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ABSTRACT 

EXTRACTION OF MILK PHOSPHOLIPIDS USING SWITCHABLE SOLVENT 

EXTRACTION 

KAAVYA RATHNAKUMAR 

2021 

Phospholipids (PLs) found in milk are of great interest due to their health and 

nutritional benefits associated with their consumption. By-products generated during the 

manufacture of dairy products represent a source of PLs with potential for value-added 

opportunities. Currently, the extraction of PLs from by-products results in overall low-

efficiencies, and it involves subsequent solvent separation and lipid recovery. This 

dissertation studied the extraction of milk PLs from by-product streams with a tertiary 

anime (N, N-dimethyl cyclohexylamine, CyNMe2) as a switchable hydrophilicity solvent. 

This type of solvents can be reversibly switched between a hydrophobic and hydrophilic 

form in the presence or absence of CO2.  

 

Different dairy by-products streams, including buttermilk (BM), beta-serum (BS), 

concentrate buttermilk (CBM), and raw cream (RC) was used to evaluate the feasibility of 

CyNMe2. The extraction efficiency of CyNMe2 ranged from 0.33-99%, depending on the 

type of byproduct. Remarkably, CyNMe2 extracted up to 99% of the PLs directly from 

buttermilk. The extraction of PLs from BS was further studied using ultrasound prior to 

CyNMe2 extraction. Overall, higher levels of acoustic intensity (44.56 ± 3.47 W cm-2) 

prior to CyNMe2 extraction recovered 69.07 ± 0.11% of PLs, 10-fold higher than the 

samples without ultrasound pretreatment. The recovered fraction of PLs mainly comprised 

of phosphatidylinositol (32%), phosphatidylethanolamine (30%), and sphingomyelin 
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(37%). The effect of the extraction temperature (25, 40, and 60oC), time (3, 10, and 18 h) 

and solvent ratio (3/1, 10/1, and 18/1 mL) was also studied. The highest yield obtained was 

29.29 ± 0.06% of PLs at 60 oC, at minimized solvent ratio and time (3/1 mL and 3 h, 

respectively). At these conditions, the fraction of PLs recovered was phosphatidylinositol 

(59%) and phosphatidylethanolamine (35%). Insights into the extraction mechanism of the 

CyNMe2 was studied through various analytical measurements, such as analysis of 

protein-profile, particle size, zeta potential, and microstructure, Confocal Laser Scanning 

Microscopy (CLSM) and Scanning Electron Microscopy (SEM). CyNMe2 seems to 

disrupt the protein-membrane through ion pair formation, releasing the PLs into the 

aqueous medium. Throughout this thesis, CyNMe2 shows to be an effective way to 

concentrate PLs from by-products.  
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CHAPTER 1 

1.1. Introduction and objectives 

The utilization of milk phospholipids (MPLs) as functional ingredients has been a topic 

of industrial interest over the past decades. The primary drivers for such interest have been 

the health benefits of MPLs beyond their basic nutrition. Improved cognitive performance, 

therapeutic effects, and antioxidant capacity are examples of health benefits associated 

with the consumption of MPLs (Ortega-Anaya & Jimenez-Flores, 2019). Dairy byproducts 

have been considered as a feedstock of MPLs with the most potential for producing 

concentrates and isolates of MPLs.  

 

A number of byproduct streams are industrially available to recover MPLs, including 

buttermilk, dried buttermilk, beta-serum, and whey protein phospholipid concentrate 

(Huang et al., 2020). The existing methods to recover MPLs from byproduct streams 

include enzymatic hydrolysis of protein followed by filtration, microfiltration, 

ultrafiltration, supercritical fluid extraction or a combination of these technologies (Astaire 

et al., 2003, Costa et al., 2010, Barry et al., 2017). The recovered MPLs are further dried 

to produce a concentrate of MPLs, containing between 20 and 70% of MPLs with respect 

to the total fat (Huang et al., 2020). 

 

On the other hand, separation methods with the ability to extract lipids from aqueous 

stream is relevant for process economics and commercial viability since the removal of 

water from streams is a prerequisite before extraction, and significantly contributes toward 
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the production cost. Thus, the extraction and recovery of MPLs from aqueous streams 

provide opportunities for the development of novel dairy ingredients.  

 

Over the past few years, switchable solvents have been used to facilitate the extraction 

and subsequent separation of polar compounds (Samorì et al., 2013). Moreover, this type 

of solvents has the ability to extract lipids from wet materials, and they consist of either 

primary, secondary, or tertiary amines (Jessop et al., 2012). These solvents abruptly and 

reversibly switch from a hydrophobic phase to a hydrophilic form by bubbling or removing 

CO2.  

 

1.2. Thesis objectives 

The overall objective of this work was to develop strategies for the extraction of MPLs 

from aqueous streams, using a tertiary amine (N, N-dimethyl cyclohexylamine, CyNMe2) 

as a switchable hydrophilicity solvents (SHS). The specific objectives of this thesis were: 

• To evaluate the feasibility of extraction and separation of MPLs from different 

dairy matrices using CyNMe2 as a switchable hydrophilicity solvent (chapter 3),  

• To improve the extraction of beta-serum using ultrasound prior to CyNMe2 

extraction (chapter 4), 

• To evaluate the effect of time, temperature, and solvent ratio on the CyNMe2 

extraction of MPLs from beta-serum (chapter 5),  

• To understanding the mechanism of CyNMe2 extraction (chapter 6), 

• To evaluate the applicability of beta-serum in the manufacture of ice-cream 

(chapter 7). 
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CHAPTER 2 

LITERATURE REVIEW1 

2.1. Relevance of phospholipids 

Phospholipids are surface-active, amphiphilic molecules, consisting of both the 

hydrophilic tail and hydrophobic head (Contarini and Povolo, 2013a). Because of this 

amphiphilic character, they are used as emulsifier, wetting agent, solubilizer, and liposome 

former (Hoogevest et al., 2014). PLs are complex polar lipids that contain a phosphate 

group and two fatty acids esterified to a glycerol backbone.  

 

In milk, PLs are naturally present within the fat globule embedded with the epithelial 

cell plasma membrane, forming a complex structure known as the milk fat globular 

membrane (MFGM). This type of arrangement causes the milk fat to be emulsified and 

dispersed within the milk (Costa et al., 2010). MFGM contains proteins, minerals, neutral 

lipids, and enzymes (Danthine et al., 2000). Phospholipids are perhaps the most significant 

compound within the MFGM, accounting for about 4.49 g PLs 100 g-1 of fat (Avalli & 

Contarini, 2005). Glycerophospholipids and sphingolipids are quantitatively the most 

important PLs in milk. They account for about 0.5-1% of the total MPLs, and they are 

mostly present in the MFGM. Phosphatidylcholine (PC) and sphingomyelin (SM) are 

outside the membrane, while phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

phosphatidylinositol (PI) are found in the inner surface of the membrane (Contarini and 

Povolo, 2013a).  

 
1 A version of this chapter has been submitted as book chapter in Non-thermal Processing Technologies for 

the Dairy Industry 
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During the processing of dairy products, PLs are separated from the membrane and the 

resulting stream is known as byproduct. For instance, the churning of cream during the 

manufacture butter produces a liquid rich in PLs known as buttermilk. Similarly, the 

manufacture of anhydrous milk fat produced B-serum as the main by-product. MPLs are 

gaining more importance because of the nutritional and health benefits and their unique 

composition in PLs. The composition of PLs in different dairy by-products is represented 

in Table 2.1. 

 

Table 2.1.Approximate composition of phospholipids in different dairy products (Burling 

and Graverholt, 2008). 

 

 

 

 

MPLs have exhibited nutraceutical properties due to the unique profile of PLs. Table 

2.2 exemplifies the profile of MPLs. PS is associated with cognitive function and releasing 

stress and is replaced by inactive cholesterol as the brain ages (Castro-Gomez et al., 2017), 

while SM effectively inhibits colon tumors (Kuchta-Noctor et al., 2016). It also reported 

that consuming PLs helped in reducing cardiovascular diseases, restoring immunological 

defences (Hernell et al., 2016), reduced cholesterol absorption (Timby et al., 2015), and 

total liver lipids (Küllenberg et al., 2012). Apart from the nutritional benefits, milk 

phospholipids as natural emulsifiers in food products. It is also used in the infant formula 

for infants growth and brain development (Huang et al., 2020b).  

 

Product Fat (%) PLs (mg/g fat) 

Cream 22.1 8.6 

Milk 3.0 3.5 

Butter 82.0 1.9 

Buttermilk 0.2 45 
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Table 2.2. Relative Composition of PLs ( Huang et al., 2020 ) 

 

Phospholipids (PLs) Soy Egg Milk 

Phosphatidylcholine (PC) 34 75 27 

Phosphatidylethanolamine 

(PE) 

21 15 25 

Sphingomyelin (SM) 0 2 24 

Phosphatidylserine (PS)  0 1 18 

 

2.2. Methods for concentrating the phospholipids 

2.2.1. Buttermilk derivatives  

Buttermilk is a by-product obtained from the churning of butter which has a rich 

amount of milk fat globular membrane (MFGM). Figure 2.1 illustrates the process for 

manufacturing of butter and by-products obtained.  

 

Figure 2.1. Schematic of the manufacture of butter and processing. 

 

The major challenge in the isolation and concentration of the MFGM is skim milk 

solids, mostly the casein micelles, which inhibit the concentration process. Another study 
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used a two-step process to polar lipids were concentrated using microfiltration and 

supercritical fluid extraction (SFE) for the buttermilk derivative (Astaire et al., 2003). The 

SFE with the optimal condition (375 bar, 77°C; 20 g min-1 CO2 flow rate; and 75 min 

extraction time) was used to extract the nonpolar lipids from the filtered and spray dried 

samples, where the temperature did not significantly impact the yield. With SFE, the total 

fat was reduced by 38%. It was observed that particle sizes decreased after the filtration 

and extraction processes (Astaire et al., 2003). Other researchers reported using 

ultrafiltration and SFE to obtain a whey buttermilk powder enriched in milk fat globule 

membrane PLs (Costa et al., 2010). Figure 2.2 illustrates the extraction of MPLs using 

enzymatic and membrane filtration.  

 

Figure 2.2. Illustration of the extraction of MPLs using enzymatic and membrane filtration. 

 

The whey buttermilk originally contained 25% of protein, 16% of lipids include 2% of 

PLs. It was concentrated by ultrafiltration and diafiltration. The retentate was then spray 

dried and submitted to SFE (350 bar and 50 °C). Most of the lactose and ash were removed 
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by SFE and ultrafiltration, and there were 73% of protein, 21% of lipid, including 61% of 

PLs in dried whey buttermilk. In a recent study, PLs have been extracted from ultrafiltrate 

buttermilk powder (BMP) (Barry et al., 2017). SFE and ethanol extracted the ultra filtrated 

BMP with 11.05 ± 0.02% PLs as co-solvent. The optimal conditions used were 40 °C, 300 

bar, and 20% of ethanol and increased PLs concentration to 56.24 ± 0.07% on the dry base. 

Others have concentrated 56% of PLs from reconstituted buttermilk using enzymatic 

hydrolysis of protein before microfiltration, followed by supercritical carbon dioxide with 

ethanol as co-solvent (Barry et al., 2017). Another investigation on the concentration of 

PLs from buttermilk powder showed a five-fold increment in the PLs content by 

microfiltration coupled with supercritical carbon dioxide (Spence et al., 2009). High purity 

of phospholipid-rich extract of 76% (wt/wt) was achieved at SFE condition of 60°C, 30 

MPa, and 15% (wt/wt) ethanol from the buttermilk powder using a pure sequential SC-

CO2 and ethanol-modified SC-CO2 was carried out, the first one was to separate the non-

polar lipids,  followed by concentrating the PLs in the second fraction (Ubeyitogullari & 

Rizvi, 2020).  

