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ABSTRACT 
 

USE AND IMPROVEMENT OF REMOTE SENSING AND GEOSPATIAL 

TECHNOLOGIES IN SUPPORT OF CROP AREA AND YIELD ESTIMATIONS 

IN THE WEST AFRICAN SAHEL 

 

KABORO SAMASSE 

2021 

In arid and semi-arid West Africa, agricultural production and regional food 

security depend largely on small-scale subsistence farming and rainfed crops, both of 

which are vulnerable to climate variability and drought. Efforts made to improve crop 

monitoring and our ability to estimate crop production (areas planted and yield 

estimations by crop type) in the major agricultural zones of the region are critical paths 

for minimizing climate risks and to support food security planning. The main objective 

of this dissertation research was to contribute to these efforts using remote sensing 

technologies. In this regard, the first analysis documented the low reliability of existing 

land cover products for cropland area estimation (Chapter 2). Then two satellite remote 

sensing-based datasets were developed that 1) accurately map cropland areas in the five 

countries of Sahelian West Africa (Senegal, Mauritania, Mali, Burkina Faso and Niger; 

Chapter 3), and 2) focus on the country of Mali to identify the location and prevalence 

of the major subsistence crops (millet, sorghum, maize and non-irrigated rice; Chapter 

4).  

The regional cropland area product is distributed as the West African Sahel 

Cropland area at 30 m (WASC30). The development of the new dataset involved high 

density training data (380,000 samples) developed by USGS in collaboration with 

CILSS for training about 200 locally optimized random forest (RF) classifiers using 

Landsat 8 surface reflectances and vegetation indices and the Google Earth Engine 

platform. WASC30 greatly improves earlier estimates through inclusion of cropland 

information for both rainfed and irrigated areas mapped with a class-specific accuracy 

of 79% across the West Africa Sahel. Used as a mask in crop monitoring systems, the 

new cropland area data could bring critical insights by reducing uncertainties in 
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identification of croplands as crop growth condition metrics are extracted. WASC30 

allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and 

agroclimatic scales. Intensive agricultural zones were highlighted as well. The second 

dataset, mapping crop types for the country of Mali, is meant to separate signals of 

different crop types for improved crop yield estimation. The crop type map was used to 

derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at 

finer administrative scales than has previously been possible. The crop fraction 

information by crop type extracted from the map, gives additional details on farmers 

preferences by regions, and the natural adaptability of different crop types.  

The final analysis of this dissertation explores the use of ensemble machine 

learning techniques to predict maize yield in Mali (Chapter 5). Climate data 

(precipitation and temperature), and vegetation indices (Normalized Difference 

Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized 

Difference Water Index, NDWI) are used as predictors, while actual yields collected in 

2017 by the Malian Ministry of Agriculture are the reference data.  Random forest 

presented better predictive performance as compared to boosted regression trees (BRT). 

Results showed that climate variables have more predictive power for maize yield 

compared to vegetation indices. Among vegetation indices, the NDWI appeared to be 

the most influential predictor, maybe because of water requirement of maize and the 

sensitivity of this index to water in semi-arid regions. Tested with two different 

independent datasets, one constituted by 20% of the reference information, and another 

including observed yields for year 2018 (a one-year-left analysis), maize yield 

predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error 

for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year 

to year variabilities in predicted maize yield. In this analysis, predictions were limited 

to field samples (~600 fields) across the country of Mali. It would be valuable in the 

future to predict maize yield for each pixel of the new developed crop type map. That 

will lead to a detailed spatial analysis of maize yield, allowing identification of low 

yielding regions for targeted interventions which could improve food security.  

Keywords: Agricultural land area, crop type mapping, Sahel, West Africa, Machine 

Learning, Earth Engine, food security, famine early warning 
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CHAPTER 1  

Introduction 

1.1. Background 
Food security is defined as “when all people at all times have physical, social and 

economic access to sufficient, safe and nutritious food to meet their dietary needs and 

food preferences for an active and healthy life” (Committee on World Food Security, 

2011). The four pillars of food security are: food availability, access to food, utilization, 

and stability. Availability refers to the physical existence of food, whether it is produced 

locally or imported. The three other pillars of food security depend on food availability. 

Regarding food production, the Sahel region of Africa is particularly food insecure for 

a variety of geographic, demographic, and economic reasons that have resulted in food 

shortages and famines affecting millions of people living in the region (Lifland, 2012).  

The Sahel of Africa is a region of transition between the Sahara and the tropical 

savannas.  It extends from the Atlantic Ocean in the west to the Red Sea in the east, 

roughly from 12° N to 18° N (Anyamba & Tucker, 2005).  The Western Africa Sahel, 

which is the focus of this dissertation research, includes parts of Mauritania, Senegal, 

Mali, Niger, and Burkina Faso. Strong climatic variations and fluctuations in rainfall 

have long time characterized the Sahel (Hiernaux et al., 2016). Since 1980s severe 

droughts the Sahel has experienced (Zeng, 2003) have caused periodic food shortages, 

as agricultural production is primarily rainfed in the region. This situation is worsened 

by the rapid population growth leading to pressure on land and water resources required 

for food production.  

