancer agents [9]. This would go 
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a long way to improve the bioavailability and efficacy of anticancer drugs in tumor cells. 

Hence the identification of possible modulators of the MRP2 transporter is of great clinical 

importance [8]. Moreover, the broad impact of the efflux activity of this transporter on the 

efficacy of a broad class of drugs makes it essential to investigate the possible interactions 

between various therapeutic drugs (both approved and those in clinical trials) and this 

transporter. Thus in this study, a unique set of drugs from the FDA approved drug library 

was screened using  In-Cell ELISA to identify modulators of MRP2. 
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2.0 Materials and methods 

2.1 Chemicals  

FDA( Food and Drug Administration) approved drug library was procured from Selleck 

chemicals (Houston, TX). Super signal West Dura® Extended Duration 

chemiluminescence substrate (21EAPI34076) was obtained from Thermo Fisher Scientific 

(Waltham, MA). 

2.2 Cell lines and cell culture 

MDCKII, MDCKII/MRP2 cells were kindly provided by Dr. Alfred Schinkel (Netherlands 

Cancer Institute, Amsterdam, The Netherlands). MDCKII cell lines were grown in 

Dulbecco’s modified Eagle medium (DMEM) (GE Healthcare, Marlborough, MA, USA) 

enriched with 10% fetal bovine serum (FBS). Cell lines were cultured in a humidified 

incubator maintained at 5% CO2 and 37 ◦C. This incubation condition was retained in all 

subsequent cell culture procedures. 

 

2.3 Screening of FDA approved drug library using  In-Cell ELISA assay in 

MDCKII/MRP2 cells 

In-Cell ELISA assay development and optimization were performed with MDCKII and 

MDCKII/MPR2 cells and used to screen the FDA approved drug library for modulators of 

MRP2 protein expression. MDCKII/MRP2 cells were seeded at 7x104 cells per well in 96-

well plates with Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal 

bovine serum and incubated for 24 hours. Cells were then treated with drugs (10 uM),  and 



117 

 

0.1% DMSO (control and Parental) and incubated for 48 hours at 37°C. At the end of the 

incubation period, treatment was removed and cells were rinsed twice with 150 μl of  PBS. 

Cells were fixed with 3.7% paraformaldehyde and permeabilized with Triton-X 100. The 

cells were blocked using fish gel (MB-066-0100, Rockland) and incubated overnight at  4 

°C with monoclonal anti-MRP2 antibody (MABN1545, EMD Millipore) or anti-α tubulin 

antibody (T5168, Sigma-Aldrich) in a 1:1000 dilution. Secondary antibody incubation was 

performed using horseradish peroxidase-conjugated goat anti-mouse IgG (H + L) (Thermo 

Fisher Scientific, Waltham, MA) for an hour at room temperature. Target proteins were 

detected using Super signal West Dura® Extended Duration Substrate chemiluminescence 

substrate (21EAPI34076, Thermo Fisher Scientific) and read using Hidex Sense Beta Plus 

plate reader (Turku, Finland).  Treatments were performed in triplicates and expressed as 

means. Drugs that showed modulation of MRP2 protein levels above 50% were selected 

as hit compounds.  
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3.0 Results 

3.1 Screening of FDA approved drug library for modulators of MRP2  

The FDA approved drug library containing 372 drugs was successfully screened using In-

Cell ELISA assay using MRP2-overexpressing MDCKII cells. Treatments were performed 

in triplicates, and experiments were done using the 96 – well format. The relative MRP2-

modulation by the FDA approved drugs is presented in Figure 4.2. Data obtained was 

statistically analyzed and expressed as means. Drugs showing more than 50% modulation 

on MRP2 protein expression were selected as “Hit compounds”. The results revealed 49 

hit compounds that changed the MRP2 protein expression by more than 50%, representing 

13.17% of total compounds screened. Among the identified hits for MRP2, 39 drugs 

increased expression levels whereas 10 drugs lowered expression levels of MRP2 after 

drug treatment as shown in Figure 4.3. Details on the hit test compounds identified from 

screening are listed in Table 4.1 – 4.4.  
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Figure 4.2: In-Cell ELISA assay screening for modulators of  MRP2 protein 

expression from a unique FDA approved drug library.  
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Figure 4.3: Screening of 372 FDA  approved drug library using In-Cell ELISA assay  

Forty-nine (13.17%) hit compounds altered the MRP2 expression levels by more than 50%. 

Thirty-nine (10.48%) drugs increased expression levels whereas 10 (2.69%) drugs lowered 

expression levels of MRP2 after drug treatment. 
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Table 4.1 List of hit compounds identified from FDA screening on MRP2 protein 

expression  

Drug Target % Modulation on 

MRP1 protein levels a 

Pralatrexate (Folotyn)  DHFR -57.39 ± 3.85 

Cetirizine Dihydrochloride Histamine Receptor 106.29 ± 22.62 

Mercaptopurine DNA/RNA Synthesis 112.77 ± 15.36 

Streptozotocin (Zanosar) Nicotinamide  

adenine dinucleotide 

107.57 ± 13.87 

Dexamethasone IL Receptor 257.86 ± 10.58 

Megestrol Acetate Androgen Receptor 124.35 ± 26.22 

Trilostane Dehydrogenase 66.04 ± 4.96 

Ranolazine dihydrochloride Calcium Channel 93.67 ± 39.42 

Repaglinide Potassium Channel 94.45 ± 12.23 

Sildenafil Citrate PDE 70.30 ± 17.82 

Gestodene Estrogen/progestogen Receptor 54.07 ± 4.05 

Isotretinoin Hydroxylase 67.87 ± 5.05 

Nafamostat Mesylate Proteasome 84.25 ± 14.38 

Ondansetron 

hydrochloride (Zofran) 