 

2.2.2. Beta-serum  

Beta-serum (BS) is a by-product obtained from the phase inversion of anhydrous milk 

fat. Researchers have been extracted nonpolar and polar lipids from BS (Catchpole et al., 

2008). BS contains approximately 60% fat, and it has more components from MFGM than 

buttermilk. Price et al. (2019) applied zinc and calcium acetate with mild heat treatment, 

and adjusting the pH precipitated the PLs and protein into a pellet fraction and further used 

the ethanol to extract the PLs. With ethanol extraction, PLs recovery of 97.7 ± 1.7% from 
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the zinc acetate precipitate and 94.9 ± 3.7% from calcium acetate precipitate was achieved. 

Catchpole et al. (2008) used Dimethyl ether (DME), and CO2 were both used as solvents. 

DME can extract both neutral and polar lipids. Spray-dried beta-serum first extracted most 

neutral lipids by supercritical fluid extraction (SFE) with neat CO2 under 300 bar and 40°C. 

The PLs enriched residual was then re-extracted by SFE with DME under 40 bar and 60°C. 

The polar lipid extracts were analyzed and contained 70% of PLs. The study also stated 

that the spray-dried sample could be subjected to CO2 and then DME or DME and then 

CO2.  

 

2.2.3. Whey protein phospholipid concentrate (WPPC) 

Whey Protein phospholipid concentrate (WPPC) is also known as pro-cream. It is a by-

product produced from the processing of cheese obtained during the micro-filtration of 

whey protein isolate (Levin et al., 2016). Whey protein PL concentrate contains 60 to 70% 

whey protein, and 10 to 30% of the total lipid content is PLs. The study by Sprick et al. 

(2019) found that a 2-step SFE process with neat S-CO2 and ethanol as a co-solvent is an 

efficient extraction method for concentrating a PL-rich fraction from Whey Protein 

Phospholipid Concentrate (WPPC), obtaining 26.26 g of total PL/100g of fat at 35.0 MPa, 

40°C, and 15% ethanol. Simultaneous texturization and use of ethanol to extract the PLs 

was developed by Price et al. (2018). The optimum processing conditions for a combined 

5-stage sequential extraction for producing a PL-enriched lipid fraction were 70% ethanol 

at 70°C, total lipid recovery, total PL recovery, and PL content achieved was 40.7, 58.1, 

and 45.8%, respectively. An enriched fraction of α-lactalbumin and β-lactoglobulin was 

obtained from whey protein concentrate using heat and CO2 using a pressure of 4140 kPa 
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and 5520 kPa, temperature 64oC for a residence time of 10 min was obtained a recovery of 

55 % and 78% that of α-La and β-Lg (Tomasula et al., 1998). Many studies reported the 

methods to enhance the functional properties of buttermilk, beta serum and WPPC. 

Physicochemical treatments, including microfiltration, ultrafiltration, and supercritical 

fluid extraction, have been applied to increase the concentration of PLs.  

 

2.3.Switchable hydrophilicity solvents (SHS) 

SHS is a new class of solvents with unique behavior. These solvents, made from either 

primary, secondary, and tertiary amines, can extract lipids from wet materials. The Philip 

G. Jessop group developed these green solvents at Queens University, Canada (Jessop, 

2017). These are often referred to as Smart solvents as they can abruptly switch from water-

immiscible (hydrophobic) form to water-miscible (hydrophilic) form by simply bubbling 

with the CO2 (Jessop et al., 2010a). Figure 2.3 represents the switchable hydrophilicity 

solvents (SHS) extraction process.  

Figure 2.3. Schematic diagram of Switchable solvent extraction. 
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The switchable hydrophilicity solvents can be tested for their behavior based on the 

phase formed. If an organic liquid forms one phase when mixed with water before CO2 is 

added, it is called monophasic and therefore not considered SHS. If a mixture of an organic 

compound and water forms two phases before CO2 is added and forms one phase after CO2 

is added, it is an SHS. The change in miscibility is because of an acid-base reaction between 

either hydrated CO2 or carbonic acid in the carbonated water,and the SHS gives a 

hydrophilic ammonium bicarbonate salt (Jessop et al., 2010b). Removing the CO2 and 

inserting the N2 goes back to its original amine and can be reused for the further extraction 

process.  

 

2.3.1. Switchable solvents in the extraction of lipids  

Hexanes and other hydrocarbons are becoming a health concern in recent times and 

environmental damage. Distillation is a common practice for removing solvents; therefore, 

this process has various disadvantages. This process requires a lot of volatile solvents 

leading to vapour emission contributing to smog formation (Jessop, 2017) and the other 

concern is it requires a large input of energy. Therefore, it would be desirable to obtain a 

non-distillation process for separating these solvents from the process. Replacement of 

these solvents has led to the discovery of these green solvents.  

Switchable solvents such as primary, secondary, or tertiary amines are applied to 

extract the lipids from the microalgae. Investigations by Samori et al.(2013) showed that 

the utilization of N,N dimethyl cyclohexylamine (CyNMe2), a tertiary amine for extracting 

lipids from wet algal cultures or samples. The low volatility, intermediate polarity and low 

water solubility behavior of the solvent contribute to higher extraction efficiency compared 
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to the organic solvents such as chloroform and methanol. The fatty acids methyl esters  

(FAMEs) from the amine yields higher than the algal pellets subjected to CHCL3-MeOH 

extraction. This was because the amine had access to all the structural lipids, which are 

resistant to extraction with CHCl3-MeOH. Boyd et al. (2012) studies on freeze-dried 

samples of Botryococcus braunii microalgae used N, N-dimethyl cyclohexylamine 

extracted up to 22 wt.% crude lipids relative to the freeze-dried cell weight, compared to 

conventional chloroform and methanol. Secondary amines such as dipropyl amine and 

ethyl butylamine were found to extract lipid material from aqueous slurries of fresh, 

unbroken microalgae wet Desmodesmus algae slurries (Du et al., 2013). Oil was directly 

extracted from wet microalgae slurries without the need for drying and milling and 

subsequently recovered the extracted oil and solvent by simple phase splitting, using CO2 

as a trigger. An energy-efficient lipid oil extraction from algae was obtained using this 

method without drying or cell disruption. Efficient lipid extraction from the oleaginous 

yeast Yarrowia lipolytica was done using N-ethyl butylamine (EB), N-dipropylamine (DP), 

and N,N-dimethyl cyclohexyl-amine (DMCHA) elsewhere (Yook et al., 2019). It was 

observed that DMCHA and EB effectively extracted lipids from Y. lipolytica, resulting in 

up to 13% higher lipid yields than conventional organic solvent extraction using a 

chloroform/methanol mixture. This study improved the energy efficiency and economic 

feasibility of an oleaginous yeast-based biodiesel production process.  

 

New polyethoxylated tertiary amines (methoxy ethyl) dibutylamine, N (methoxy 

ethoxy ethyl) dibutylamine and N (methoxy diethoxy ethyl) dibutylamine were synthesized 

as a replacer of DMHCA tested on the marine microalga (Samori et al., 2014) 
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Nannochloropsis gaditana, well known for its ability to produce high level of 

triacylglycerols. N-(methoxyethoxyethyl) dibutylamine resulted in being a valid candidate 

since it is hydrolytically stable, less volatile, and slightly less toxic than DMCHA towards 

aquatic organisms. SHS opens the possibility of recycling the algal culture medium, thus 

reducing the overall cost and water consumption and nutrients in third-generation biofuel 

plants. N, N,N tributylpentanamidine, as an SHS, was used to extract soybean oil from 

crushed soybeans (Phan et al., 2009).  

 

In conclusion, unlike organic solvents, it does not require a distillation process, and the 

reusability of the solvent makes it a more sustainable process. These switchable solvent 

systems provide an outlook to a cost and energy-efficient lipid recovery of lipids for fuels 

from algae. Switchable solvents can be advantageous as media for reactions, extractions or 

separations (Jessop and Subramaniam, 2007), especially when in a multi-step chemical 

process, solvent are used for a specific reaction step and must be removed entirely before 

the next step is carried out Phan et al.(2008). CyNMe2 appeared to be the best option, 

considering the following features expected for a “good” SHS amine, which should: (i) be 

immiscible with water (in the neutral form) and become miscible with water upon 

switching with CO2; (ii) be liquid at room temperature (in the neutral form); (iii) have high 

boiling and (iv) have low toxicity. 

 

2.4.Ultrasound assisted extraction 

Ultrasound (USD) generates a sound wave that ranges from 20 kHz to 100 MHz using 

a transducer that results in the particles compression and rarefaction in the medium and 
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collapsing of bubbles causing cavitation (Guimaraes et al., 2019). The increasing 

temperature and pressure implode the bubbles creating high waves of shear energy and 

turbulence in the cavitation (Abeysinghe et al.2020). USD can selectively separate and 

fractionate components, induce a range of sound effects, and enable complete usage of the 

byproducts and exploit the individual components specific functional properties (Leong et 

al., 2018). The USD has various potential applications in the dairy industry, such as 

homogenization, crystallization, enhancing the milk fat separation, and bioactive 

components. The enhancement of milk fat separation by the USD is obtained at an equal 

or higher frequency range 400 kHz (Torkamani et al., 2014; Guimaraes et al., 2019). When 

the USD is applied on fat globules, the pressure builds up in the container or chamber walls 

that act as pressure antinodes because of the radiation force, thereby increasing flocculation 

or coalescence occurring at these sites (Juliano et al., 2011). The increase in the floccule 

size of the fat globules causes a faster velocity rise and a separation speed (Leong et al., 

2014).  

 

Figure 2.4 illustrates the experimental setup and mechanism of ultrasound-assisted 

extraction. The phospholipids from the whey powder separated using the acoustic 

intensities 400 and 1000 kHz at different specific energy inputs 23–390 kJ kg-1 were 

studied by Torkamani et al. (2016). The process enhances the gravity separation of fat at a 

maximum power draw after 30 min , which was 4 to 5 times higher than the non-sonicated 

treatment resulting PL concentration of the whey powder was 59.8 ± 2.8 µg 100 g-1 of 

powder. It was also interesting to note from this study that even at highest specific energy 

inputs (390 kJ kg-1) USD did not promote oxidative reactions in the whey powders. 
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Ultrasound pretreatment as a cell disruption method to enhance the lipid extraction from 

the algae cells before solvent extraction was studied by Ellison et al. (2019). Reduced 

extraction time with enhanced lipid recovery of 0.21% was obtained from the 

Nannochloropsis oculate (microalgae) using USD compared to the conventional Bligh and 

Dyer method (Adam et al., 2012). Ultrasound exposure for 5 min was considered one of 

the most effective pretreatment methods (Lee et al., 2010).  

Figure 2.4. Illustration of Ultrasound-assisted extraction. 