In addition to rapid population growth, other socioeconomics factors may 

contribute creating food insecurity situations in a region. For example, according to the 

Ministry of Rural Development of Mali, despite the agricultural potential of the country 

in terms of arable land (43.7 million hectares) for croplands and pastures, and water 

resources (70 billion cubic meters of water per year for irrigation),  multiple structural 

challenges limit the degree of agricultural production (Cellule de Planification et de 

Statistique du Secteur Développement Rural (CPS/SDR), 2013). These challenges 

include limited private and/or public investments in the agricultural sector and limited 

access of farmers to credit, farmers’ low level of education, fluctuations of cereal price, 

and limited trade opportunities for farm produce, both within countries and with 
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neighboring countries.  These underlie the agronomic causes of low yields, even in 

years of good rainfall, caused by limited access to fertilizers, improved seeds, and 

mechanization tools like tractors (Cellule de Planification et de Statistique du Secteur 

Développement Rural (CPS/SDR), 2013). 

In this context, it is important to develop tools and policies that can monitor 

agricultural production, and improve our understanding of these climatological, 

biophysical, technological, and economic factors causing the spatial and temporal 

variability of crop yields. Remote sensing based accurate estimates of cultivated area 

and crop yields modelling are some of those tools which are critical to our 

understanding of agricultural production, food security in rural West Africa. 

1.1.1. Modeling in Agriculture 
Modeling in agriculture is an essential tool to support decisions making. Typically, 

two broad categories of models are used to estimate crop yield in agriculture. They are 

mechanistic or process-based models, and statistical or empirical models (Thornley & 

France, 2007). Mechanistic modeling is a process-based method, built from our 

knowledge of the physical, chemical and biological processes governing the 

phenomenon under study (e.g. yield). Thus, mechanistic modeling is sometimes known 

as an explanatory modeling because it represents the cause and effect relationships 

among the variables involved. Process-based models are more difficult to deploy 

because they require knowledge about the underlying mechanism that determine how 

the various variables are related to each other.  

Most Decision Support Systems (DSS) for agriculture use mechanistically based 

crop growth simulations to predict yield. Examples include APSIM (Agricultural 

Production Systems sIMulator, Keating et al., 2003), DSSAT (The Decision Support 

System for Agrotechnology Transfer, Jones et al., 2003), Système d'Analyse Régionale 

des Risques Agroclimatologiques Version H (SARRA-H; System of 

Agroclimatological Regional Risk Analysis), and EPIC (Environmental Policy 

Integrated Climate, Williams et al., 1989). Crop growth simulation tools can support 

agricultural decision making in two major levels. First, they help to understand the 

functioning of soil-plant-climate systems. Second, they are useful for design and 

assessment of new crop systems that would be difficult to develop through field 

experimentation. Of course, field experimentations will continue to be necessary for 
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calibration and assessing the robustness and relevance of simulation models. For 

example, DSS platforms have been used in numerous studies to understand cereals 

behavior in different climate and management scenarios across the West African region 

(Amouzou et al., 2019; Guan et al., 2017; Sultan et al., 2013). 

 In general, process-based models make predictions based on site-specific data. 

Application of these models at coarser scales (e.g. regional or national), is achieved 

using either (i) sample simulations: identification of climate, soil and management 

clusters representative of large areas, so that computational load is reduced but results 

may be applied to the larger domain of interest (Hoffman et al., 2018), or (ii) fully 

spatially distributed models parameterized using spatially varying soils, climate and 

management using Geographical Information Systems (GIS) and spatial analysis tools 

(Thorp et al., 2008; Venkatesan & Pazhanivelan, 2018; Yin et al., 2014). Spatially 

distributed models, however, are computationally demanding and require spatially 

contiguous data (soil, weather, genotype, and management) adding to parameterization 

uncertainty and difficulties defining initial conditions, making these models 

challenging to use in data-deficient regions like the West African Sahel. 

Statistical modeling, as opposed to process-based modeling, is based on empirical 

relationships between response and explanatory variables. Historically, statistical crop 

models have used linear regression techniques, making them easy to be implemented 

(Thornley & France, 2007). They have been used to predict crop growth at large scales 

which are compatible with nation-scale statistics on seasonal yields (Kern et al., 2018). 

In general, statistical models offer the possibility to select variables based on their 

relationships (through mathematical equations) with the underlying yield analysis. 

However, statistical models are limited in their ability to predict outside the calibration 

data, and future scenario analysis (prediction) is impossible (Lambin et al., 2000). 

Statistical models also offer little or no insight into the underlying process that govern 

the phenomenon under study. Statistical models has been widely used to explore actual 

yield relationships with climate variables (Lobell & Burke, 2010; Lobell & Field, 

2007). Sometimes climate variables are combined with satellites remote sensing 

derived information (Kern et al., 2018; Y. Li et al., 2019) or socioeconomics data 

(Iizumi et al., 2017) for improved yield predictions. 
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As satellite remote sensing is increasingly improving in spatial, spectral, and 

temporal resolution, it can contribute significantly to a system that collects information 

on crops conditions and other environmental variables at larger geographical scale 

(Lambin et al., 1993). Free online access to time series of medium-resolution satellite 

remote sensing data (e.g. Landsat, Sentinel systems; (Claverie et al., 2018; Roy et al., 

2014; Woodcock et al., 2008) ), coupled with the availability of new computational 

resources (e.g. cloud and parallel computations; (Gorelick et al., 2017; Huang et al., 

2018; Wolfert et al., 2017) ) has made large scale and long-term analysis of crop growth 

and productivity a reality (Johnson, 2019a; P. Kumar et al., 2018; Rufin et al., 2019).  