5-HT Receptor 68.23 ± 7.83 

Oxcarbazepine Sodium Channel 75.54 ± 22.66 

a Mean ± SD  
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Table 4.2 List of hit compounds identified from FDA screening on MRP2 protein 

expression  

Drug Target % Modulation on 

MRP1 protein levels a 

Afatinib (BIBW2992) EGFR, HER2 -62.24 ± 20.67 

Gefitinib (Iressa) EGFR 85.68 ± 14.81 

Crizotinib (PF-02341066) c-Met 56.41 ± 9.37 

Sunitinib Malate VEGFR, PDGFR, c-Kit, Flt 71.59 ± 11.40 

Cladribine DNA/RNA Synthesis -74.96 ± 2.30 

Evista (Raloxifene Hydrochloride) Estrogen/progestogen Receptor 69.87 ± 7.06 

2-Methoxyestradiol HIF 148.42 ± 46.91 

Asenapine Adrenergic receptor,  

5-HT receptor 

-73.49 ± 5.67 

Adrucil (Fluorouracil) DNA/RNA Synthesis -62.54 ± 1.78 

Vincristine Microtubule Associated 216.85 ± 46.37 

Oxaliplatin (Eloxatin) DNA/RNA Synthesis 100.88 ± 10.98 

a Mean ± SD   
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Table 4.3 List of hit compounds identified from FDA screening on MRP2 protein 

expression  

Drug Target % Modulation on MRP1 

 protein levels a 

Glyburide (Diabeta)  Potassium channel -77.59 ± 3.61 

Adefovir Dipivoxil (Preveon, 

Hepsera) 

reverse transcriptase -87.87 ± 5.68 

Sulfadiazine Anti-infection 69.784 ± 19.01 

Suprofen (Profenal) COX-1/COX-2 108.14 ± 22.69 

Cefditoren pivoxil 5-alpha Reductase 68.25 ± 9.12 

Rifabutin (Mycobutin) Antineoplastic and Immunosuppressive 

Antibiotics- Anti-infection 

96.66 ± 30.90 

Esomeprazole Magnesium 

(Nexium) 

proton pump 68.11 ± 20.06 

Ethionamide Anti-infection 52.59 ± 27.15 

Vidarabine (Vira-A) 5-alpha Reductase 88.61 ± 18.51 

Deferasirox (Exjade) Ferroptosis P450 (e.g. CYP17) 78.46 ± 19.75 

Methylprednisolone Immunology and Inflammation related, 

Glucocorticoid Receptor, Interleukins, 

ACE, Apoptosis related, Autophagy 

93.67 ± 25.54 

Metolazone (Zaroxolyn) Treatment congestive heart failure and 

high blood pressure 

155.75 ± 34.37 

Darunavir 

Ethanolate (Prezista) 

HIV Protease 56.94 ± 18.04 

Prednisone (Adasone) Glucocorticoid receptor 76.69 ± 23.89 

a Mean ± SD   
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Table 4.4 List of hit compounds identified from FDA screening on MRP2 protein 

expression  

Drug Target % Modulation on MRP1 

 protein levels a 

Rasagiline Mesylate MAO -58.99 ±4.72 

Dronedarone HCl  Anti-infection -56.17 ± 5.53 

Conivaptan HCl (Vaprisol) vasopressin receptor -57.59 ± 0.83 

Eltrombopag (SB497115-GR) c-mpl (TpoR) receptor 79.40 ± 18.03 

Paeoniflorin COX, HIF 53.80 ± 20.35 

Benserazide Dopamine Receptor 54.48 ± 22.74 

Lovastatin HMG-CoA Reductase 77.64 ± 17.81 

Lafutidine Histamine Receptor 55.36 ± 19.22 

Erythromycin Anti-infection, 

Antibiotics 

104 ± 18.32 

a Mean ± SD   
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4.0 Discussion 

Test compounds that modulated the protein expression levels of MRP2  in MDCKII/MRP2 

cells above 50% (Hit compounds) in this study cuts across a broad spectrum of drug classes 

and exhibit great diversity in their structure, molecular targets, and mode of action. This 

included anticancer drugs, antibiotics, antivirals, anti-inflammatory drugs among others. 

This finding reaffirms the promiscuous nature of the MRP2 transporter, and how important 

it is to investigate the interaction between both old and newly developed drugs with MRP2. 

Although several studies have aimed at investigating the impact of various therapeutic 

agents on MRP2 efflux activity, it is needful that researchers also pay critical attention to 

how these drugs may affect the protein expression levels of this transporter. From our 

screening, about 10.48% of the hit compounds increased the expression of MRP2 protein 

levels, this included drugs like vincristine (an anticancer drug), oxaliplatin (antineoplastic 

medication), and irinotecan (an anticancer drug). MRP2 has been reported to be one of the 

major ABC transporters that affect the bioavailability and therapeutic potency of anticancer 

drugs in both polarized and unpolarized cells [10]. The anticancer drugs; Vincristine, 

Oxaliplatin, and Irinotecan have earlier been reported in other studies as substrates of 

MRP2 [7, 11, 12]. This indicates they are actively transported by MRP2/ABCC2 

transporter thus the increase in MRP2 protein expression as observed in this study provides 

the possible explanation that more MRP2 is expressed in these cells to catalyze and ensure 

successful transport or efflux of these drugs across the plasma membrane. 

 Glucocorticoids like dexamethasone and prednisone also upregulated MRP2 protein 

expression in our present screening. The ability of dexamethasone to increase the 

expression levels of MRP2 protein as observed from the screening also reaffirms the 
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observation reported by Narang and his colleagues [13] who reported that dexamethasone 

increased expression and activity of multidrug resistance transporters at the rat blood-brain 

barrier. Prednisone, on the other hand, has also been reported to induce the activity of the 

MRP2 promoter [14], thus providing a possible reason for the increase in MRP2 protein 

levels observed in this study. Methylprednisolone, another glucocorticoid with anti-

inflammatory and immunomodulating properties also upregulated MRP2 protein levels in 

this screening. However to the best of our knowledge, the interaction between MRP2 and 

methylprednisolone is yet to be reported, and it would be enlightening for further studies 

to be carried out to investigate how these drugs may affect MRP2 activity. Erythromycin 

(an antibiotic) and Lovastatin (a hypolipidemic agent and an HMG-CoA reductase 

inhibitor) which has been reported by other studies to be substrates of MRP2 [15, 16] also 

elevated the protein levels of MRP2 in this present study. Hence, this finding provides 

useful information on the modulatory effect of these drugs that can be further explored.  