 

The ultrasound extraction process includes parameters like amplitude, frequency, 

ultrasonic power to obtain the desired cavitation effect. The optimal choice of ultrasound 

frequency and intensity also should be considered (Wen et al., 2018). The actual power 

dissipated in a glass vessel will be calculated using the formula (Jambrak et al., 2014; 

Yanjun et al., 2014): 

 

𝑃𝑑𝑖𝑠𝑠 = 𝑚𝐶𝑝(
𝑑𝑇

𝑑𝑡
)  (2.1) 
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Where 𝑃𝑑𝑖𝑠𝑠 (W) is the actual ultrasound power dissipated,  m - a mass of the product (kg), 

Cp - specific heat capacity of the dairy by-product (J kg-1 k-1); (
𝑑𝑇

𝑑𝑡
)- is the change of 

temperature (ºC) for the time (s). The power intensity (W m-2) is the one that the medium 

experiences at the surface of the probe per unit area of the horn tip, can be calculated using: 

 

𝑃𝑖 =
𝑃𝑑𝑖𝑠𝑠

𝜋𝑟2    (2.2) 

 

Where 𝑃𝑖 –  power intensity (W m-2 ); r - radius of the horn tip (m); ε - energy density (W 

cm-3) is the amount of ultrasound energy per unit volume of the sample and can be used as 

a reference to scale up the system (Tiwari, 2015): 

 

𝜀 =
𝑃𝑑𝑖𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
   (2.3) 

 

 

2.5. Analytical methods for phospholipids  

2.5.1. Thin Layer Chromatography(TLC) 

TLC is a simple chromatography method for identifying synthesized mixtures by 

separating the compounds in the samples. The difference in analyte affinities includes the 

TLC polarities, development solvent, and compounds in the spot made the balance of 

intermolecular forces lead solvent to move the solute on the plate. Figure 2.5 represents 

the polar and non-polar lipids separated on the TLC plate. This technique has been widely 

used for determining the identity of compounds, individual components in a sample, and purity 

of compounds. In the food industry, researchers used TLC to identify different neutral lipids 
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and polar lipids. The solvent mixture for detecting PLs comprises chloroform, methanol, and 

deionized water; hexane, ethyl acetate, acetic acid is the solvent used to detect neutral lipids 

(Hutchins et al., 2008). Usually, compounds separated on the plate are colorless; visualization 

methods are needed to observe development. UV light and iodine vapor are the two most 

common methods. The spots interfere with fluorescence, show dark color on glowing silica gel 

plate under the UV light, and mark the spots by pencil to know the locations. For iodine vapors, 

since most organic compounds will turn to dark color with iodine, spots are easily observed 

after placing the plate into iodine vapors. Visualization of reagents such as ferric chloride, 

potassium permanganate, and ninhydrin could also make separated spot visible (Jork et al., 

1990).  

 

 

 

 

 

 

 

 

 

Figure 2.5. Thin-layer chromatography separation of simple lipids (Touchstone, 1995). 

 

2.5.2. High Performance Liquid chromatography (HPLC) 

The basic theory of HPLC involves passing a sample through the system over a 

stationary phase. The difference in the relative affinities of molecules in the sample for 

using the mobile phase and the stationary phase lead to the separation of molecules. Sample 
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components that display stronger interactions with the stationary phase will move more 

slowly through the column than components with weaker interactions. Different individual 

parts can be separated from each other as the liquid mobile phase filters down through a 

solid stationary phase in the column. The efficient chromatographic separations can be 

accomplished by using a variety of adsorbent material as stationary phases, including 

liquids (liquid chromatography), immobilized silica on glass plates, volatile gases, and 

paper (Kupiec, 2004). 

 

HPLC is utilized to isolate the PLs into various fractions using different detectors such 

as UV or evaporative light scattering detector (ELSD) (Fagan and Wijesundera, 2004, 

Avalli and Contarini, 2005). Recently, a new hybrid detector called the charged aerosol 

detector (CAD) has been into use. In lipidomic, it is necessary to use very sensitive methods 

to detect and quantify all the lipids present even at low concentrations (Markey et al., 2017). 

The operation principle is based on two steps: the first involves nebulizing the HPLC 

column effluent and evaporating the solvents. These steps are the same as that of the ELSD. 

The second part is the ionization of the aerosol particles by impacting the positively 

charged nitrogen (N2
+•) obtained by corona discharge. The amount of ion charged is then 

detected by an electrometer (Brunelli et al., 2007).CAD shares the same mobile phase 

nebulization principle as the ELSD but uses a charge transfer for solute detection that 

provides improved performances makes it more sensitive and precise (Contarini and 

Povolo, 2013a). A detailed mechanism behind the operation is reported elsewhere (Dixon 

and Peterson, 2002).  
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Hazotte et al. (2007) compared different universal detectors such as ELSD, atmospheric 

pressure chemical ionization (APCI), electrospray ionization (ESI) and charged aerosol 

detectors (CAD), in which the CAD shows a linear response from 5 to 500 µg/mL. When 

compared to the ELSD, the improvement factor was 2.7 to 12 for all low concentration 

components. For the complex lipid sample, this study shows that at low concentration, 

CAD provides better performances than ELSD and has a sensitivity near to mass 

spectroscopy according to the solute. CAD is the only detector tested that detects all lipids 

and, at the same time, to have a linear response on two orders of magnitude. This universal 

detector is very easy to use in micro liquid chromatography, has good sensitivity, and the 

high temperatures can improve its limit of detection (LOD). Consequently, CAD has the 

potential to become the new detector of choice in the developed analytical methods for 

lipids in addition to the mass spectrometer. Ramos et al. (2008)analysis of Leishmania 

membrane phospholipids using CAD and ELSD showed that improved detection of 

phospholipids at low levels was obtained using CAD and was more informative than 

ELSD. CAD is compatible with linear calibration over a 10-fold range, and it is more 

precise than ELSD.  

 

HPLC, coupled with CAD, was applied to detect milk phospholipid fractions from the 

cow milk (Kielbowicz et al., 2013). The separation of the compounds of interest was 

achieved on a diol stationary phase with a mobile phase consisting of 13% HCOOH, 

hexane and 2-propanol in a 19 min elution program, including 10 min equilibration of the 

column. The total amount of PLs in the milk samples ranged from 22.7 to 31.3 mg 100 mL-

1 of milk. Five classes of PLs were detected of which phosphatidyl-choline (PC) was the 
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predominant 45%, followed phosphatidylethanolamine (PE) 34%, phosphatidylserine (PS) 

8.6%, phosphatidylinositol (PI) 12% and sphingomyelin (SM) 5%. The optimization on 

the separation of PLs for different dairy products such as skim milk, cream, butter, 

buttermilk, butter oil and butter serum was demonstrated (Barry et al., 2016). Separation 

and identification were obtained using N2 as the nebulizing gas and the silica column size 

150 x 3 mm. The detector temperature was set at 40oC, while the sample chamber was 

maintained at 15oC. The mobile phases used were dichloromethane, MeOH: 

triethylamine/acetic acid buffer, pH 3.5. The operating pressure was maintained at 241.32 

kPa, and the scale output range was 500 pA. These were some parameters that were set for 

CAD. Well defined peaks were observed for each PLs, and the concentration of PLs was 

in line with literature previously published by (Avalli and Contarini, 2005, Rombaut et al., 

2005). The increase in the PLs values for PI and PS is 9.63 ± 0.08% and 10.10 ± 0.02% as 

from the total PL, respectively, which increases between 2% and 7% compared with 

published data (Avalli and Contarini, 2005). This was attributed to the detection sensitivity 

and precision offered by the CAD. Therefore, CAD offers a fine-tuning of pH and run time 

produced chromatograms that demonstrated stable retention times and were reproducible 

in duplicate runs on different, thus creating a robust methodology for PL analysis. 

 

2.6.Microscopic methods 

2.6.1.Confocal laser scanning  microscopy(CLSM) 

Phospholipids compose the backbone of the milk fat globular membrane (MFGM), in 

which the proteins are embedded. Thus the organization of the phospholipids likely plays 

a crucial role in protein-lipid interactions. Different microscopy techniques have been used 



21 
 

to elucidate the MFGM structure, such as electron microscopy, immunomicroscopic and 

biochemical techniques, freeze etching, and freeze-fracture immunocytochemistry. 

However, some of these techniques are time-consuming and might alter the MFGM 

structure or introduce artifacts. The introduction of Confocal laser scanning microscopy 

(CLSM), a noninvasive technique is used in recent times to determine the MFGM. 

Phospholipids are saturated with longer and symmetric fatty acid chains more readily adopt 

the liquid-ordered structures. The ability to see this phase separation with CLSM results 

from the fact that the exogenous fluorescent dye-labelled phospholipid partitions 

exclusively into the liquid disordered phase, thus leaving the liquid-ordered domains 

“dark”. The large dye molecule is attached to either the headgroup or fatty acid chain of 

the phospholipid, thus preventing it from packing tightly enough to enter the liquid-ordered 

phase.  

 

The CLSM technique involving the use of exogenous probes and dyes at low 

concentration has been shown to not introduce significant perturbations of the native 

biological structure of the membrane (Gallier et al., 2010a). The milk fat globules (Rd-

dope), an exogenous dye that has high photostability, is considered a suitable choice for 

CLSM. This substance is a headgroup labelled phospholipid probe, which can be 

incorporated with minimal perturbation into the phospholipids layer of the milk fat globule 

membrane Gallier et al.(2015). The spatial resolution limit of the CLSM is on the order of 

one-half of the wavelength of the light used excited the fluorophore at 559nm Gallier et 

al.(2010). Since the MFGM is 10 to 20nmthick (Walstra and Jenness, 1984), the thickness 

of the membrane is overestimated, and it is not possible to observe the trilayer structure of 
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the MFGM. Since the MFGM is complexed with proteins at the surface, the use of FCF 

green is utilized. It is a dye that electrostatically attracts the charged groups present in the 

proteins. Nile Red is an oxazone dye used to stain lipid droplets (Greenspan et al., 1985; 

Lopez and Ménard, 2011). It is specific to triglycerides and lipid vesicles inside the 

MFGM.  

 

Research by Lopez et al. (2010) have used CLSM, and fluorescent dye (Rd-dope) 

labelled phospholipids to elucidate lipid rafts' presence, areas rich in cholesterol and 

sphingomyelin observed in cell. The human milk fat globules were also stained using the 

fluorescent probes Rd-dope, FCF and Nile red, which shows that spatial heterogeneity in 

the human milk fat globule membrane (MFGM), with the lateral segregation of SM in 

liquid-ordered phase domains of various shapes and sizes surrounded by a liquid-

disordered phase composed of the glycerophospholipids in which the proteins are 

dispersed(Lopez and Ménard, 2011). The Sphingomyelin accounts for about 35-45% of 

mature breast milk. This provides a way for MFGM-based ingredient concentrated from 

by-products such as bovine buttermilks could be added to infant formulas as a functional 

ingredient to benefit the specific composition, structure and functions of the MFGM 

(Rasmussen, 2009, Ortega-Anaya and Jimenez-Flores, 2019). 
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CHAPTER 3  

EXTRACTION OF DAIRY PHOSPHOLIPIDS USING SWITCHABLE SOLVENTS: A 

FEASIBILITY STUDY2 

3.1. Abstract 

A tertiary amine (N, N-dimethyl cyclohexylamine, CyNMe2) was used as a switchable 

hydrophilicity solvent (SHS) for extracting phospholipids (PLs) from raw cream (RC), 

buttermilk(BM), concentrated buttermilk (CBM), and beta-serum (BS). The SHS 

extractions were performed with varying solvent–sample weight ratio at room temperature. 