That creates opportunities in using data-driven techniques such as Machine 

Learning (ML) in agricultural modeling. ML techniques have been used in agriculture 

for multi-classes land cover classification, cropland and crop type mapping, and crop 

yield modeling (Samasse et al., 2020; Zhang et al., 2019; Zwart & Leclert, 2010). Main 

agricultural applications using ML have been recently reviewed by Liakos et al. (2018).   

Compared to more traditional statistical and process-based crop monitoring methods, 

ML is a method apart, based on intelligent predictive algorithms that are capable to 

“learn” from the data without any rules defined in advance by explicit programming 

(Liakos et al., 2018). However, machine learning is a complex process necessitating 

large amounts of data ("data-driven approach"; (Bzdok et al., 2018)) for better learning 

results. That is, as we provide ML algorithms more training data, it becomes possible 

to create more accurate models based on that data (Liakos et al., 2018). For practical 

considerations, and to compensate weaknesses that might occur with a single ML model 

instance, ensemble approaches are used (Dietterich, 2000; Zhou, 2009). Ensemble 

learning techniques can be applied for both classification and regression problems. The 

final prediction is determined by major voting (classification), or by averaging model 

outputs (regression). Sample data selection and methods to integrate multiple ensemble 

members are two significant characteristics of ensemble models. Bagging (Breiman, 

1996) and boosting (Freund, 1995) are two widely used ensemble learning techniques. 

Random Forests (RF; Breiman, 2001) and Boosted Regression Trees (BRT; Elith et al., 

2008) are examples of Ensemble Learning models, implementing bagging and boosting 

methods, respectively. They have been widely used in satellite remote sensing data 

processing (classification and regression) for agricultural applications (Aghighi et al., 
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2018; Charoen-Ung & Mittrapiyanuruk, 2018; Jeong et al., 2016; Xu et al., 2020; Zhang 

et al., 2019). 

1.1.2. Satellite remote sensing-based crop monitoring 
Satellites remote sensing-based tools and models have been used for decades in the 

Sahelian region through different regional and national initiatives, and in collaboration 

with international institutions, to allow near-real-time monitoring of the cropping 

season.  

At global scale, the Global Information and Early Warning System (GIEWS; 

http://www.fao.org/giews), established by the Food and Agriculture Organization of 

the United Nations (FAO), monitors the condition of major crops to assess production 

prospects using a variety of data sources including earth observation products. The 

major remote sensing-based product used in GIEWS for water stress and cop condition 

monitoring is the Agricultural Stress Index (ASI). ASI is computed in the Agricultural 

Stress Index System (ASIS), which is integrated in the GIEWS platform, based on 

NDVI, and BT4 (Brightness Temperature in AVHRR band 4) derived from 

NOAA/METOP-AVHR. It integrates also NDVI from SPOT-VEGETATION series 

(Van Hoolst et al., 2016). GIEWS provides information on countries facing food 

insecurity through monthly briefing reports, which includes areas that might have 

anomalies caused by dry spells during crop growing seasons.  

At regional scale, the  USAID's Famine Early Warning System Network (FEWS 

NET) combines biophysical remote sensing applications through its collaboration with 

NASA, NOAA, USGS and USDA, and socio-economic methodologies through its 

involvement with UN WFP and numerous international non-governmental 

organizations such as Save the Children, Oxfam and others (Brown, 2008; Ross et al., 

2009). FEWS NET provides monitoring and early warning support to decision makers 

responsible for responding to humanitarian crises including famine and food insecurity. 

The primary FEWS NET satellite remote sensing-based inputs include rainfall and 

vegetation information (Ross et al., 2009). An example of an analysis tool promoted by 

FEWS NET is the Early Warning eXplorer (EWX; 

https://earlywarning.usgs.gov/fews/ewx/index.html) interactive web-based mapping 

tool, which allows users to visualize continental-scale rainfall estimates (RFE; Xie, 

2001), rainfall estimates from the Climate Hazard group InfraRed Precipitation with 

http://www.fao.org/giews
https://earlywarning.usgs.gov/fews/ewx/index.html
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Stations (CHIRPS; Funk et al., 2015), land surface temperature (LST) and normalized 

difference vegetation index (NDVI) data and anomalies at varied time steps (covering 

crop growing season; FEWS NET, 2020). The FLDAS (FEWS NET Land Data 

Assimilation System; https://ldas.gsfc.nasa.gov/fldas) provides additional 

hydroclimatic variables (e.g. Soil moisture, Evapotranspiration, Wind speed) to support 

agricultural monitoring and modeling. Through regular reports, FEWS NET provides 

crop condition monitoring support to most of the developing world, including Sahelian 

countries in West Africa.  

In West Africa, the AGRHYMET (Agriculture, Hydrology and Meteorology) 

Regional Center in Niamey, Niger, is a specialized institution which promotes 

integration of Earth observations data and crop growth models to build improved 

drought assessment across member countries. This system includes crop monitoring 

during the growing season and yield predictions. AGRHYMET uses the crop growth 

simulation model named Système d’Analyse Régional des Risques Agroclimatiques, 

version H (SARRA-H; http://sarra-h.teledetection.fr/SARRAH_Home.html), which 

has been adapted to the operational needs of agrometeorological monitoring in West 

Africa (Traore et al., 2014). Major spatialized outputs of SARRA-H to monitor crop 

are onset dates of the season, water requirements satisfaction indices (WRSI), and 

potential yields. In addition to these outputs, the normalized difference vegetation index 