 Furthermore, findings from this study also suggest that anticancer drugs like Pralatrexate, 

Afatinib, and Cladribine (an immunosuppressant)  may decrease MRP2 protein expression 

levels in MDCKII MRP2-overexpressing cells. Pralatrexate has been reported in earlier 

studies to act as both a substrate and an inhibitor of MRP2 [17], interestingly, results from 

our present study demonstrate that pralatrexate may downregulate the expression levels of 

MRP2. Further investigation can be conducted to provide more insight into the effect of 

pralatrexate on gene expression and other effectors that regulate MRP2 protein expression. 

Moreover, the effect of pralatrexate on MRP2 protein expression levels in other MRP2-

overexpressing cell lines can be explored to confirm this initial finding. Afatinib is a known 

moderate inhibitor of P-gp [18, 19], and a substrate /inhibitor of BCRP [19]. Results for 
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this current study shows that Afatinib may reduce MRP2 protein levels. A thorough search 

of current literature revealed that little is known about the impact of Afatinib on MRP2 

activity and protein expression. Thus it would be enlightening to conduct further 

investigation to confirm and ascertain how Afatinib affects the efflux activity of this 

transporter in other MRP2 overexpressing cells. Cladribine is an FDA approved drug used 

in the treatment of multiple sclerosis and hairy cell leukemia. It is a known substrate of 

BCRP [20, 21] but proved otherwise on MRP2 when its impact on MRP2 membrane 

vesicles was explored [22]. Nonetheless, cladribine downregulated the protein expression 

levels of MRP2 in MDCKII MRP2 overexpressing cells in our present study. Thus it would 

be illuminating to investigate the impact of cladribine on other MRP2-overexpressing cells 

since the specific interactions between Cladribine and MRP2 remain uncertain. Further 

probing using cell lines overexpressing this transporter would be a step in the right 

direction. Adrucil (Fluorouracil), a DNA and RNA synthesis inhibitor that irreversibly 

inhibits thymidylate synthase, and Asenapine, an antipsychotic medication belonging to 

the dibenzooexpinopyrrole class [23] downregulated the expression levels of MRP2 in our 

present study. To the best of our knowledge, the impact of Adrucil and Asenapine on MRP2 

activity and expression has not been reported in literature. 

Although HIV Protease Inhibitors (HPIs) have been reported to be substrates of MRP1 and 

MRP2, the majority of tested HPIs are transported by MRP2. As such the overexpression 

of MRP2 has great pharmacological implications on administered HPIs [24, 25]. Darunavir 

Ethanolate is the ethanolate form of darunavir and an antiretroviral drug that inhibits the 

human immunodeficiency virus type-1 (HIV-1) protease. In this present study, Darunavir 

Ethanolate increased MRP2 protein expression in MDCKII overexpressing MRP2 cells. 
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Although to the best of our knowledge, Darunavir Ethanolate has not been reported as a 

substrate of MRP2, its ability to increase MRP2 protein levels suggests that this 

antiretroviral drug may also be a victim of MRP2 efflux activity. Interestingly, Darunavir 

the parent compound of Darunavir Ethanolate has been reported in other studies to induce 

P-gp mRNA activity and expression in vitro as well as induce MRP1 protein expression in 

CD4 (+) T cells from healthy human volunteers [26, 27]. On the Contrary, Adefovir 

dipivoxil, a diester prodrug of adefovir and an antiviral medication used in the treatment 

of chronic Hepatitis B infection in adults, also lessened the protein levels of MRP2 in this 

screening. This is not surprising since adefovir is reported to be a known inhibitor of MRP2 

[28]. However, no information has been reported on the interaction between this diester 

derivative of adefovir and MRP2. It would be enlightening to investigate the modulatory 

effect of Darunavir Ethanolate and Adefovir dipivoxil on MRP2 activity and expression in 

other MRP2 overexpressing cells.  

Our screening also identified other novel drugs whose effect on MRP2 activity or 

expression levels are yet to be reported or explored to the best of our knowledge. This 

included glyburide (medication for diabetes), Rasagiline mesylate ( medication for 

Parkinson's disease), dronedarone HCl (antiarrhythmic drug), and conivaptan HCl 

(vasopressin antagonist, endocrine-metabolic agent). These novel drugs downregulated the 

protein expression levels of MRP2 in MDCKII MRP2-overexpressing cells in this study. 

Other non-reported drugs that upregulated the expression levels of MRP2 in our present 

study included Streptozotocin, Megestrol acetate, Gestodene, Trilostane, Ranolazine 

dihydrochloride among others. This initial data on these novel drugs would provide fore-

knowledge that can further be explored. Like most proteins, MRP2 can be regulated at the 
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transcriptional and post-transcriptional level. Studies have revealed that alterations in the 

intracellular concentrations of bile acids and of a number of lipophilic compounds that are 

ligands for nuclear hormone receptors can regulate MRP2/ABCC2 transcription levels [6]. 

Nuclear hormone receptors for hydrophobic molecules such as steroid hormones 

(estrogens, glucocorticoids, progesterone, mineralocorticoids, androgens, vitamin D3, 

ecdysone, oxysterols and bile acids), retinoic acids (all-trans and 9-cis isoforms), thyroid 

hormones, fatty acids, leukotrienes and prostaglandins [29, 30]. Research has shown that 

the hormone response element in rat  MRP2/Abcc2 promoter (ER-8) is bound by 

heterodimers of the retinoid receptor [31] with the ligand -activated transcription factors, 

pregnane X receptor (PXR), farnesoid X receptor (FXR) or constitutive androstane 

receptor (CAR). Thus various xenobiotics that regulate bile acid concentration can activate 

these receptors which in turn upregulates the promoter region of the ABCC2 transporter 

[32-36]. This finding provides a possible explanation to the increase in MRP2 protein 

expression observed in this study after MDCKII/MRP2 cells were treated with Megestrol 

acetate (androgen receptor), Gestodene (estrogen/progestogen receptor), 

Methylprednisolone and Prednisone (Glucocorticoid receptor), and Evista 

(estrogen/progestogen receptor).  