The extracted PLs using CyNMe2 were recovered by bubbling CO2 at atmospheric 

pressure, switching the CyNMe2 into its respective salt. For comparison, the PLs were also 

extracted using Folch (FE) and Mojonnier (ME) extraction. The extraction efficiency of 

SHS varied from 0.33% to 99%, depending on the type of byproduct. The SHS extracted 

up to 99% of the PLs directly from BM, while only 11.37% ± 0.57% and 2.66% ± 0.56% 

of the PLs were extracted with FE and ME, respectively. These results demonstrate the 

applicability of SHS for the extraction of PLs from dairy byproducts. 

 

3.2. Introduction 

Phospholipids (PLs) are found as lipid bilayers in all plant and animals cells membranes 

(Küllenberg et al., 2012). The term PLs refers to a class of complex polar lipids containing 

a phosphate group and two fatty acids esterified to a glycerol backbone. The phosphate 

group is linked to a polar group such as choline, ethanolamine, or serine (Contarini et al., 

2013). PLs derived from milk are primarily rich in sphingomyelin (SM) and 

 
2 A version of this chapter has been published in Foods, 8(7), 265. 
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phosphatidylserine (PS), two of the most highly bioactive PLs (Pimentel et al., 2016). 

Health benefits associated with the consumption of PLs include reduced incidence of 

cardiovascular diseases, cholesterol adsorption, reduced gastrointestinal infections, and 

improved immunological function (Küllenberg et al., 2012; Avalli and Contarini., 2005). 

 

Dairy PLs are embedded with epithelial cell plasma membranes forming a complex 

structure known as milk fat globule membrane (MFGM). Such arrangements allow the 

milk fat to be emulsified and dispersed within the milk (Costa et al., 2010). In raw milk, 

PLs account for about 0.5-1% of the total milk fat, and about 60-70% of the PLs are located 

in the MFGM, depending on the variety, season and lactation stage (Contarini et al., 2013). 

On the other hand, the content of PLs in dairy foods is strongly influenced by the 

manufacturing steps (Ali et al., 2018). An investigation on measuring the concentration of 

PLs in 31 dairy foods shoed values of PLs from 0.1 to 25% of the total milk fat (Rombaut 

et al., 2005).   

 

Dairy byproducts represent a natural source of PLs with great potential for isolation 

and further commercialization. Isolation of PLs from byproduct streams involves various 

steps (concentration, extraction, solvent separation, lipid recovery, and fractionation) 

within the entire process, which results in low-overall efficiency and therefore 

economically unviable. Instead, concentrates of PLs obtained from dairy byproducts such 

as buttermilk has been a research priority in the past few years (Rombaut et al., 2005; 

Astaire et al., 2003; Barry et al., 2017; Spence et al., 2009). Earlier, it has been highlighted 

the limited applicability of the PLs concentrates when comparing with the industrial 
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application of PLs derived from lecithin (Price et al., 2018). Thus, it is desirable to develop 

technology for producing isolated PLs fractions derived from dairy byproducts.  

 

Recently, a new class of solvents, namely switchable hydrophilicity solvents (SHS), 

have been developed to facile the extraction and subsequent separation of lipidic materials 

(Jessop et al., 2012). These type of solvents are made of either primary, secondary, or 

tertiary amines, and they are capable of extracting lipids from wet materials. SHS abruptly 

and reversibly switch between a hydrophobic form (poorly miscible with water) and a 

hydrophilic form (miscible with water). The polarity switch of these solvents is trigger by 

simply bubbling or removing CO2 (Jessop et al., 2010). The underlying principle behind 

the change in polarity is due to the formation of an ammonium carbonate salt in the 

presence of CO2, while upon removing the CO2 with nitrogen, the carbonate salt returns to 

its original form of amine. Earlier, an investigation employed N,N,N’-

tributylpentanamidine as an SHS for the extraction of soybean oil (Jessop et al., 2010). 

 

Similarly, other authors extracted lipids from freeze-dried microalgae using a tertiary 

amine (N, N-dimethyl cyclohexylamine, CyNMe2) as an SHS (Boyd et al., 2012). More 

importantly, the SHS was removed from the extract without distillation. In summary, the 

existing literature on the extraction of lipids via SHS reveals that CyNMe2, a commercially 

available amine, has tunable hydrophilicity meaning that it can be switched from the 

hydrophobic form into hydrophilic form by adding CO2. The present research aimed to 

evaluate the feasibility of extraction and separation of PLs from different dairy matrices 

using CyNMe2 as a switchable hydrophilicity solvent.   
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3.3. Materials and methods 

3.3.1.Dairy Byproducts 

The tested dairy matrices were raw cream (RC), buttermilk (BM), concentrated 

buttermilk (CBM), and beta-serum (BS). The RC was obtained from the Davis Dairy Plant 

at South Dakota State University (Brookings, SD). A portion of the cream was churned at 

4°C to obtain BM using a laboratory-scale churner (TM 31 Thermomix, Vorwerk LLC, 

Thousand Oaks, CA). The CBM was obtained by freeze-drying BM using a benchtop 

freeze drier (Model 117, Labconco Corporation, Kansas City, MO). The BS was obtained 

from a local plant (Valley Queen, Milbank, SD. N, N-dimethyl cyclohexylamine (99%, 

Sigma Aldrich), phospholipid mixture for HPLC (Soybean, P3817-1VL, Sigma Aldrich ), 

methanol (99.9%, Sigma Aldrich), chloroform (99.9%, Sigma Aldrich), hexane (99.9%, 

Sigma Aldrich), HPLC grade water (Sigma Aldrich), histological grade ethanol (Sigma 

Aldrich), petroleum ether (95%, Fisher Scientific), ethyl ester (99%, Fisher Scientific), 

phosphomolybdic acid hydrate (99%, Alfa Aesar), TLC silica gel plate (TLC silica gel 60 

F254, EMD Milipore, Burlington, MA) and activated silica gel (Silica gel 60 G, EMD 

Milipore) were purchased from commercial suppliers. 

 

3.3.2. Compositional Analysis 

 

A sample of each matrix was tested for total solids, protein, fat, lactose, and pH. The 

total solids was determined gravimetrically according to the methodology described 

elsewhere (AOAC, 1998). The protein content on a total nitrogen basis was determined by 

Kjeldahl method. The fat content was measured gravimetrically according to the method 

of Mojonnier fat extraction. The concentration of lactose was determined using HPLC 
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following the methodology reported by elsewhere (Amamcharla et al., 2011). The pH was 

measured in 10 mL of the sample using an Orion Versa Star Pro (Thermo Fisher Scientific, 

Waltham, MA). 

 

3.3.3. Conventional Extraction 

The extraction of total lipids was performed using Folch (FE) and Mojonnier (ME) 

extraction. The FE was conducted following the guidelines reported elsewhere (Martínez-

Monteagudo 2015). Briefly, each FE consisted of 1 g of sample mixed with 20 mL of 

chloroform: methanol solution (2:1, v/v). Then, the mixture was vortexed for 5 min, 

followed by centrifugation at 4200 X g for 5 min. The lower phase (lipids dissolved in 

chloroform) was transferred to a test tube, where the chloroform was evaporated at 45°C 

under nitrogen flow. The extraction via Mojonnier was conducted according to the 

methodology reported elsewhere (Gallier et al., 2010) with some modifications. One gram 

of sample was transferred into a Mojonnier test tube and diluted with 6 mL of deionized 

water. The diluted sample was mixed 1.5 mL of NH4OH, 10 mL of ethyl alcohol, 25 mL 

of ethyl ester, 25 mL of petroleum ether, and few drops of phenolphthalein indicator. Then, 

the mixture was vigorously shaken and centrifuged for 5 min. After centrifugation, the lipid 

phase was poured into an aluminum pan, where the organic solvents were evaporated by 

heating the pan at 65°C. A second extraction was performed using with 5 mL of ethyl 

alcohol, 15 mL of ethyl ether, and 15 mL of petroleum ether. The dried lipids were 

weighted, and the extraction efficiency was expressed as the percentage of total lipids 

recovered according to Equation (3.1).  
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𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑𝑠 (%) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑙𝑖𝑝𝑖𝑑𝑠

𝑊𝑖𝑒𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
∙ 100   (3.1) 

 

3.3.4. Switchable Solvent Extraction 

Figure 3.1 is a schematic depiction of the lipid extraction via SHS from different dairy 

matrices. Each extraction consisted of 1 g of sample added into a 20 mL vial containing 

either 3, 6, or 12 mL of CyNMe2. 

 

Figure 3.1. Schematic diagram for the extraction of lipids from dairy byproducts using 

switchable hydrophilicity solvent. The dotted lines represent water and SHS that can be 

reused at the end of the process. 

 

Figure 3.2 illustrates the SHS extraction of PLs, where the mixture (solvent/matrix) 

was stirred at room temperature for 18 h (step (1) in Figure 3.2). Afterward, an equimolar 

amount of water was added to maintain the stoichiometry of the reaction (step (2)) followed 

by bubbling CO2 at room temperature (step (3)) until the layer of CyNMe2 and water 

combined (usually 3-4 h), leaving the lipid layer at the top of the vial. The presence of CO2 

converted the CyNMe2 into its respective salt that is water soluble, switching the 

hydrophobicity form of the amine into the hydrophilicity form of the bicarbonate salt where 
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the layer of lipids is at the top of the mixture (step (4)). Three mL of hexane was added to 

dissolve the lipid layer, and subsequently transferred to a test tube. The hydrophilic mixture 

made of CyNMe2 and water was separated into their respective component by removing 

the CO2 until the layers were visible formed. The separated hydrophobic CyNMe2 and 

water were recovered for further lipid extraction. 

 

Figure 3.2. Extraction of lipids from dairy byproducts with N,N-

dimethylcyclohexylamine (CyNMe2) as a switchable hydrophilicity solvent (SHS): (1) 

SHS with dairy sample after 18 h of extraction; (2) addition of water; (3) after bubbling 

CO2 to separate the lipid phase; (4) lipids on the top and CyNMe2 on the bottom; and (5) 

addition of hexane to facilitate the separation of lipids. 

 

3.3.5. Fractionation of Extracted Lipids  

The extracted lipids were fractionated via solid-phase extraction (SPE) following the 

methodology reported elsewhere (Donato et al.,2011). A SPE column (1×10 cm) made of 

activated silica gel was first conditioned with 10 mL of chloroform: methanol mixture 

(95:5, v/v). A portion of the extracted lipids (100 mg) was dissolved in 1 mL of the 

chloroform: methanol solution and run through the conditioned column. The neutral lipids 

were eluted with 20 mL of chloroform: methanol (95:5, v/v). The PLs were recovered using 

10 mL of methanol, followed by 10 mL of chloroform: methanol:water mixture 
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(5:3:2,v/v/v). Afterward, the solvents from the PLs fraction were evaporated under vacuum 

at 40°C. The recovered PLs were expressed as a percentage of the extracted lipids, 

according to Equation (3.2). 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑𝑠 (%) =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑𝑠
∙ 100  (3.2) 

 

3.3.6. Thin Layer Chromatography (TLC)  

The recovered PLs were quantified on TLC silica gel plates. A mixture of chloroform: 

methanol: water (65:25:4, v/v) was used as a mobile phase for the detection of PLs. A 

solution of molybdophosphoric acid (5%, w/v) in ethanol was used as spray reagent, 

followed by heating at 180°C for 10 min (Sajilata et al., 2008). Clear visualization of the 

detection of spots was obtained under UV-light. 