(NDVI; Tucker, 1979), and other NDVI-based indices like the vegetation condition 

index (VCI), are also used at AGRHYMET for crop condition and anomaly analysis 

during the growing season (Traore et al., 2014).  The AGRHYMET regional center also 

implemented the “Water Management for Cropland and Rangeland Management” 

thematic application of the African Monitoring of the Environment for Sustainable 

Development (AMESD) project coordinated by ECOWAS and AUC. This project 

aimed to use EUMETSAT  satellite  data  and  products to develop indicators for 1) 

Monitoring  vegetation  growth  to  evaluate cropland and rangeland productivity, 2) 

Determination of areas affected by droughts, 3) Localization  and  monitoring  of  small  

surface water bodies, and 4) Localization of bush fires and estimation of size of burned 

areas (EUTELSAT, 2009). Through monthly and special environmental monitoring 

reports, AGRHYMET provides critical agrometeorological information to member 

countries for decision making related to areas as risk of drought. 

https://ldas.gsfc.nasa.gov/fldas
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GEOGLAM Crop Monitoring system (https://cropmonitor.org/) was initiated by 

the Group of Twenty (G20) countries in 2011 to reinforce international community 

capacity in crop condition monitoring using satellite remote sensing products for the 

promotion of food security. These products include NDVI and NDVI anomalies derived 

from NASA MODIS vegetation index products, CHIRPS precipitation, temperature 

and temperature anomalies, soil moisture, evapotranspiration, and runoff extracted 

from diverse sources including FEWS NET Land Data Assimilation System (FLDAS; 

(Loeser et al., 2020; McNally et al., 2017; Pervez et al., 2016)).  Overall, the Crop 

Monitor for Early Warning (CM4EW) provides, based on the best available 

information, transparent, multi-sourced, consensus assessments of the crop growing 

conditions, status, and agroclimatic conditions that are likely to impact production in 

countries vulnerable to food insecurity in order to strengthen agricultural, humanitarian 

intervention, food security decision making and policy implementations (Becker-

Reshef et al., 2020). CM4EW reports include most of the sub-Saharan countries.  

To become effective and accurate in crop condition monitoring, the above-

mentioned systems integrate remote sensing indices (e.g. ASI, VCI, WRSI, and NDVI) 

based on cultivated areas, whenever it is available. Thus, cropland and crop specific 

mapping is of first level importance for all operational crop monitoring system. Several 

previous studies have examined mapping cultivated areas using remotely sensed data 

at different scales (Fritz et al., 2011; Lambert et al., 2016; Ramankutty, 2004; 

Thenkabail et al., 2009; Tong et al., 2020; Xiong et al., 2017). However, none of these 

studies were focused on crop specific mapping at regional scale across the Sahel. 

Furthermore, the coarse to moderate spatial resolution of most earlier efforts (~1 km to 

100 m) are limited in their ability to resolve individual farmer fields or specific crops 

(Y. Shao et al., 2015), particularly in spatially fragmented rural Sahelian landscapes.  

1.2. Research Objectives 
This dissertation research aims to explore the use and improvement of remote 

sensing and geospatial technologies in support of regional and national-level famine 

early warning and food security institutions in West Africa, with a focus on Mali. The 

research aims to investigate the current technologies used for national and regional-

scale agricultural monitoring, and develop new approaches using remote sensing and 

modeling that will improve our ability to monitor and understand current patterns and 

https://cropmonitor.org/
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major processes. Specifically, the research is structured to use earth observation 

technologies to contribute in four critical respects to our understanding of agricultural 

production in rural West Africa: 

1. assess the accuracy of existing maps of cropland area in the West African 

Sahel 

2. use new training data with new geospatial tools and machine learning to 

develop an improved 30-m cropland database for West Africa, 

3. develop a crop type map for major subsistence cereals crops of Mali and 

analyze their spatial distribution for yield modelling purposes, 

4. explore ensemble machine learning and data-driven based models to predict 

yields for maize production in Mali. 

1.3. Structure of the Dissertation 
This thesis is organized in six (6) chapters with four (4) of them leading to scientific 

articles.  

1.3.1. Chapter 1: Introduction (this Chapter) 
Introduces agricultural production and the food security situation in the West 

African Sahel, techniques of agricultural production modeling and crop condition 

monitoring using satellite remote sensing data. 

1.3.2. Chapter 2: Existing cropland datasets accuracy assessment (Paper 

#1) 
 Identification of agricultural land areas, as distinct from pasture, fallow, and other 

land uses, is a critical first step in developing remote sensing technologies for 

agricultural applications. Several coarse-resolution (~1 km) satellite-based global land 

cover (GLC) products are available and freely downloadable. However, their accuracy 

at fine spatial scales is unknown. Chapter 2 of this thesis deals with an assessment of 

common GLCs accuracy in terms of spatial distribution of cropland in the West African 

Sahel, using a newly available reference dataset. Assessment results have been 

published as the first scientific paper from this dissertation. 

1.3.3. Chapter 3: Development of a new cropland map for West Africa 

Sahel (Paper #2)  
The relatively high uncertainty associated with existing data on cropland location 

in West Africa identified in Chapter 2 motivated this Chapter. The reference cropland 
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dataset is used to train Random Forest (an ensemble learning classifier) with 30-m 

resolution satellite data from the Landsat 7,8 time series, and geospatial datasets 

(climate, soils, and terrain) for the development of an improved Cropland product for 

West African Sahel. The resulting cropland dataset named WASC30 (West African 

Sahel Cropland 30 m) and related main findings have constituted the second published 

article (Paper #2) of this research.  