In summary, the modulatory effect of 372 drugs from a recently approved FDA drug library  

on MRP2 protein expression in MDCKII/MRP2 cells was successfully screened using In-

Cell ELISA assay. From this study, 49 hits compounds were identified to have altered  the 

MRP2 expression levels by more than 50%, representing 13.17% of total compounds 

screened. Among the identified hits for MRP2, 39 drugs increased expression levels 

whereas 10 drugs lowered expression levels of MRP2 after drug treatment. Although these 
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identified hit compounds may be substrates, inhibitors, inducers, activators of MRP2, or 

even false hits due to the non-specific interactions of MRP2 due to unknown reasons,  

findings from this study bring to light the fact that MRP2 protein expression may be 

affected by several drugs to a greater extent than imagined.   
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Chapter 5 

Relevant Contributions 

1.0 Scope 

This chapter focuses on relevant contributions and side projects undertaken towards the 

general scholarly goals of our research group. After identifying novel modulators of MRP1 

protein expression and activity in our initial screening of 30 drugs which comprised of 

anticancer and FDA approved drugs as described earlier, we set out to screen a larger 

number of drugs from different libraries to identify more modulators of MRP1  protein 

expression. The first two projects in this session describe projects that were undertaken in 

this direction. The first project aimed at the identification of chemotherapeutic drugs as 

modulators of MRP1 protein expression in MRP1-overexpressing cells. In this project, we 

screened 383 anticancer drugs from a unique anticancer library for their modulatory effect 

on MRP1 protein expression in HEK293 MRP1-overexpressing cells using a high 

throughput In-Cell ELISA assay. Our results from this study showed that some anticancer 

drugs may modulate MRP1 protein expression and also demonstrated that the In-Cell 

ELISA assay can be used as an effective high throughput tool for screening purposes. 

Drugs that were identified can be used in developing therapeutics for treating tumors with 

the MDR phenotype conferred by MRP1 overexpression.  

The goal of the second project was to screen a recently approved FDA drug library to 

identify modulators of MRP1 protein expression in HEK293 MRP1-overexpressing cells. 

A total of 440 FDA drugs were successfully screened using In-Cell ELISA assay. These 

drugs included antibiotics, antivirals, antidepressants among others. Our findings from the 
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project suggest and affirm the fact that MRP1 interacts with a broad range of drug classes. 

This signifies the importance of profiling the interaction of drugs with this transporter, and 

the data obtained would provide essential information to improve drug efficacy and reduce 

drug toxicity of various cancer chemotherapeutics and in diseases in which MRP1 is 

implicated. In the third project, the effect of novel cucurbitacin-inspired estrone analogs 

inhibitors of P-gp and MRP1 on P-gp and MRP1 protein expression was investigated. 

These inhibitors were identified in an initial screening that was conducted by our research 

group in another project. These inhibitors were further characterized using established cell-

based methods, thus we ascertained the impact of these novel inhibitors on MRP1 and P-

gp protein expression in human embryonic kidney overexpressing P-gp cells (HEK293/P-

gp) and small cell lung cancer cell line (H69AR) using western blot assay. 
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Identification of chemotherapeutic drugs as modulators of Multidrug Resistance 

Protein 1 (MRP1) expression in HEK293 MRP1- overexpressing cells 

Introduction 

We recently identified some novel modulators from our initial screening of thirty 

compounds on MRP1 protein expression in HEK293 MRP1-overexpressing cells. These 

drugs consisted of both clinically tested anticancer drugs and some recently approved FDA 

drugs. From our initial screening, we identified that anticancer drugs; SB743921 HCl, 

Amuvatinib, TG101348 (SAR302503), and a FDA-approved drug; Felbamate, may 

modulate MRP1 protein expression in HEK293 MRP1-overexpressing cells. Further 

characterization of these compounds using cell-based established assays revealed that 

SB743921 HCl, Amuvatinib, TG101348 downregulate MRP1 efflux activity, with 

Amuvatinib and TG101348 being potent reversers of MRP1 mediated MDR in these cells. 

Based on these interesting findings we decided to screen different drug libraries containing 

a larger number of drugs to investigate their effect on MRP1 protein expression. Using In-

Cell ELISA assay, we explored the effect of 383 clinically-tested anticancer drugs from a 

unique anticancer drug library for their effect on MRP1 protein expression in HEK293 

MRP1-overexpressing cells. These drugs from the anticancer library consisted of small 

molecules under clinical trials for 12 different types of cancers.  
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Materials and methods 

Chemicals  

Anticancer compound library consisting of 383 anticancer small molecules under clinical 

trials for 12 different types of cancers was procured from Selleck Chemicals (Houston, 

TX). Super signal West Dura® extended duration chemiluminescence substrate 

(21EAPI34076) was purchased from Thermo Fisher Scientific (Waltham, MA). 

Cell lines and cell culture 

HEK293/pcDNA3.1 and HEK293/MRP1 cells were a kind gift from Dr. Suresh V. 

Ambudkar (NIH, Bethesda, MD) respectively. Dulbecco’s modified Eagle medium 

(DMEM) (GE Healthcare, Marlborough, MA, USA) supplemented with 10% fetal bovine 

serum (FBS) was used to grow the HEK293 cell lines. Cell lines were cultured in a 

humidified incubator maintained at 5% CO2 and 37°C. This incubation condition was 

retained in all subsequent cell culture procedures. 

 

Screening of anticancer library using  In-Cell ELISA assay  

Cells were seeded at 5x104 cells per well in 96- well plates with DMEM containing 10% 

FBS and incubated for 24 hours at 37°C. Cells were treated with drugs (10uM), 0.1% 

DMSO for controls and incubated for 48 hours at 37°C. At the end of the incubation period, 

treatment was removed and cells were rinsed twice with 150 μL of PBS. Cells were fixed 

with 3.7% paraformaldehyde and permeabilized with Triton-X 100. The cells were blocked 

with fish gel (MB-066-0100, Rockland) and incubated overnight at 4 °C with monoclonal 
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anti-MRP1 antibody (IU5C1, MA516079, Thermo Fisher Scientific) or anti-α tubulin 

antibody (T5168, Sigma-Aldrich) at 1:500 and 1:1000 dilutions, respectively. Secondary 

antibody incubation was performed using horseradish peroxidase-conjugated goat anti-

mouse IgG (H + L) (Thermo Fisher Scientific) for an hour at room temperature. Target 

proteins were detected using Super Signal West Dura® Extended Duration 

chemiluminescence substrate (21EAPI34076, Thermo Fisher Scientific) and read using 

Hidex Sense Beta Plus plate reader (Turku, Finland). Experiments were conducted in two 

independent studies and treatments were performed in duplicates. Dunnett test was applied 

for multiple comparisons, statistical testing was performed at a 5% level of significance. 
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Results and Discussion 

Screening of anticancer compound library for modulators of MRP1 protein 

expression 

The anticancer library containing 383 drugs was successfully screened using In-Cell 

ELISA assay.  Two independent experiments were conducted in the 96-well format. The 

relative MRP1-modulation activity of the anticancer drugs from the two independent 

experiments is represented as a 2D scatter plot (Figure 5.1). As indicated in Figure. 