 

3.3.7. Statistical Analysis 

Each extraction was carried out in triplicate, and the mean values for total lipids and 

recovered PLs were compared using Tukey’s test (p<0.05). The statistical analysis was 

carried out using Sigma plot software V11 (SPSS Inc., Chicago, IL, USA). 

 

3.4 Results 

3.4.1.Compositional Analysis 

 shows the compositional characteristics of the different dairy matrix used in this study. 

The evaluated parameters were within the expected range for each matrix. On the other 

hand, substantial variations in the total solids (8-91%), lactose (3-8%), and fat (4-27%) 
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were observed between the different matrices. Such variations allow us to evaluate the 

feasibility of SHS in extracting PLs under different environmental factors. 

 

Table 3.1. Composition of dairy by-products used for extraction of phospholipids. 

Parameter 

Dairy Matrix 

Raw Cream Butter Milk 
Concentrated 

Butter Milk 
B-Serum 

Total Solids (%) 51.77 ± 0.18 9.63 ± 0.03 91.81 ± 0.06 8.17 ± 0.34 

Protein (%) 0.24 ± 0.01 0.33 ± 0.01 1.44 ± 0.07 0.18 ± 0.01 

Fat (%) 27.47 ± 1.60 4.09 ± 0.41 5.09 ± 0.63 4.05 ± 0.04 

Ash (%) 0.61 ± 0.02 0.94 ± 0.08 6.26 ± 0.17 1.04 ± 0.39 

Lactose (%) 3.06 ± 2.73 3.98 ± 0.39 8.69 ± 0.28 6.91 ± 0.15 

pH 6.58 ± 0.01 6.38 ± 0.01 5.05 ± 0.02 6.74 ± 0.01 

 

3.4.2. Total Lipid Extraction 

The extracted total lipids from different diary matrices (RC, BM, CBM, and BS) using 

three different methods (FE, ME, and SHS) are shown in Figure 3.3. Overall, the type of 

dairy matrix strongly influenced the amount of total lipids extracted. For RC (Figure 3.3a), 

the FE and ME showed no significant difference in the amount of total lipids recovered 

(28.98 ± 1.36 and 27.47 ± 1.60%, respectively). Contrary, lower values of total lipids were 

obtained with CyNMe2 at SHS/RC ratio 3/1 and 6/1 (21.84 ± 1.15 and 22.32 ± 1.75%, 

respectively). On the other hand, the total lipids recovered from RC increased to 29.24 ± 

1.38% with increasing the SHS/RC ratio to 12/1. Such values of extracted total lipids were 

not significantly different from those obtained with FE and ME (Figure 3.3a). Moreover, 
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FE and ME required a substantially higher ratio of the solvent/matrix (20/1 and 50/1, 

respectively) than that of SHS/RC of 12/1. Further increment of the SHS/sample ratio did 

not result in higher values of extracted total lipids (data not shown).  

Figure 3.3. Comparison of different extraction methods (Folch, Mojonnier, and 

switchable hydrophilicity solvent) on the lipids recovered from (a) raw cream, (b) 

buttermilk, (c) concentrated buttermilk, and (d) beta-serum. FE – Folch extraction; ME – 

Mojonnier extraction; SHS 3, 6, 12 – switchable hydrophilicity solvent ratio 1/3, 1/6, 

1/12, respectively. Mean ± standard deviation within each column with different letters 

(a-d) are significantly different (p<0.05) according to Tukey test. 

 

Figure 3.3b shows the extracted total lipids from BM using FE, ME, and SHS (at 3/1, 

6/1, and 12/1 ratio). The highest values of extracted total lipids were obtained using ME 

(4.09 ± 0.41%), followed by FE (2.81 ± 0.57%). The extraction values via SHS were rather 

low (0.18-0.71%), showing an increasing tendency with the solvent/matrix ratio. Similar 
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trends were observed for the extraction of total lipids from CBM (Figure 3.3 c), where the 

extraction with SHS increased (0.77 ± 0.25 to 3.34 ± 0.54%) with the solvent/matrix ratio. 

However, the highest extraction was obtained using FE (5.62 ± 1.16%), followed by ME 

(5.09 ± 0.63%). CBM through either freeze-drying or spray drying has been used as a 

feedstock for the concentration of lipids using supercritical CO2. Figure 3.3d shows the 

extraction of total lipids from BS using FE, ME, and SHS. The highest extraction of total 

lipids was obtained with ME (4.05 ± 0.35%) followed by FE (3.07 ± 0.35%), while lower 

values of extraction were obtained with SHS (0.55-1.52%). BS is a byproduct obtained 

through phase inversion from an oil-in-water to a water-in-oil emulsion (Catchpole et al., 

2008). 

 

3.4.3. Phospholipids Recovered 

The extracted total lipids were fractionated with SPE to calculate the amount of 

recovered PLs. Figure 3.4 shows the recovered PLs from different diary matrices (RC, 

BM, CBM, and BS) using three different methods (FE, ME, and SHS). In the case of RC, 

the recovered PLs with FE, ME, and SHS 3/1 ranged from 0.28-0.30% and no significant 

difference was detected between extraction methods. On the other hand, the recovered PLs 

with SHS 12/1 was slightly higher (0.33 ± 0.01%) than any other extraction method. Other 

authors reported similar values of recovered PLs (0.40%) from cream using FE (Rombaut 

et al., 2007).  
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Figure 3.4. Comparison of different extraction methods (Folch, Mojonnier, and 

switchable hydrophilicity solvent) on the phospholipids recovered from (a) raw cream, 

(b) buttermilk, (c) concentrated buttermilk, and (d) beta-serum. FE – Folch extraction; 

ME – Mojonnier extraction; SHS 3, 6, 12 – switchable hydrophilicity solvent ratio 1/3, 

1/6, 1/12, respectively. Mean ± standard deviation within each column with different 

letters (a-d) are significantly different (p<0.05) according to Tukey test. 

 

The recovered PLs from BM (Figure 3.4b) using SHS were remarkably higher 

compared with that obtained from FE and ME. The use of CyNMe2 as a SHS remarkably 

extracted 87.50 ± 4.50, 99.93 ± 2.50, and 99.96 ± 1.21% at a ratio 3/1, 6/1, and 12/1, 

respectively (Figure 3.4b). Contrary, only 11.37 ± 2.31 and 2.66 ± 0.26% of the PLs were 

recovered using FE and ME, respectively. In the case of CBM, 25.33 ± 3.10 and 14.41 ± 

1.78% of the PLs were recovered using FE and ME, respectively. Interestingly, the use of 

SHS substantially increased the amount of recovered PLs (45.21 ± 5.51, 52.84 ± 2.45, and 
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77.27 ± 4.51% at a ratio of 3/1, 6/1, and 12/1, respectively. Figure 3.4d shows the 

recovered PLs from BS, where the highest recovered amount was obtained using SHS 12/1 

(7.57 ± 0.59%) followed by FE (5.34 ± 0.61%). Contrary, the lowest amount of recovered 

PLs was found in those samples extracted with SHS 3/1 (2.41 ± 0.44%) and ME (3.92 ± 

0.33%). 

 

3.4.4. PLs TLC Characterization 

A representative TLC image of the buttermilk PLs is shown in Figure 3.5. There are 

four visible color bands in the TLC plate, which represents the individual PLs 

(phosphatidyl ethanolamine, PE, phosphatidylserine, PS, phosphatidylinositol, PI, 

phosphatidylcoline, PC, and sphingomyelin, SM). Similar results were also confirmed the 

presence of individual PLs for raw cream, buttermilk powder, and processed milk (Gallier 

et al.,2010). The recovered PLs using SHS clearly outperformed the conventional 

extraction methods, judging by the bands corresponding to individual PLs. 

 

3.5. Discussion 

The extraction with CyNMe2 as an SHS results in a higher amount of recovered PLs, 

regardless of the dairy matrix with recovery values ranging from 0.33 to 99%. Traditional 

extraction methods such as FE combine organic solvents with polar alcohol that disrupts 

the hydrogen bonding and electrostatic forces between the polar lipids and proteins, 

creating holes in the membrane. Such a combination of organic solvent and polar alcohol 

somehow enabled the non-polar solvent to enter the cells and interact with the hydrophobic 

neutral lipids (Du et al.,2015).  
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Figure 3.5. Representative thin-layer chromatography (TLC) plate of buttermilk showing 

the migration of the recovered phospholipids. PL-STD is the standard mixture of 

phospholipids; FE – Folch extraction; ME – Mojonnier extraction; SHS 3, 6, 12 – 

switchable hydrophilicity solvent ratio 1/3, 1/6, 1/12, respectively. 

 

In the ME, a strong base (NH4OH) is used to digest the protein and release the fat, 

which is subsequently dissolved with a mixture of organic solvents (Gallier et al.,2010). 

However, the majority of PLs remained within the ammonia phase rather than the organic 

solvent phase. Remarkably, the extraction using CyNMe2 as an SHS resulted in higher 

values of recovered PLs despite not having polar alcohol or a denaturing agent. CyNMe2 

is a tertiary amine that is commercially available, having very low miscibility with water 

under nitrogen atmosphere (atmospheric conditions), and it becomes hydrophilic in the 

presence of CO2. CyNMe2, in the presence of CO2, forms a bicarbonate salt that is soluble 

in water, while in the absence of CO2, the carbonated salt is converted back into CyNMe2 
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(Rombaut et al.,2007). The chemical reaction responsible for the immiscibility change is 

represented in Figure 3.6.  

Figure 3.6. Reaction mechanism from switching hydrophilicity of N,N-

dimethylcyclohexylamine. Adapted from (Duet al.,2015). 

 

 

The efficiency of CyNMe2 in extracting PLs directly from dairy matrices was tested 

by varying the solvent/matrix ratio. The majority of research using a tertiary amine as an 

SHS involves the use of CyNMe2. This has been exemplified elsewhere (Boyd et al.,2012), 

who employed CyNMe2 to extract and isolate lipids, including triacylglycerol, 

diacylglycerol, monoacylglycerol, and free fatty acids from algae (Botryocuccus braunii). 

These authors reported values of recovered lipids up to 22% of the dry cell weight at room 

temperature. The use of CyNMe2 for extracting PLs from raw cream is rather low (0.28-

0.31%). This is because the PLs, along with the membrane proteins, emulsify the fat 

creating thick cell walls that makes the extraction of PLs very difficult. The extraction of 

PLs from RC may be improved by the application of mechanical treatment prior to 

extraction, which is beyond the scope of this work.  

 

The performance of the SHS indirectly extracting PLs from BM was quite remarkable, 

judging by the unprecedented amount of recovered PLs (99%). Direct extraction of PLs 

from a dilute stream offers logistical and financial advantages over conventional organic 

solvent extraction methods. Extraction of lipids directly from dilute media without 
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pretreatment has been documented elsewhere(Samorì et al.,2013), who used CyNMe2 to 

extract lipids directly from wet algae (up 80% water content) and reported extraction yields 

in the range of 31-57%.  