1.3.4. Chapter 4: National scale crop type mapping for the major rainfed 

cereal crops of Mali, West Africa (Paper #3) 
By using extensive sample data on crop types provided by the Malian Department 

of Agriculture, a 30 m crop type map is developed describing the spatial distribution of 

the major cereal crops (maize, millet, and sorghum) for the country of Mali. The 

WASC30 cropland areas database (Chapter 3) was used to mask non crop and irrigated 

areas from the new crop type map. Crop type mapping used climate averages (CHIRPS 

precipitation data) with terrain (elevation and slope) and four vegetation indices (NDVI, 

EVI, SAVI, and MSAVI) as predictors for Random Forest models  to map major 

subsistence cereal crops of Mali (maize, pearl millet, rice, and sorghum). Area and 

spatial distribution of crop fractions by crop types are also analyzed in this Chapter. A 

manuscript, including the main findings of this Chapter are under preparation for 

publication as Paper #3. 

1.3.5. Chapter 5: Preliminary analysis of crop yield predictions using 

satellite and environmental data for maize production in Mali, West 

Africa (Paper #4) 
The spatially explicit crop type map of the most important cereal crops across 

the country of Mali, developed in Chapter 4, is a critical step toward crop yield 

modeling. As separating crop specific locations from non-crop, fallow, and other 

vegetation contributes to reduce mixture in extracting information from other necessary 

variables (e.g. weather, soil, management) in crop yield predictions. Here I use Malian 

Department of Agriculture data on yield, with ensemble machine learning and satellite 

data to predict crop yields for maize production in Mali. This Chapter 5 of my 

dissertation gathers method, data, and preliminary results of such maize yield analysis 

for submission as Paper #4. 
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1.3.6. Chapter 6: Conclusions and Perspectives 
This Chapter provides a summary and synthesis of the main findings of 

Chapters 2-5 and their implications in terms of agricultural monitoring, food security 

and policy making for West African Sahel countries. Recommendations for future 

directions in remote sensing-based crop monitoring and yield predictions are also 

highlighted.  
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CHAPTER 2 

Assessing Cropland Area in West Africa for Agricultural Yield Analysis 

Paper # 1 

Samasse, K.; Hanan, N.P.; Tappan, G.; Diallo, Y. Assessing Cropland Area in West 

Africa for Agricultural Yield Analysis. Remote Sens. 2018, 10, 1785. 

Abstract 

Accurate estimates of cultivated area and crop yield are critical to our 

understanding of agricultural production and food security, particularly for semi-arid 

regions like the Sahel of West Africa, where crop production is mainly rainfed and food 

security is closely correlated with the inter-annual variations in rainfall. Several global 

and regional land cover products, based on satellite remotely-sensed data, provide 

estimates of the agricultural land use intensity, but the initial comparisons indicate 

considerable differences among them, relating to differences in the satellite data quality, 

classification approaches, and spatial and temporal resolutions. Here, we quantify the 

accuracy of available cropland products across Sahelian West Africa using an 

independent, high-resolution, visually interpreted sample dataset that classifies all 

points across West Africa using a 2-km sample grid (~500,000 points for the study 

area). We estimate the “quantity” and “allocation” disagreements for the cropland class 

of eight land cover products in five Western Sahel countries (Burkina Faso, Mali, 

Mauritania, Niger, and Senegal). The results confirm that coarse spatial resolution (300 

m, 500 m, and 1000 m) land cover products have higher disagreements in mapping the 

fragmented agricultural landscape of the Western Sahel. Earlier products (e.g., 

GLC2000) are less accurate than recent products (e.g., ESA CCI 2013, MODIS 2013 

and GlobCover 2009). We also show that two of the finer spatial resolution maps 

(GFSAD30, and GlobeLand30) using advanced classification approaches (random 

forest, decision trees, and pixel-object combined) are currently the best available 

products for cropland identification. However, none of the eight land cover databases 

examined is consistent in reaching the targeted 75% accuracy threshold in the five 

Sahelian countries. The majority of currently available land cover products 

overestimate cultivated areas by an average of 170% relative to the cropland area in the 

reference data. 
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2.1. Introduction 
Inter-annual variability in crop production associated with climate variability, 

pests, and diseases is a global concern, particularly for developing countries, where 

rural communities often lack the capital to help them cope with crop failures and food 

shortages (Conceição et al., 2011). Food security is therefore one of the major 

challenges faced by rural communities in developing countries. In this context, accurate 

estimates of the cultivated area, as part of crop yield and monitoring programs, are 

critical to our understanding of agricultural production, food security, and the 

associated social and economic issues (Zhong et al., 2014). Remote sensing-based land 

cover products constitute an important source of information for analyzing the 

dynamics of natural and anthropogenic terrestrial ecosystems, particularly for planning 

food security policies (Hüttich et al., 2011). At national, regional, and global scales, 

satellite-based systems are necessary, because of their ability to measure large areas, 

providing timely and consistent data.  

Several freely accessible global land cover products, including agricultural land 

cover classes, are available at varying spatial resolutions. These products utilize 

different sources of satellite data and implement different classification approaches, 

with varying accuracy and spatial resolution (Herold et al., 2008). Previous analyses 

have reported overall and class-specific accuracies at a global scale for some of these 

land cover products (Olivier Arino et al., 2008; ESA-CCI, 2013; Friedl et al., 2010; 

Mayaux et al., 2006). However, a more detailed regional assessment, particularly for 

the West African Sahel, of these global products has so far not been published.  