5.1(bottom), the assay had good reproducibility with a correlation range of 0.71 between 

the two given experiments. Differences between the two groups were determined by the 

Student’s t-test using excel, and correlation analysis was evaluated by Pearson’s correlation 

using R studio version 3.5.2. Dunnett test was applied for multiple comparisons, statistical 

testing was performed at a 5% level of significance. Figure 5.2 shows the effect of the 

various anticancer drugs screened on MRP1 protein expression in HEK293/MRP1 cells. 

Screening of the 383 anticancer drugs revealed 89 hit compounds that changed the MRP1 

expression by 50% or more, representing 23.2% of total compounds screened. Among the 

identified hits, 57 drugs increased expression whereas 32 drugs lowered expression of 

MRP1 after drug treatment as shown in Figure 5.3.  The identified hit compounds included 

known MRP1 substrates like doxorubicin, vincristine, etoposide, and dexamethasone [1, 

2]. Some novel MRP1 modulators were also identified in this initial screening whose 

interaction or relationship with MRP1 have not been reported. These novel modulators may 

be substrates, inhibitors, inducers, or activators of MRP1. Some may also be false hits due 

to the non-specific interaction with MRP1 for unknown reasons. However, these novel 
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modulators identified would be further validated and characterized by our research group 

in future studies.  

 

Correlation coefficient  

Experiment                              1                                         2 

           1                                        1                                        0.71 

       2                                    0.71                                         1 

 

Figure 5.1 Screening of Anticancer drug library using In-Cell ELISA assay  

The screening was conducted in two independent studies at a compound concentration of 

10uM. The table below the plot shows correlation coefficients between the experiments. 

Correlation coefficient calculated and 2D graph generated using R studio version 3.5.2. 
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Figure 5.2 Effect of Anticancer drugs on MRP1 protein expression levels in 

HEK293/MRP1 cells from screening using In-Cell ELISA assay 

 

Figure 5.3 Screening of 383 anticancer drug library using In-Cell ELISA assay 

Eighty-nine (23.24%) hit compounds modulated the MRP1 expression levels, with 57 

(14.88%) drugs increased expression levels whereas 32 (8.36%) drugs lowered expression 

levels of MRP1 after drug treatment.  
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Identification of FDA approved drugs as modulators of Multidrug Resistance Protein 

1 (MRP1/ABCC1) expression in MRP1-overexpressing cells 

Introduction 

MRP1 is reported to affect the efficacy and bioavailability of drugs belonging to various 

drug classes aside from anticancer drugs [3]. We decided to explore the effect of other 

therapeutic agents from other drug families on MRP1 protein expression in HEK293 

MRP1-overexpressing cells. We achieved this by screening 440 FDA drugs from a recently 

approved FDA drug library to ascertain their effect on MRP1 protein expression. This FDA 

approved drug library consisted of structurally diverse therapeutic agents that belonged to 

different drug families. This includes antivirals, antibiotics, antidepressants, anti-

inflammatory drugs as well as drugs used in the treatment of cardiology, immunology, 

neuropsychiatry-related conditions. 
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Materials and methods 

Chemicals  

FDA (Food and Drug Administration) approved drug library was procured from Selleck 

chemicals (Houston, TX). Super signal West Dura® extended duration chemiluminescence 

substrate (21EAPI34076) was purchased from Thermo Fisher Scientific (Waltham, MA). 

 

Cell lines and cell culture 

HEK293/pcDNA3.1 and HEK293/MRP1 cells were a kind gift from Dr. Suresh V. 

Ambudkar (NIH, Bethesda, MD) respectively. Dulbecco’s modified Eagle medium 

(DMEM) (GE Healthcare, Marlborough, MA, USA) supplemented with 10% fetal bovine 

serum (FBS) was used to grow the HEK293 cell lines. Cell lines were cultured in a 

humidified incubator maintained at 5% CO2 and 37 °C. This incubation condition was 

retained in all subsequent cell culture procedures. 

 

Screening of FDA approved drug library using In-Cell ELISA assay  

In-Cell ELISA assay was performed by seeding  HEK293/pcDNA 3.1 and HEK293/MPR1 

cells at a cell density of 5x104 cells per well in 96- well plates with Dulbecco’s  Modified 

Eagle Medium supplemented with 10% fetal bovine serum. Cells were treated with 

drugs(10uM), DMSO (control and Parental) after 24 hours (95% confluency), and 

incubated for 48 hours at 37 °C. At the end of the incubation period, treatment was removed 

and cells were rinsed twice with 150 μL of PBS. Cells were fixed with 3.7% 
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paraformaldehyde and permeabilized with Triton-X 100. The cells were blocked using fish 

gel (MB-066-0100, Rockland) and incubated overnight at 4 °C with monoclonal anti-

MRP1 antibody (IU5C1, MA516079, Thermo Fisher Scientific) or anti-α tubulin antibody 

(T5168, Sigma-Aldrich) at a 1:1000 dilution, respectively. Secondary antibody incubation 

was performed using horseradish peroxidase-conjugated goat anti-mouse IgG (H + L) 

(Thermo Fisher Scientific) at a dilution of 1:1000 for an hour at room temperature. Target 

proteins were detected using Super Signal West Dura® extended duration 

chemiluminescence substrate (21EAPI34076, Thermo Fisher Scientific), and read using 

Hidex Sense Beta Plus plate reader (Turku, Finland). Treatment was performed in 

triplicates. Data obtained were statistically analyzed to calculate the mean and percentage 

modulation. Drugs that showed modulation above 50% were considered as Hit compounds. 