 

The current literature on the utilization of dairy PLs deals with the development of 

concentrates as end-product, and no information is available regarding isolated fractions of 

PLs. In the absence of such information, reports dealing with the concentrates of dairy PLs 

obtained through a combination of technologies (enzymatic hydrolysis, microfiltration, 

ultrafiltration, and supercritical carbon dioxide) were used for comparison with our 

experimental findings. It has been developed a two-step process for obtaining a concentrate 

of PLs (up to 19%) from reconstituted buttermilk using microfiltration and supercritical 

carbon dioxide extraction (Astaire et al., 2003). Similarly, other authors concentrated 56% 

of PLs from reconstituted buttermilk using enzymatic hydrolysis of protein prior 

microfiltration followed by supercritical carbon dioxide with ethanol as co-solvent (Barry 

et al.,2017). A concentrate containing 60% of PLs was obtained by ultrafiltration of whey 

buttermilk prior to spray drying. The final concentration of PLs was then obtained after 

extraction using supercritical carbon dioxide (Costa et al., 2010). An investigation on the 

concentration of PLs from buttermilk powder showed a 5-fold increment in the PLs content 

by microfiltration coupled with supercritical carbon dioxide (Spence et al., 2009). More 

recently, (Price et al., 2018) extracted 58% of the total PLs from whey protein phospholipid 

concentrate using simultaneous texturization and extraction (STEP) under optimum 

conditions (5-stage sequential extraction using ethanol at 70°C). All these approaches have 

led to the enrichment of PLs in the byproduct stream rather than extraction from their 
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respective matrix. We have investigated an alternative way to concentrate and isolate dairy 

PLs, where the values of recovered PLs were 0.33 ± 0.01, 7.57 ± 0.59, 77.27 ± 4.51, and 

99.96 ± 1.20% for RC, BS, CBM, and BM, respectively. Our results are in agreement with 

the earlier reports elsewhere (Samorì et al., 2013), suggesting that SHS can outperform 

conventional extraction and concentration methods by directly extracting lipids from dilute 

streams. Further quantification of the individual PLs would be of relevant interest in future 

investigations. Research in this area is scarce, and it offers opportunities for further studies 

in the field of process development, micromixing, optimization, and development of new 

types of SHS. It is worth to mention that CyNMe2 (N,N-dimethylcyclohexylamine) is an 

amine authorized by the FDA as an Indirect Food Additive (CFR:177.2600). Nevertheless, 

other relevant aspects need further investigation, such as amine recovery and purity of the 

PLs fraction as well as structural modification to minimize potential impact in biological 

systems. The application of other amines as SHS is an active research area, including 

dimethylethanolamine, spermine, and spermidine.  

 

3.6.Conclusions 

For the first time, the feasibility of extracting phospholipids directly from dairy 

byproducts was evaluated using CyNMe2 as an SHS. The SHS extracted up to 99.96% of 

the PLs directly from BM, while only between 2 and 11% of the PLs were extracted with 

conventional methods. Further optimization of other extraction parameters (temperature, 

time, type of system, and matrix) is needed for the development of solvent systems that 

maximizes the quality of the separations.  
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CHAPTER 4 

IMPROVEMENTS IN THE EXTRACTION OF MILK PHOSPHOLIPIDS FROM 

BETA-SERUM USING ULTRASOUND PRIOR TO TERTIARY AMINE 

EXTRACTION3 

4.1.Abstract 

We report improvements in the extraction of milk phospholipids (MPLs) from beta-

serum, a dairy byproduct, by applying ultrasound prior to a tertiary amine extraction. Three 

acoustic intensities (15.53 ± 1.20, 31.76 ± 2.46, or 44.56 ± 3.47 W cm-2) were applied for 

4 min before the amine extraction (N,N-dimethylcyclohexylamine, CyNMe2). The 

extracted lipids were fractionated by solid phase-microextraction, and the recovered MPLs 

were quantified by HPLC-CAD. An acoustic intensity of 44.56 ± 3.47 W cm-2 followed by 

CyNMe2 extraction (12/1, solvent to ratio) yielded 69.67 ± 3.45% of MPLs, while only 

7.57 ± 0.59% were recovered without ultrasound. The fraction of MPLs was made of 

phosphatidylinositol (32%), phosphatidylethanolamine (30%), and sphingomyelin (37%). 

Scanning electron images and particle size revealed significant disruption of the complex 

arrangement between membrane proteins and MPLs, which may help to release the MPLs 

into the aqueous medium. 

 

4.2.Introduction 

Milk phospholipids (MPLs) are a diverse group of over 30 structurally related 

compounds located within the milk fat globule membrane (MFGM) (Contarini & Povolo, 

2013; Ortega-Anaya & Jim´enez-Flores, 2019). MPLs are relevant to human nutrition since 

 
3 A version of this chapter has been published in LWT-Food Science and Technology, 2021, 141, 110864 
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their intake has shown beneficial cognitive performance effects (Hellhammer, Waladkhani, 

Hero, & Buss, 2010). Moreover, the therapeutic ability of MPLs have been documented in 

experimental arthritis in rats (Hartmann et al., 2009), the anticancer activity of colon cancer 

cells (Kuchta-Noctor, Murray, Stanton, Devery, & Kelly, 2016), antioxidant activity in 

vitro assays (Huang, Brennan, et al., 2020), and protection against gastrointestinal 

infections (Küllenberg, Taylor, Schneider, & Massing, 2012). Bioactivity of MPLs has 

been recently reviewed elsewhere (Küllenberg et al., 2012; Ortega-Anaya & Jimenez-

Flores, 2019). Phospholipids are classified according to their chemical structure, namely 

glycerolphospholipids and sphingolipids (Contarini & Povolo, 2013). Phosphatidylinositol 

(PI), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylserine 

(PS) are examples of glycerolphospholipids, while sphingomyelin (SM) is the dominant 

species of sphingolipids (Ali et al., 2019). Bovine milk fat contains a high proportion of 

SM and PS (about 24 and 12% of the total PLs, respectively), two of the most bioactive 

phospholipids (Gassi et al., 2016). The concentration of MPLs, as well as their architecture 

within the milk fat globule, has already been elucidated in previous research (Gallier, 

Gragson, Jimenez-Flores, & Everett, 2010; Zheng, Jimenez-Flores, & Everett, 2014; 

Zheng, Jimenez-Flores, Gragson, & Everett, 2014).  

 

Beta-serum (BS) is the main byproduct obtained during the manufacture of anhydrous 

milk fat. It is the remaining aqueous stream separated from the phase inversion of 

concentrated cream, and it is characterized for its relatively high concentration of MPLs 

(Cathpole, Tallon, Grey, Fletcher, & Flethcehr, 2008). Thus, beta-serum represents a rich 

source of MPLs with promising potential for extraction and subsequent commercialization 
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(Cheng, Rathnakumar, & Martínez-Monteagudo, 2019; Huang, Zhao, et al., 2020). Direct 

extraction of MPLs from BS has not been economically feasible in the past due to the 

numerous steps involved in the extraction and subsequent separation (Cheng et al., 2019). 

Instead, concentrates of MPLs are commercially available containing from 20 to 70% of 

MPLs with respect to the total fat (Huang, Zhao, et al., 2020). For instance, a powder 

containing 61% of MPLs was obtained by two-step concentration involving microfiltration 

of whey buttermilk followed by extraction via supercritical carbon dioxide (Costa, Elias-

Argote, Jim´enez-Flores, & Gigante, 2010). An investigation reported a concentrated 

fraction of MPLs (up to 56%) using enzymatic hydrolysis of protein prior to microfiltration 

of buttermilk and subsequent extraction via supercritical carbon dioxide (Barry, Dinan, & 

Kelly, 2017). A final concentration of 58% of MPLs was obtained from whey protein 

phospholipid concentrate using five-stage sequential extraction (Price, Fei, Clark, & Wang, 

2018). A lipidic fraction containing about 70% of MPLs was obtained from BS using 

solvent fractionation (Price, Wan, Fei, Clark, & Wang, 2020).  

 

Recently, the use of CO2 responsive species as tunable solvents has been an attractive 

alternative for the extraction of lipids (Alshamrani, Vanderveen, & Jessop, 2016). A 

tertiary amine (N, N-dimethyl cyclohexylamine, CyNMe2) has shown to be an efficient 

tunable or switchable solvent (Jessop et al., 2011). The speciality of CyNMe2 is the ability 

to switch on and off from water-immiscible (hydrophobic) form to water-miscible 

(hydrophilic) form in the presence or absence of CO2. The change in miscibility is because 

of a reversible acid-base reaction between hydrated CO2 or carbonic acid in the carbonated 

water and the amine (Alshamrani et al., 2016). Cheng et al. (2019) demonstrated the 
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feasibility of extracting MPLs from different dairy matrices using CyNMe2 as a switchable 

hydrophilicity solvent. The efficiency of CyNMe2 strongly depended on the type of dairy 

matrices, where about 7% of MPLs were extracted directly from BS (Cheng et al., 2019).  

 

Ultrasound prior to CyNMe2 represents a potential way to improve the yields of MPLs 

from dairy byproducts. This is because frequencies between 20 and 30 kHz generates 

microjets and shear forces within the liquid, and such mechanical effects can break cell 

walls, which might improve the mass transfer and overall extraction yields (Vilkhu, 

Mawson, Simons, & Bates, 2008). Advantages and applications of ultrasound-assisted 

extraction have been reviewed elsewhere (Ashokkumar, 2015). The use of ultrasound prior 

to the extraction of MPLs has not been reported in the literature. The objective of this work 

is to evaluate the influence of ultrasound prior to the tertiary amine extraction of MPLs 

from beta-serum. 

 

4.3. Materials and methods 

4.3. 1.Materials  

N,N-dimethylcyclohexylamine (99%, Sigma Aldrich, St. Louis, MO, USA), methanol 

(99.9%, Sigma Aldrich), chloroform (99.9%, Sigma Aldrich), hexane (99.9%, Sigma 

Aldrich), HPLC-grade water (Sigma Aldrich), activated silica gel (Silica gel 60 G, EMD 

Millipore), phospholipid mixture (Soybean, P3817-1VL, Sigma Aldrich), Rd-dope (Avanti 

Polar Lipids Inc., Alabaster, AL, USA), Laemmli buffer (BioRad, Hercules, CA, USA), 

Tris-acrylamide gels (4–15% Mini-Protean TGX precast gels with 10 wells, Bio-Rad), 

Tris/Glycine/SDS Buffer (Bio-Rad), Protein TM Kaleidoscope standards (Bio-Rad), and 
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2-mercaptoethanol (Fisher Scientific) were purchased from commercial suppliers. Beta-

serum was obtained from a cheese plant (Valley Queen, Millbank, SD). The BS was 

divided into 500 mL portions stored at − 20◦C until further use. The BS was thawed by 

immersing the bottles in a water bath at room temperature. 2.2. Compositional analysis The 

BS was tested for total solids, total protein, fat, and pH. The total solids were determined 

gravimetrically at 103◦C for 15 h using a laboratory oven (Isotemp oven, Iowa, USA), 

following the methodology reported elsewhere (Cheng et al., 2019). The total protein was 

obtained through Kjeldahl method, while the fat content was determined using Mojonnier 

method (Gallier, Gragson, Cabral, Jimenez-Flores, & Everett,2010). The pH was measured 

using Orion Versa Star Pro (Thermo Fisher Scientific, Waltham, MA), and the lactose was 

measured using HPLC following the methodology reported elsewhere (Amamcharla & 

Metzger, 2011). Briefly, an HPLC instrument (Beckman Coulter Inc.) with a multichannel 

wavelength scanning detector (190–600 nm, System Gold 168 detector) was used to 

determine the concentration of lactose. A refractive index detector (RI-2031, Jasco 

Corporation, Hachioji, Japan), an ion exclusion column (ROA-Organic Acid H+ 8%, 

Phenomenex Inc., Torrance, CA) heated at 65◦C were used for the separation of lactose. A 

sulfuric acid solution at a concentration of 0.013 N was used as a mobile phase. 