The class-specific accuracy of GLC2000 (Mayaux et al., 2006), MODIS collection 

5 land cover (Friedl et al., 2010), GlobCover (Olivier Arino et al., 2007), and ESA CCI 

Land Cover (ESA-CCI, 2013) have been reported only at global or continent scales, 

with important disparities among them, particularly for the cropland classes. At a 

continent scale, Fritz et al. (2011) developed a synergy cropland map (IIASA Cropland) 

for sub-Saharan Africa, using five global land cover datasets (GLC2000, MODIS Land 

Cover, GlobCover, MODIS Crop Likelihood, and AfriCover). The combined product 

has been validated using a Geo-Wiki crowdsourcing application, with reported 

improvements over the individual datasets for the cropland class (Fritz et al., 2011). A 

similar cropland intensity map has been initiated by the Food and Agriculture 

Organization of the United Nations (FAO) as part of the GLC-SHARE global land 
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cover data. GLC-SHARE aims to provide the global climate modeling community with 

a baseline product (Latham et al., 2014). 

The overall accuracy or cropland class accuracy may change among regions and 

continents, because the classification approaches may be more or less successful, and 

because the availability and quality of the training and reference datasets may vary. For 

example, at an Africa continent scale, Wei et al. (2018) compared the cropland class of 

five land cover products using Google Earth imagery and the FROM-GLC dataset for 

validation information. The results showed different accuracies for the different climate 

zones in Africa. However, the FROM-GLC product itself is found to underestimate the 

cropland area for African countries (Laso Bayas et al., 2017), and the overall accuracy 

reported by Wei et al. (2018) includes both crop and non-crop classes, without a crop 

class-specific accuracy assessment. In general, accuracy assessments of land cover 

products have been done with a less detailed evaluation of the cropland classes at 

national or regional levels. By using a more accurate reference dataset (the result of 

manual interpretation of higher spatial resolution images and USGS expert validation; 

(Tappan et al., 2016)), this paper aims to conduct a detailed performance assessment of 

the various global land cover datasets so as to accurately map the cultivated area in five 

Sahelian West Africa countries (Burkina Faso, Mali, Mauritania, Niger, and Senegal). 

Specifically, we focus on reporting the cropland class user’s accuracy (i.e., number 

correctly identified in a given map class divided by number claimed to be in that map 

class, related to commission error), the quantity and allocation disagreements based on 

Pontius and Millones (Pontius Jr & Millones, 2011), and the good practices of map 

accuracy assessment suggested in Olofsson et al. (2014). We also report the “area 

ratio”, which is the area of cropland estimated in each global land cover (GLC) product 

for each country, divided by the area in the reference dataset, as a metric of how well 

each product defines cropland area. 

2.2. Materials and Methods  
Figure 2.1 describes the different steps for assessing the accuracy of the land cover 

products for each of the five Sahelian countries, including the eight global datasets 

included in the analysis, preprocessing, and extraction of the sample points derived 

from the reference data (details below). For each global land cover product, we created 
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a confusion matrix with error metrics. The final assessment is the comparison of crop 

areas as identified by the land cover products and the reference data. 

 
Figure 2. 1. Major steps of the accuracy assessment of different land cover products. 

2.2.1. Reference Data 
The West Africa Land Use Dynamics Project (WALUDP) has developed a three-

period dataset (1975, 2000, and 2013) to map land use and land cover change across 

West Africa (CILSS, 2016; Cotillon, 2017b; Tappan et al., 2016). Hundreds of Landsat 

images with a 30 m spatial resolution (Landsat TM, ETM+, and OLI) and 80 m spatial 

resolution (Landsat MSS) were sampled at 2 km intervals using the Rapid Land Cover 

Mapper (RLCM) tool. RLCM was developed by the U.S. Geological Survey (USGS) 

to facilitate manual image interpretation over large areas and for different periods of 

time (Cotillon & Mathis, 2017). The sampling consisted of superimposing a grid of dots 

over the imagery. Each dot of the 2 km by 2 km grid was visually interpreted by experts 

with local experience in each country. The interpretations were based on Landsat data, 

with high resolution satellite and aerial photography used to supplement or validate the 

Landsat classifications. The final dataset provides a classification into one of the 25 

land cover types for each centroid of the 2 km grid, with possible land cover classes, 

including multiple non-agricultural classes, and agricultural classes, including rainfed 

and irrigated cropland. The approach, based on expert visual interpretation, with 

specific local knowledge of the environments being classified, is expected to show 

better results than semi- or fully-automated classifiers, particularly for the cropland land 
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cover type across West Africa (CILSS, 2016). In this study, we used 50% of the 2 km 

by 2 km data points (selecting data from 2000 or 2013 so as to be closest to the nominal 

date of the global datasets) as the reference information for assessing the independent 

land cover products.  

Quality control for the reference data was carried out using multiple sources of 

ancillary data, including thousands of aerial photographs taken by the WALUDP team, 

high-resolution verification using Google Earth satellite imagery, and field validation 

in each country, facilitating the systematic verification of land cover assessments 

(Cotillon, 2017a). In addition, image interpretation and land cover assessments carried 

out by national experts were reviewed and revised during regular collaborative 

workshops in West Africa, in order to ensure consistent practice between country teams 

and USGS partners.   
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Figure 4.B. 1. Out-Of-Bag error and best mtry for all number of trees values, lying from 500 to 5000. 
nTree = 3000 gave the best fitted model as illustrated by the ranked table (Table 4) 

4.B.2. Fitted model 

The best fitted model’s output is the following. 
 