  

Results and discussion 

 Screening of FDA approved drug library for modulators of MRP1 

The FDA approved drug library containing 440 drugs was successfully screened using In-

Cell ELISA assay. The FDA approved drug library was screened using HEK293 MRP1-

overexpressing cells. Treatments were performed in triplicates, and experiments were done 

using the 96-well format. The relative MRP1-modulation activity of the FDA approved 

drugs are shown according to plates screened as presented in Figure 5.4. The mean and 

percentage modulation of the drugs screened were calculated using Microsoft excel. Drugs 

showing more than 50% modulation on MRP1 were selected as hit compounds. Screening 

of the 440 FDA-approved drugs on HEK293/MRP1 cells revealed 70 hit compounds that 
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modulated the MRP1 expression levels by 50% or more representing 15.90% of total 

compounds screened. Among the identified hits, 56 drugs increased expression levels 

whereas 14 drugs lowered expression levels of MRP1 after drug treatment as shown in 

Figure 5.5. Findings from our initial screening showed that aside anticancer drugs, drugs 

from other drug classes can also modulate MRP1 protein expression. The identified hit 

compounds included antivirals, anticonvulsants, anti-inflammatory, antiestrogen agents 

among others. The modulators identified in this study would be further investigated and 

characterized by our research group in future projects.  

 

Figure 5.4: Screening of 440 FDA  approved drug library using In-Cell ELISA assay 

Seventy hits compounds (15.91%) changed the MRP1 protein expression by more than 

50%. Fifty-six drugs (12.73%) increased expression levels whereas 14 drugs (3.18%) 

lowered expression levels of MRP1 after drug treatment. 
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Figure 5.5: Screening of 440 FDA  approved drug library using In-Cell ELISA assay 

Seventy  (70) hit compounds (15.91%) that changed the MRP1 expression levels by more 

than 50%. 56 drugs (12.73%) increased expression levels whereas 14 drugs (3.18%) 

lowered expression levels of MRP1 after drug treatment. 
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Effect of novel cucurbitacin-inspired estrone analogs on the protein expression levels 

of P-glycoprotein (P-gp) and Multidrug resistance protein 1 (MRP1)  

Introduction 

Natural compounds including phytochemicals have been established as compounds that 

can modulate the activity of ABC transporters including MRP1 and P-gp. Polyphenols like 

curcumin, and bioflavonoids like apigenin, quercetin have been reported to have a 

significant effect on the transport activity of MRP1 [4, 5]. Recently, in an ongoing project, 

we screened some cucurbitacin-inspired estrone analogs to identify inhibitors of P-

glycoprotein (P-gp) and Multidrug resistance protein 1 (MRP1) in human embryonic 

kidney overexpressing P-gp cells (HEK293/P-gp) and small cell lung cancer cell line 

(H69AR) respectively. We identified 8 of these analogs to show inhibitory effects on P-gp 

activity in HEK293/P-gp whereas 4 of these analogs also strongly inhibited MRP1 in 

H69AR. These inhibitors have further been characterized using established cell-based 

assays. We further investigated the influence of these novel inhibitors on P-gp and MRP1 

protein expression using western blot assay.  
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Materials and methods 

Cell lines and cell culture 

H69 and H69AR cells were purchased from ATCC (Manassas, VA). HEK293/pcDNA3.1 

and HEK293/P-gp were kindly gifted by Dr. Suresh V. Ambudkar (NIH, Bethesda, MD). 

Dulbecco’s modified Eagle medium (DMEM) (GE Healthcare, Marlborough, MA, USA) 

supplemented with 10% fetal bovine serum (FBS) was used to grow the HEK293 cell lines. 

H69 cell lines were cultured in RPMI 1640 (ATCC) media supplemented with 10% FBS. 

H69AR cells were monthly exposed to 0.8 mM doxorubicin and cultured without drug 

treatment for 1 week before use in experiments. Cells were cultured at 37 °C in a 

humidified incubator set at 5% CO2. 

 

Western blot assay 

HEK293 and H69 cell lines were seeded at cell densities of  7x105 and 1x106 cells in 6-

well plates respectively in a culture medium. Cells were treated with drugs (10 µM), and 

0.1% DMSO for controls after 24 hours, and incubated for 48 hours at 37 °C after drug 

treatment. At the end of the incubation period, treatments were removed and cells were 

rinsed with 1000 μL of  PBS. The cells were lysed with lysis buffer containing RIPA buffer 

(Thermo Fisher Scientific, Waltham, MA) supplemented with 1× halt protease inhibitor. 

Protein concentration was determined with the Pierce BCA protein assay kit (Thermo 

Fisher Scientific, Waltham, MA). Proteins (20 μg)  were loaded in each well on 8.0% mini 

sodium dodecyl sulfate (SDS) gels, and SDS page electrophoresis was conducted. Proteins 

were transferred to Immobilon PVDF membranes (EMD Millipore, Burlington, MA). The 
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membrane was blocked and incubated overnight at 4 °C with rabbit monoclonal anti-MRP1 

antibody [EPR21062](1:250; Abcam, ab233383) and anti-alpha-tubulin antibody (1:5000; 

Sigma-Aldrich) respectively. Followed by incubation with secondary antibody for an hour 

at room temperature using horseradish peroxidase-conjugated goat anti-mouse IgG(H+L) 

(1:1000; Thermo Fisher Scientific) for alpha-tubulin, and horseradish peroxidase-

conjugated goat-anti-rabbit IgG(H+L) (1:1000; Thermo Fisher, Scientific) for detection of 

MRP1. Target proteins were developed using a Western blotting luminol reagent (Santa 

Cruz Biotechnology, sc-2048) and an LI-COR Odyssey Fc imaging system. Protein band 

densities were quantified and analyzed using Image Studio Lite version 5.2 (LI-COR 

Biotechnology, Lincoln, NE), and uneven sample loading and transfer was corrected using 

the intensity of the corresponding protein band relative to the alpha-tubulin (loading 

control) band. The experiment was conducted in three independent studies. The data 

obtained was statistically analyzed and the Dunnett test was applied for multiple 

comparisons, statistical testing was performed at a 5% level of significance. 
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Results and Discussion 

 Effect of test compounds on P-gp and MRP1 protein expression levels 

We determined the effect of these novel cucurbitacin-inspired estrone analogs which were 

identified as inhibitors in our initial screening on protein expression of P-gp and MRP1. 