 

4.3.2. Ultrasound pretreatment  

One hundred g of BS were ultrasonicated for 4 min using a 20 kHz sonicator 

(U1P1000hd, Hielscher Ultrasonics, Teltow, Germany). The ultrasound horn (21 mm 

length and 3.0 cm2 of surface area) was immersed in the test sample, covering about two-

thirds of the length. The tested peak to peak amplitude was 50, 75, and 100%. For all 
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treatments, the initial temperature was kept constant (21◦C), and the temperature rise during 

sonication was recorded using a K-type thermocouple connected to a data logger (Omega 

Engineering Inc., Stamford, CT). The tested conditions were selected based on preliminary 

experiments (Rathnakumar & Martinez-Monteagudo, 2020). The rise in the sample 

temperature due to acoustic cavitation was 17.4 ± 0.4, 32.6 ± 0.3, and 48.5 ± 0.2 ◦C for 50, 

75, and 100% peal to peak amplitude, respectively. Each tested amplitude was converted 

into acoustic intensity (Ia, W cm− 2 ), according to Equation (4.1) (Margulis & Margulis M, 

2003). 

 

𝐼𝑎 =
𝑚.𝐶𝑝.

𝑑𝑇

𝑑𝑡

𝑆𝑎
   (4.1) 

 

where m is the mass of the sample (kg), Cp is the heat capacity of the sample (J kg-1 K-1), 

dT dt is the rate of temperature rise determined experimentally, and Sa is the surface area 

of the ultrasound emitting surface (cm2). The resulting acoustic intensities were 15.53 ± 

1.20, 31.76 ± 2.46, and 44.56 ± 3.47 W cm-2. 

 

 4.3.3. Extraction methods  

The extraction of MPLs from BS was carried out in two steps: i) solvent extraction and 

ii) lipid fractionation. The solvent extraction was performed via Folch and CyNMe2 

extraction, following the methodology reported elsewhere (Cheng et al., 2019). For the 

Folch extraction, 1 g of BS was mixed with 20 mL of chloroform: methanol solution (2:1, 

v/v). The mixture was vortexed for 3 min, followed by centrifugation at room temperature 

(4200×g) for 5 min. The upper phase was then discarded, while the lower phase was 
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transferred to a test tube, where the chloroform was removed at 45 ◦C under nitrogen flow. 

In the case of CyNMe2, 1 g of the sonicated samples were transferred to a 20 mL vial 

containing three different solvent to sample 3, 6, or 12 mL of CyNMe2. The treatments 

were named as CyNMe2-x, with x refers to the solvent to sample ratio. The mixture 

(solvent/sample) was stirred at room temperature for 18 h. Afterward, an equimolar amount 

of water was added to maintain the stoichiometry of the reaction, followed by bubbling 

CO2 at room temperature until the layer of CyNMe2 and water combined, leaving the lipid 

layer at the top of the vial. Then, 3 mL of hexane was added to dissolve the lipid layer and 

subsequently transferred to a test tube, where the hexane was evaporated under nitrogen 

flow at 30 ◦C. The dried lipids were used to calculate the total lipids according to Equation 

(4.2). 

 

Total lipids (%) =
weight of dried lipids

weight of sample
. 100         (4.2) 

 

In the second step, the extracted lipids were fractionated to recover the MPLs using 

solid-phase extraction (SPE). An activated silica gel column (1 cm × 10 cm) was used for 

the separation, following the methodology reported elsewhere (Cheng et al., 2019). Dried 

lipids (100 mg) were dissolved in 1 mL of chloroform: methanol solution (95:5, v/v) and 

run through the SPE column previously conditioned with 10 mL of the 

chloroform:methanol solution. The MPLs were recovered with 10 mL of methanol 

followed by 10 mL of chloroform: methanol: water (5:3:2 v/v/v). Finally, solvents were 

evaporated at 40◦C under vacuum, and the MPLs fractions were calculated using Equation 

(4.3). The extracted MPLs were stored at -20 ◦C until further analysis. 
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Total Phospholipids (%) =
weight of dried fraction

weight of lipids
. 100     (4.3) 

 

4.3.4.Physical determinations  

4.3.4.1. Particle size distribution  

A ZetaSizer Nano ZS (Malvern Instruments Ltd, Cambridge, UK) was used to 

determine the particle size distribution of treated samples, according to the methodology 

reported elsewhere (Ma, Yang, Zhao, & Guo, 2018). Firstly, 10 μL of the test sample was 

transferred to a disposable cuvette (DTS 0012, Sigma-Aldrich, St Louis, MO, USA), where 

it was diluted 100x with deionized water. Diluted samples were transferred to the 

measuring chamber and equilibrated at room temperature for 120 s. A scattering angle of 

170◦ with a refractive index of 1.46 was used to determine the average size and distribution 

of particles within a range of 0.6–6000 nm.  

 

4.3.4.2. Zeta potential  

Untreated and treated samples were analyzed for the zeta-potential using a Zetasizer 

Nano (Malvern Instruments Ltd., Cambridge, UK). Diluted samples (100x) were 

transferred to a disposable polycarbonate cuvette (ATA scientific, DTS1061). 

Measurements have repeated a minimum of 10 times per run with a minimum of 7 runs.  
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4.3.5.Microstructure  

4.3.5.1.Confocal laser scanning microscopy  

An Olympus FV1000 inverted confocal laser scanning electron microscope (CLSM) 

(Olympus America Inc., Center Valley, PA) was used to analyze the microstructure of 

sonicated samples. According to the methodology described elsewhere (Gallier et al., 

2010). A drop of the test sample was placed in the concavity of the slide containing 50 μL 

of agarose (0.5% w/v in deionized water). CLSM images were captured at 40x 

magnification, and the excitation of the Rd-dope was achieved at 559 nm using emission 

from a diode laser. All images were acquired at room temperature.  

 

4.3.5.2.Scanning electron microscopy 

An aliquot of 2000 μL of the sonicated sample was placed in a microscope slide and 

dried under vacuum at 40 ◦C for 15 h (Isotemp Vacuum, model 280A, USA). Samples were 

mounted on circular aluminium stubs with double-sided sticky tape, coated with gold to a 

thickness of 12 nm (Sengar, Rawson, Muthiah, & Kalakandan, 2020). The structure was 

observed and subsequently captured using a scanning electron microscope (model S–

3400N Hitachi, Ltd. Tokyo, Japan) at an accelerating voltage of 7 kV.  

 

4.3.6.Analytical determinations  

4.3.6.1.Gel electrophoresis  

The protein profile was determined using Sodium Dodecyl Sulfate Polyacrylamide gel 

(SDS-PAGE) under reducing conditions as reported elsewhere (Primacella, Wang, & 

Acevedo, 2018). Briefly, 10 mL of sample was mixed with 40 mL of acetone. After the 
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precipitation of the proteins, the mixture was placed in a freezer at − 4 ◦C for 1 h and 

centrifuged (3600 rpm) (Jouan CR412, Jouan Inc., Winchester, VA, USA) for 15 min at 0 

◦C. The supernatant was discarded, and the pellets were dissolved in 0.1 M phosphate 

buffer, pH 5.0 (Rathnakumar, Anal, & Lakshmi, 2017). Then, 5 μL of dissolved pellets 

were transferred into a vial containing 4.75 μL of 2x Laemmli sample buffer (Bio-Rad, 

Hercules, CA), and 0.25 μL of 4% 2-mercaptoethanol (Fisher Scientific, Hampton, NH). 

Dissolved pellets were heated at 90 ◦C for 5 min. Upon cooling, 10 μL of the preparation 

was loaded into Tris-acrylamide gels (4–15% Mini-Protean TGX precast gels with 10 

wells, Bio-Rad). Gels were run for 1 h at 200 V using Tris/Glycine/SDS buffer (Bio-Rad). 

Then, the gels were removed and stained using Bio-safe Coomassie G-250 stain (Bio-Rad) 

and destined to get the protein pattern. The individual proteins were estimated based on the 

molecular weight using the standard from BIO-RAD (Precision plus protein standards, 

161–0375), and the protein bands were identified following the methodology reported 

elsewhere (Ye, Singh, Taylor, & Anema, 2004). The gels were scanned using Bio-5000 

Microtek (Microtex, Taiwan) and processed using the software Scan Wizard Bio 

properties.  

 

4.3.7.Quantification of phospholipids profile 

The phospholipid profile was determined by a UHPLC system (Dionex Ultimate 3000, 

Thermo Scientific) coupled to a charged aerosol detector (CAD, Dionex Corona Veo RS, 

Thermo Scientific). The methodology reported by (Braun, Flück, Cotting, Monard, & 

Giuffrida, 2010) was followed with modifications. Briefly, frozen samples were removed 

from cold storage and allowed to reach room temperature. Then, MPLs were dissolved in 
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1 mL of chloroform: methanol (9:1, v/v). Dissolved MPLs were separated using a binary 

phase and two identical silica columns (4.6 mm × 250 mm, 5 μm particle size, Syncronis, 

Thermo Scientific). Mobile phase A consisted of ammonium acetate at a concentration of 

3 g L− 1 , while acetonitrile-methanol (100 + 3, v/v) was used as mobile phase B. A gradient 

run (t) of 52 min was used to separate the major classes of MPLs using the following 

conditions: 5% A and 95% B at t = 0 min; 5% A and 95% B at t = 2 min; 25% A and 75% 

B at t = 35 min; 25% A and 75% B at t = 40 min; 5% A and 95% B at t = 41 min; 5% A 

and 95% B at t = 52 min. An overall flow rate of 1 mL min− 1 , and the column oven was 

kept at 55◦C. Fifty μL of resuspended samples were injected. The CAD was set to a power 

of 1.0, and the data acquisition rate was set at 2 Hz with a filter constant of 3.6. The 

evaporator temperature was held at 35◦C. A corona nitrogen gas generator and air 

compressor (Peak Scientific Instruments, Billerica, MA, USA) supplied N2 gas to the 

detector. A standard curve was generated with the major classes of phospholipids at 

different concentrations, including phosphatidylinositol (PI), phosphatidylserine (PS), 

phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM). The 

peaks corresponding to each standard were integrated using Chromeleon software Version 

7 (Thermo Scientific). Each sample was analyzed in duplicates under the same conditions. 

The five major phospholipids were identified by their retention time and were quantified 

by comparing their peak area with a standard curve.  

 

4.3.8.Statistical analysis  

All extraction conditions were carried out in triplicates, and the mean values for the 

total lipids and recovered MPLs were compared using Tukey’s test (p < 0.05). The 
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statistical analysis was carried out using Sigma plot software V11 (SPSS Inc., Chicago, IL, 

USA). 

4.4. Results and discussion 

4.4.1.Composition of beta-serum 

Table 4.1 shows the gross composition of BS, where the major compound on a dry 

basis within the BS was lactose (43.88 ± 0.88%), followed by total protein (20.98 ± 1.01%) 

and fat (14.39 ± 0.83%). The literature of the chemical characterization of BS showed a 

quite variable composition, from 40 to 45, 30–33, and 8–22% for lactose, protein, and fat, 

respectively (Cheng et al., 2019; Huang, Zhao, et al., 2020). The concentration of MPLs in 

BS is relatively high (14.67 ± 0.43% with respect to the total fat), making it a suitable 

source of MPLs for extraction and subsequent isolation. However, the concentration of 

MPLs from BS requires the removal of lactose, which is the predominant compound, and 

proteins (caseins and whey protein).  

 

Table 4.1. Compositional analysis of beta-serum. 