Call: 
 randomForest(formula = class ~ ., data = data_train, ntree = opt_ntree,      
mtry = opt_mtry, importance = TRUE)  
               Type of random forest: classification 
                     Number of trees: 3000 
No. of variables tried at each split: 24 
 
        OOB estimate of  error rate: 43.1% 
Confusion matrix: 
     0   1    2   3   4    5 class.error 
0 5696 101  221  51  58  375   0.1239619 
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1  203 486  151  18 212  565   0.7027523 
2  213 144 1226   6 210  679   0.5052462 
3  194  89   43 289  44  122   0.6299616 
4  196 224  394  19 234  732   0.8699277 
5  361 426  784  40 387 1655   0.5469477 

 

4.B.3. Variables importance and Error plots 

The Random forest algorithm offers the possibility to rank variables, which is useful 

for interpreting the results. The most influential predictors in our best fitted model are those 

related to weather (Precipitation) and terrain (Elevation). Surface reflectance in near-

infrared (NIR; Band 5) and shortwave infrared (SWIR; Band 7), are more important in 

predicting crop type than the first highly ranked vegetation index, which is NDVI. The 

other vegetation indices (i.e. EVI, SAVI, and MSAVI), for both wet and dry seasons, seem 

to have lower significance on the RF classifier outcomes in this analysis (Figure 4.B,2). 

  

 Figure 4.B. 2. Variables’ importance for mean decrease in accuracy and mean decrease in node impurity 
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4.B.4. Testing the model 

Table 4. 5. Error matrix based on testing samples. N is the total number of pixels by categories  

 Maize Millet Rice Sorghum Other crops Sum N 

Maize 327 12 19 26 40 424 16132517 

Millet 8 501 4 36 87 636 22361209 

Rice 2 0 158 1 7 168 1498883 

Sorghum 12 19 3 307 53 394 13921521 

Other crops 59 65 13 60 695 892 19379749 

       67238494 
 

 

Table 4. 6. Error matrix based on population estimate as suggested by (Pontius Jr & Millones, 2011) 

 Maize Millet Rice Sorghum Other crops 

Maize 0.1698 0.0062 0.0099 0.0135 0.0208 

Millet 0.0038 0.2403 0.0019 0.0173 0.0417 

Rice 0.0002 0.0000 0.0192 0.0001 0.0009 

Sorghum 0.0058 0.0092 0.0014 0.1480 0.0256 

Other crops 0.0175 0.0193 0.0039 0.0178 0.2060 

 

 

Table 4. 7. Accuracy metrics by crop types 

 Maize Millet Rice Sorghum Other crops All crops 

Quantity Disagreement 2.78 3.72 1.66 2.72 2.11 6.50 

Allocation Disagreement 5.42 6.69 0.27 5.17 12.73 15.13 

Proportion Correct 18.50 26.20 2.10 9.12 22.46 78.37 

User’s Accuracy 77.12 78.77 94.05 77.92 77.91  

Producer’s Accuracy 87.24 88.68 53.90 63.21 72.59  
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CHAPTER 5 

Preliminary analysis of crop yield predictions using satellite and 

environmental data for maize production in Mali, West Africa 

Paper #4 

In preparation for submission 

5.1. Introduction 

Information on crop area and yield is critical for agricultural development in low-

income countries because it contributes to a parsimonious allocation of scarce resources 

dedicated to the agricultural sector and constitutes a fundamental input for planning and 

making important decisions related to food security issues (Wineman et al., 2019). The two 

variables (crop area and yield) are required to estimate agricultural production. In Mali, 

like in other developing countries, crop area and yield are estimated by combining field 

assessments and statistical methods to extrapolate area and average yield from plots to 

administrative subdivisions scales. In general, errors due to these statistical estimations are 

not accurately known (Ministère de l’Agriculture, 2018), making these estimates poor. As 

alternatives to improve crop yield estimation accuracy and reduce costs induced by 

traditional methods of field surveying, various yield modeling approaches are used for both 

short-term and scenarios-based long-term predictions of yield. Two of these modeling 

approaches are process-based models which dynamically simulate crop growth and yield 

formation processes (e.g. Holzworth et al., 2014; Jones et al., 2003; Williams et al., 1989) 

and statistical models which relate yield to various predictors (e.g., soils. rainfall) based on 

empirical relationships derived from measured or observed historical data (e.g. Kern et al., 

2018; Li et al., 2019). 

Whether they are process-based or empirical models, crop yields predictions require 

timely and spatially resolved information on weather, soil, crop type and management. As 

satellite remotely sensed data are continuously improving in terms of spatial and temporal 

resolutions, they become valuable inputs forecasting crop yields on a large-scale basis 

using models, particularly in data-deficit regions such as the Sahel. Several previous 
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studies have examined how variables derived from satellite data, such as vegetation indices 

and soil moisture, can be combined with meteorological and other environmental 

information for improved process-based or statistical crop yield modelling. For example,  

Li et al. (2019) developed multiple statistical modeling methods for predicting rainfed corn 

yield in the U.S. Midwest. They combined satellite variables, such as MODIS land surface 

temperature and Enhanced Vegetation Index (EVI) with climate variables which include 

monthly mean vapor pressure deficit, mean air temperature, and monthly precipitation. 