Our results as shown in Figure 5.6 and Figure 5.7 indicate that these inhibited do not have 

a significant impact on P-gp and MRP1 protein expression in HEK293/P-gp and H69AR 

cells. 

Figure 5.6: Effect of novel cucurbitacin-inspired estrone analogs on protein expression of 

P-gp in HEK293/P-gp cells 

[A, B] Shown are representative western blots of whole-cell lysates (20 ug of protein/lane) 

prepared from drug treatment (10 uM) on HEK293/P-gp cells. P-gp proteins  and alpha-

tubulin was detected using monoclonal P-gp antibody [C219] (GTX23364,GeneTex) and 

anti- alpha-tubulin antibody  (Sigma-Aldrich) at 1:250 and 1:5000 dilutions, respectively. 

Secondary antibody incubation used performed using GAM (mAb – goat- anti-mouse) 
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(1:10000). [C, D] Dunnett test was applied for multiple comparisons, statistical testing was 

performed at a 5% level of significance, and the graph was developed using Graph Pad 

Prism version 6. 

  

     

Figure 5.7 Effect of novel cucurbitacin-inspired estrone analogs on protein expression 

MRP1in H69AR cells. 

 [A] Shown are representative western blots of whole-cell lysates (20 ug of protein/lane) 

prepared from H69AR cells treated 10 µM of test compounds. MRP1 proteins were 

detected with monoclonal anti-MRP1 antibody [EPR21062](ab233383, Abcam) and anti-

GAPDH antibody (Sigma-Aldrich) at a dilution of 1:250 and 1:1000 respectively. 

Secondary antibodies; mAb - anti-rabbit and mAb-anti-goat were used at a dilution of 

1:1000. [B] Dunnett test was applied for multiple comparisons, statistical testing was 

performed at a 5% level of significance, and graph was developed using Graph Pad Prism 

version  6.0. 
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Chapter 6 

Final discussions and General conclusions 

The overexpression of ABC transporters in tumor cells has been reported to be responsible 

for the multidrug resistance (MDR) phenotype observed in several carcinomas. The role of 

ABC transporters like P-gp and BCRP in the MDR of tumor cells has been well 

investigated in clinical cancer research. However, recent studies have revealed that ABC 

transporters; MRP1 and MRP2 are also major players in the development of MDR in 

several carcinomas [1, 2]. MRP1 was discovered by Cole and her colleagues when they 

observed the overexpression of a transporter gene in a multidrug-resistant human lung 

cancer cell line (H69AR) which did not overexpress P-gp [3]. The plasticity of the binding 

site of this transporter enables it to interact with a variety of substrates, which mostly 

include amphipathic organic acids with large hydrophobic groups [4]. This ubiquitous 

transporter is reported to mediate the transport of heavy metals, organic anions, 

glucuronide-conjugates of steroids, prostaglandins, drugs, and their metabolites across 

biological membranes [5, 6]. Due to its transport activity, MRP1 governs the absorption 

and disposition of drugs and their metabolites across cells. MRP2 which is popularly 

known as canicular multi-specific organic anion transporter 1 (cMOAT) [7] also facilitates 

the transport of xenobiotics and endogenous compounds to the bile, urine, or feces [8]. Due 

to the pivotal roles of MRP1 and MRP2 in the transport and distribution of drugs and their 

metabolites, their overexpression has been associated with reduced intracellular 

concentration and bioavailability of various classes of drugs (vinca alkaloids, 

anthracyclines, antibiotics, protease inhibitors) [8-11] in tumor cells. As such, these 

transporters have been implicated in MDR of several solid human tumors like kidney, 
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colon, breast, lung, and ovarian carcinomas [12]. Strategies to overcome the MRP1 and 

MRP2 mediated MDR in tumors involve the identification of modulators of these 

transporters which can regulate their activities in tumor cells without interrupting their role 

in maintaining physiological equilibrium in normal cells. Although some modulators of 

MRP1 and MRP2 have been identified in recent times, most of the current modulators that 

have been identified are limited by non-specific toxicity, low MDR reversal effects, and 

low therapeutic efficacy in in-vivo experiments. Thus there is the need for the identification 

of more potent and safer modulators of MRP1 and MRP2.  

In this present study, we aimed at identifying modulators of MRP1 and MRP2 by screening 

therapeutic agents from various drug libraries using In-Cell ELISA assay. Our initial 

screening of 30 compounds, identified a total of 7 test compounds that modulated MRP1 

protein expression in HEK293 MRP1-overexpressing cells by 50% or more. Four of the 

test compounds; Vismodegib (GDC-0449), TG101348 (SAR302503), Amuvatinib, and 

SB743921 HCl decreased the protein expression levels of MRP1, and three test 

compounds; Epirubicin HCl, Felbamate, and Irinotecan increased the protein expression of 

MRP1. Three of these modulators (Epirubicin HCl, Irinotecan, Vismodegib (GDC-0449) 

had already been reported in other studies [13-15], thus were not considered for further 

characterization in this study. Four of the identified modulators exerted novel modulatory 

activity on MRP1 protein expression. This included ATP competitive inhibitors; 

SB743921 HCl, Amuvatinib, TG101348 (SAR302503), and Felbamate ( a recently 

approved FDA drug). SB743921 HCl, Amuvatinib,  and TG101348 (SAR302503) 

downregulated MRP1 protein expression in HEK293 MRP1-overexpressing cells whereas 

Felbamate increased MRP1 protein expression. Our findings from this study also showed 
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that SB743921 HCl and Amuvatinib decreased MRP1 protein expression in HEK293 

MRP1-overexpressing cells in a concentration and time-dependent manner. SB743921 

HCl, Amuvatinib, and TG101348 (SAR302503) inhibited the growth of these cells at 

clinically achievable concentrations. Moreover, we report that  Amuvatinib and TG101348 

(SAR302503) reverse MRP1 mediated resistance against vincristine in HEK293 MRP1-

overexpressing cells.  

We also demonstrated that for the first time that Tie2 kinase inhibitor can inhibit MRP1 

mediated calcein efflux in HEK293 MRP1-overexpressing cells. Moreover, Tie2 kinase 

inhibitor was able to reduce the fold resistance of  HEK293 MRP1-overexpressing cells 

towards vincristine. Everolimus, an mTOR inhibitor that was previously reported by our 

lab group to be an inhibitor of MRP1 in H69AR cells, also inhibited MRP1 mediated 

calcein efflux in HEK293 MRP1-overexpressing cells. Everolimus also reversed MRP1 

mediated resistance in HEK293 MRP1-overexpressing cells. Findings from this study 

show that these therapeutic agents may be useful for developing combinatorial therapy 

targeting malignancies involving MRP1. 

 Furthermore, we also screened a recently approved FDA approved library for modulators 

of MRP2 using In-Cell ELISA. This unique FDA drug library comprises drugs from 

different drug classes including antivirals, antibiotics, antidepressants, antihypertensives 

among others. Our screening of 372 FDA drugs identified 49 modulators of MRP2 in 

MDCKII MRP2-overexpressing cells. Thirty-nine of these modulators increased MRP2 

expression whereas 10 compounds lowered MRP2 expression levels after drug treatment. 

The ability of MRP2 to be modulated by compounds from different drug families that 

exhibit great structural diversity in this study indicates that MRP2 is a promiscuous 
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transporter. As such this transporter can interact with several compounds irrespective of 

their structure and drug classification. Modulators identified in this study would be further 

characterized in future projects.  

On the whole, we identified modulators of MRP1 and MRP2 protein expression and 

activity. These modulators can be used in the development of combinatorial drug therapy 

for MRP1 and MRP2 targeted therapeutics. Our findings indicate the importance of 

investigating the possible drug-interactions between various therapeutic compounds with 

these transporters. Research into drug-transporter interactions would provide a better 

understanding of the physiology of these transporters and the pharmacology of these 

therapeutic agents. Thereby creating a platform for optimizing drug treatment for 

chemotherapy and other MRP1/MRP2 related malignancies.  



159 

 

REFERENCES 

[1] F. Narasaki, M. Oka, R. Nakano, K. Ikeda, M. Fukuda, T. Nakamura, H. Soda, M. 

Nakagawa, M. Kuwano, S. Kohno, Human canalicular multispecific organic anion 

transporter (cMOAT) is expressed in human lung, gastric, and colorectal cancer cells, 

Biochemical and biophysical research communications 240(3) (1997) 606-611. 

[2] E. Roundhill, S. Burchill, Membrane expression of MRP-1, but not MRP-1 splicing or 

Pgp expression, predicts survival in patients with ESFT, British journal of cancer 109(1) 

(2013) 195-206. 

[3] S. Cole, G. Bhardwaj, J. Gerlach, J. Mackie, C. Grant, K. Almquist, A. Stewart, E. 

Kurz, A. Duncan, R.G. Deeley, Overexpression of a transporter gene in a multidrug-

resistant human lung cancer cell line, Science 258(5088) (1992) 1650-1654. 

[4] Z.L. Johnson, J. Chen, Structural basis of substrate recognition by the multidrug 

resistance protein MRP1, Cell 168(6) (2017) 1075-1085. e9. 

[5] S.P. Cole, Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and 

future, Annu Rev Pharmacol Toxicol 54 (2014) 95-117. 

[6] R.G. Deeley, C. Westlake, S.P. Cole, Transmembrane transport of endo-and 

xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins, 

Physiological reviews 86(3) (2006) 849-899. 

[7] K. Koike, T. Kawabe, T. Tanaka, S. Toh, T. Uchiumi, M. Wada, S.-i. Akiyama, M. 

Ono, M. Kuwano, A canalicular multispecific organic anion transporter (cMOAT) 

antisense cDNA enhances drug sensitivity in human hepatic cancer cells, Cancer Research 

57(24) (1997) 5475-5479. 



160 

 

[8] L.M. Chan, S. Lowes, B.H. Hirst, The ABCs of drug transport in intestine and liver: 

efflux proteins limiting drug absorption and bioavailability, European journal of 

pharmaceutical sciences 21(1) (2004) 25-51. 

[9] E. Bakos, R. Evers, G. Calenda, G.E. Tusnády, G. Szakács, A. Váradi, B. Sarkadi, 

Characterization of the amino-terminal regions in the human multidrug resistance protein 

(MRP1), Journal of cell science 113(24) (2000) 4451-4461. 

[10] P. Borst, R.O. Elferink, Mammalian ABC transporters in health and disease, Annual 

review of biochemistry 71(1) (2002) 537-592. 

[11] F.R. Luo, P.V. Paranjpe, A. Guo, E. Rubin, P. Sinko, Intestinal transport of irinotecan 

in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and 

MRP1, Drug metabolism and disposition 30(7) (2002) 763-770. 

[12] G. Sandusky, K. Mintze, S. Pratt, A. Dantzig, Expression of multidrug resistance‐

associated protein 2 (MRP2) in normal human tissues and carcinomas using tissue 

microarrays, Histopathology 41(1) (2002) 65-74. 

[13] M. Gameiro, R. Silva, C. Rocha-Pereira, H. Carmo, F. Carvalho, M.D.L. Bastos, F. 

Remião, Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 

and BCRP, Molecules 22(4) (2017) 600. 

[14] S.L. Hembruff, M.L. Laberge, D.J. Villeneuve, B. Guo, Z. Veitch, M. Cecchetto, A.M. 

Parissenti, Role of drug transporters and drug accumulation in the temporal acquisition of 

drug resistance, BMC cancer 8(1) (2008) 318. 

[15] Y. Zhang, J. Laterra, M.G. Pomper, Hedgehog pathway inhibitor HhAntag691 is a 

potent inhibitor of ABCG2/BCRP and ABCB1/Pgp, Neoplasia 11(1) (2009) 96-101. 

 


	Identification and Characterization of Modulators of Human MRP1 (ABCC1) and Human MRP2 (ABCC2) Expression
	Recommended Citation

	tmp.1618240969.pdf.a_7Rl