Their results showed that satellite variables used alone as predictors give improvements in 

yield predictions compared to models based on climate variables alone. Remote sensing 

can also be used to estimate crop growth indicators, which can be integrated with crop 

growth simulation in process-based models for improved predictions. This technique, 

commonly known as data assimilation, has proven to be the most promising approach to 

increasing crop growth and yield estimation accuracy (Y. Xie et al., 2017). For example, 

Thorp et al. (2010) assimilated measured LAI in the DSSAT-CSM-Wheat model using 

forcing and updating methods. The forcing method consists of replacing a simulated state 

variable with a remote sensing observation, while in the updating approach the model state 

variables are continuously updated whenever an observation is available. A third method 

is “steering” which aims to re-initialize (e.g., sowing date, planting density) or re-

parameterize (e.g., canopy and growth parameters) the crop growth model in a way that 

minimizes the difference between simulated and measured data (Ines et al., 2013). The 

assumption of this latter method is that the variable derived from remotely sensed data is 

free of error or that the level of data error is acceptable to be propagated within the 

modelling system. However, satellite data assimilation in process-based models is not an 

easy task and, as these models are point-based simulators, we still need further processing 

to spatialize model outputs for yield estimation at larger scale (e.g. Venkatesan & 

Pazhanivelan, 2018). 

More recently, in parallel with process based and statistical models, machine learning 

techniques have been applied with satellite-derived datasets as predictors for crop yield 

predictions. In all cases, it has been found that machine learning models outperformed 

regular statistical approaches. Techniques of machine learning include multivariate 

regression, random forest, support vector machine, boosted regression trees, and artificial 
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neural networks (Cai et al., 2019; Khaki & Wang, 2019; A. Li et al., 2007; Peng et al., 

2020; Schwalbert et al., 2020). Machine learning models have advantages to treat the 

dependent variable (crop yield) as an implicit function of predictors (e.g. climate, soil), 

allowing for highly non-linear functions when needed (Khaki & Wang, 2019).  

In this study, we focus on crop yield of maize, a critical staple crop for many rural 

communities in Mali, using yield data from geo-localized plots provided by the Malian 

Department of Agriculture as reference data to train two machine learning models 

(Random Forest and Boosted Regression Trees) for yield modelling and predictions. All 

predictors were extracted for maize fields using the recently developed crop type map, 

which is used as a mask (Samasse et al., 2020). In total, 80% of 553 plot samples were used 

to train machine learning models, the remaining 20% were held apart for model testing and 

error quantification. Prediction performance was initially tested for independent plots in 

the training year (2017). Separately, we tested the ability of models fitted to data in 2017 

to be used for forecasting yields in 2018.   
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5.2. Methods 

5.2.1. Dependent variable (maize yield) 

Agricultural statistics data, including yields by crop type, are sampled annually by 

the Statistics and Planning Agency of the Malian Department of Agriculture. For this 

analysis, field data reported maize yields are the dependent variable. To reduce redundancy 

in the training dataset, a minimum distance of 200 m between plots has been observed, and 

only pure maize fields are included in this analysis. In total, we have 553 maize yield 

samples distributed across Mali to train the models. They are a subset of the dataset used 

to develop the crop type map detailed in Chapter 4 (Samasse et al., 2020). Basics statistics 

of the training dataset are shown in Figure 5.1, with average maize yields of about 2,000 

kg/ha but with considerable variability between samples. Spatially, Figure 5.2 shows 

locations of maize plots for 2017. We focused on the Koulikoro Region to illustrate spatial 

distribution of maize plots across the region.  

 

N = 553, mean = 2144.6 kg/ha, sd = 

1321.7 Kg/ha 

Figure 5. 1. Maize yield training 
dataset used in this study, after 
removing outliers. Year = 2017. 
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Table 5.1 Within-season diagnostic and between-season predictive model accuracy metrics for RF and BRT. 
Within-season diagnostic models use 20% independent test data for 2017, where training and test data 
share aspects of growing season conditions and the models rely on end of season yields for training (thus 
considered diagnostic models).  The between-season predictive models use models fitted using 2017 data, 
with new data on weather and VI from 2018 to make "true" predictions of 2018 maize yields with varying 
lead-time and input data.  

Within-season diagnostic models 

2017 dataset, 20 % of training, N = 

110 

Between-season predictive 

models 

2018 dataset, N = 638 

RMSE  RMSE 

RF BRT RF BRT 

Model 0: Full model 362.0 449.9 706.7 973.7 

Model 1: June-July 378.3 492.2 835.1 1079.7 

Model 2: June-August 366.1 537.8 756.9 1020.0 

Model 3: Weather 507.9 568.6 857.3 1169.3 

Model 4: VI 454.6 752.4 858.7 938.0 

 

Figure 5.3 illustrates plots of observed against predicted yields using the 20% 

reserved testing data in 2017 and independent yield data for 2018. RMSE values resulting 

from predicting yields for 2018 (707 kg/ha and 974 kg/ha) are approximately twice those 

in 2017 (362 kg/ha and 450 kg/ha).  However, the RF model performs considerably better 

than the BRT model in all cases. In 2018 predictions, we also have weak linear 

relationships between predicted and observed values, as explained by the R2 values, 20% 

and 14% for RF and BRT, respectively. 

 

 

 

 

 

 