Parameter Value 

pH 6.65 ± 0.01 

Total solids (%) 9.96 ± 0.75 

Total protein (%, dry basis) 20.98 ± 1.01 

Total fat (%, dry basis) 14.39 ± 0.88 

Lactose (%, dry basis) 43.88 ± 1.65 

Ash (%, dry basis) 4.82 ± 0.28 

Total phospholipids (g per g of fat) 14.67 ± 0.43 
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4.4.2. Total phospholipids  

The extraction of total MPLs without ultrasound pretreatment produced extraction 

yields of 5.34 ± 0.35, 2.81 ± 0.15, 5.36 ± 0.55, and 7.75 ± 0.67% for Folch, CyNMe-3, 

CyNMe-6, and CyNMe-12, respectively (Figure 4.1). Cheng et al. (2019) reported similar 

yields of MPLs extracted from BS using Folch and CyNMe2 (5% and 2–7%, respectively). 

Folch extraction involves the disruption of hydrogen bonds and electrostatic forces within 

the membrane proteins by the action of ethanol, which allows the organic solvent to 

dissolve the MPLs. The CyNMe2 extraction consists of an organic base of medium polarity 

and strong basicity (Vanderveen, Durelle, & Jessop, 2014). CyNMe2 has low miscibility 

with water, and it converts into a hydrophilic in the presence of CO2. Essentially, the 

organic base (CyNMe2) is converted into bicarbonate salt by CO2, where the bicarbonate 

salt is soluble in water, and it can be recovered for further used. Alshamrani et al. (2016) 

reviewed the fundamentals of CO2-responsive species, including CyNMe2. On the other 

hand, the use of ultrasound before extraction resulted in higher yields (8–69%), increasing 

the acoustic intensity. At an acoustic intensity of 15.58 ± 1.20 W cm− 2 , the yield of MPLs 

was 8.36 ± 0.41, 17.29 ± 0.39, 20.31 ± 1.01, and 24.87 ± 1.24% for Folch, CyNMe3, 

CyNMe-6, and CyNMe-12, respectively. Increasing the acoustic intensity to 31.76 ± 2.46 

W cm− 2 yielded higher values of extracted MPLs (19–52%), being higher for the CyNMe2-

12 extraction. A similar trend but more pronounced was observed at an acoustic intensity 

of 44.56 ± 3.47 W cm−2, where the highest extraction values of MPLs was obtained for 

CyNMe2-12 (69.07 ± 3.45%).  
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Figure 4.1. Comparison of the different extraction treatments on the yield of total lipids from beta-serum. (1) Folch extraction, (2) 

CyNMe2 extraction at solvent to sample ration of 3/1, (3)CyNMe2 extraction at solvent to sample ration of 6/1, (4) CyNMe2 

extraction at solvent to sample ration of 12/1, (5) ultrasound prior Folch extraction, (6) ultrasound priorCyNMe2 extraction at solvent 

to sample ration of 3/1, (7) ultrasound priorCyNMe2 extraction at solvent to sample ration of 6/1, and (8) ultrasound priorCyNMe2 

extraction at solvent to sample ration of 12/1.  
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During sonication, acoustic cavitation (formation, growth, and collapse of bubbles) 

occurs within the liquid, and it creates shear forces of large magnitude (Ashokkumar, 

2015). Such forces can break the complex arrangement between membrane proteins and 

MPLs, releasing the MPLs into the aqueous medium.  

 

The highest concentration obtained in this study was 69.67 ± 3.45% with respect of the 

fat content. Costa et al. (2010) concentrated MPLs up to 61% via ultrafiltration followed 

by supercritical carbon dioxide. A concentrate containing up to 19% of MPLs was obtained 

using a two-step process that consisted of nanofiltration and supercritical carbon dioxide 

(Astaire, Ward, German, & Jimenez-Flores, 2003). A fraction of MPLs (58%) was 

produced after five-stage sequential extraction with ethanol (Price et al., 2018). A product 

containing 36% of MPLs was obtained by the addition of zinc and calcium acetate with 

thermal treatment prior to ethanol extraction (Price, Fei, Clark, & Wang, 2020). Price, Fei, 

et al. (2020) reported a fraction containing 70% of MPLs acetone fractionation. 

Ubeyitogullari and Rizvi (2020) reported a MPLs fraction containing 76% using sequential 

supercritical carbon dioxide and ethanol supercritical carbon dioxide. 

 

4.4.3. Particle size and zeta potential  

Prior to the ultrasound, BS displayed three distinctive peaks, where the highest intensity 

corresponded to a size of 324, 63, and 93 nm (Figure 4.2). Each peak accounted for 80, 

12, and 8% of a total distribution of particles, respectively. Contrary, the ultrasound 

pretreatment shifted the distribution of particles to a broader and smaller distribution that 
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spanned from 600 to 90 nm, with an average size between 162 and 172 nm (Table 4.2). 

Such behavior was observed regardless of the applied acoustic intensity.  

 

Figure 4.2. Particle size distribution before and after ultrasound pretreatment. (1) 

untreated beta-serum; (2) ultrasound pretreatment at an acoustic intensity of 15.5 ± 1.2 W 

cm-2, (3) ultrasound pretreatment at an acoustic intensity of 31.7 ± 2.4 W cm-2, and (4) 

ultrasound pretreatment at an acoustic intensity of 44.5 ± 3.4 W cm-2. 

 

Table 4.2. Zeta potential and average particle size of beta-serum before and after 

ultrasound pretreatments. 

 

Sample Zeta potential (mV) Average particle size (nm) 

Untreated beta-serum -37.8 ± 5.98a 579.7 ± 16.46a 

Ultrasound at 15.5 ± 1.2 W cm-2 -38.8 ± 6.03a 171.9 ± 12.17b 

Ultrasound at 31.7 ± 2.4 W cm-2 -30.2 ± 5.69ab 163.1 ± 13.02b 

Ultrasound at 44.5 ± 3.4 W cm-2 -27.1 ± 5.42b 172.1 ± 15.62b 
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Mean ± standard deviation within each column with different letters are significantly 

different (p < 0.05) according to Tukey test 

 

Average particle size as well as their distribution (Table 4.2 and Figure 4.2, 

respectively) seem to support the role of ultrasound pretreatment. Table 4.2 shows the 

values of the zeta potential of BS before and after sonication. Overall, the values ranged 

from -27 to - 38 mV, showing a slightly increasing tendency with the acoustic intensity. 

 

4.4.4. Microstructure  

The microstructure as well as the gross morphology of BS was evaluated before and 

after ultrasound pretreatment (Figure 4.3 and Figure 4.4). Untreated BS exhibited droplets 

of MPLs with an average size of 4000 nm. In native form, MPLs are arranged as liquid-

disordered and liquid order complex, having a size of 5000–10,000 nm (Gallier et al., 

2010). A reduction of the MPLs droplets was observed at an intensity of 15.58 ± 1.20 W 

cm−2 (Figure 4.3b). Further increment (31.76 ± 2.46 and 44.56 ± 3.47 W cm− 2 ) resulted 

in substantial reduction of the MPLs droplets (Figure 4.3c and Figure 4.4d). Smaller 

particles increase the mass transfer (Rosenthal, Pyle, & Niranjan, 1998), where the 

diffusion of MPLs droplets into the aqueous solvent is enhanced.  

 

The gross morphology of BS before and after ultrasound (Figure 4.4) also revealed a 

significant reduction of the aggregates. Images through scanning electron microscopy from 

untreated BS displayed numerous heterogeneous porous of variable sizes and shapes 
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Figure 4.4a). Ultrasound pretreatment seems to fracture the structure of BS, producing 

small aggregates of proteins and MPLs (Figure 4.4b-d). 

 

 

 

Figure 4.3 Confocal laser scanning microscopy images of beta-serum: (a) untreated beta-

serum; (b) ultrasound pretreatment at an acoustic intensity of 15.5 ± 1.2 W cm-2, (c) 

ultrasound pretreatment at an acoustic intensity of 31.7 ± 2.4 W cm-2, and (d) ultrasound 

pretreatment at an acoustic intensity of 44.5 ± 3.4 W cm-2. 
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Figure 4.4. Scanning microscopy images of beta-serum: (a) untreated beta-serum; (b) 

ultrasound pretreatment at an acoustic intensity of 15.5 ± 1.2 W cm-2, (c) ultrasound 

pretreatment at an acoustic intensity of 31.7 ± 2.4 W cm-2, and (d) ultrasound 

pretreatment at an acoustic intensity of 44.5 ± 3.4 W cm-2. 

 

4.4.5.Protein profile  

The effect of ultrasound pretreatment on the protein profile of BS was evaluated using 

SDS-page (Figure 4.5). Three major classes of proteins were observed in untreated BS, 

namely milk fat globule membrane (MFGM), caseins, and whey proteins (column 2 in 

Figure 4.5). Milk fat globule membrane included xantane oxidase, butylophilin, and 
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adipophilin, displaying bands at 100, 75, and 50 kDa, respectively. On the other hand, α-

casein and β-casein displayed their characteristics bands at 20 and 25 kDa, respectively. 

Whey proteins (α-lactalbumin and β-lactoglobulin) showed their bands at molecular weight 

of 10 and 50 kDa, respectively. Price, Fei, et al. (2020) reported similar protein distribution 

of untreated BS. Interestingly, the application of ultrasound within the tested acoustic 

intensities (15–44 W cm− 2 ) did not significantly impact the primary structure of the 

proteins. O’Sullivan, Murray, Flynn, and Norton (2016) studied the impact of ultrasound 

on the structure of dairy proteins. It is though that ultrasound induces hydrophobic 

interactions (non-covalent) within the dairy proteins as opposed to peptide cleavage 

(Chandrapala, Martin, Zisu, Kentish, & Ashokkumar, 2012). This observation agrees with 

the values of zeta potential (Table 4.2) that were within the stability region (- 27 and -38 

mV) of colloidal suspensions (Czapla, Bart, & Jesberger, 2000). 

 

Figure 4.5. SDS-PAGE pattern of Beta serum: (1) Molecular weight standard; 

(2)untreated beta-serum ;(3) ultrasound pretreatment at 15.5 ± 1.2 W cm-2, (4) ultrasound 

pretreatment at 31.7 ± 2.4 W cm-2, and (5) ultrasound pretreatment at 44.5 ± 3.4 W cm-2. 
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4.4.6. Profile of milk phospholipids  

Five major classes of MPLs were quantified in the recovered fraction, including PI, PS, 

PE, PC, and SM (Table 4.3). In general, the concentration and relative distribution of 

MPLs varied considerably according to the extraction method. Extraction without 

ultrasound resulted in concentrations of 28–63, 25–27, 28–46, 25–63, and 24–55 μg mL− 1 

, respectively. Similar profile of MPLs has been reported in from butter serum (Gassi et 

al., 2016), raw milk (Rombaut, Dewettinck, & Van Camp, 2007), butter milk (Costa et al., 

2010), and beta-serum (Price, Fei, et al., 2020). At an acoustic intensity of 15.58 ± 1.20 W 

cm− 2 , the concentration of PI increased about 9.83- to 20.31-fold in comparison with the 

extraction without ultrasound pretreatment. Further increase in the acoustic intensity (31.76 

± 2.46 and 44.56 ± 3.47 W cm− 2) remarkably improved the concentration of PI by about 

15.42- to 46.32-fold, being the highest increment at 31.76 ± 2.46 W cm− 2 prior to CyNMe2-

6 extraction. Contrary, the presence of PS was not detected when ultrasound was used prior 

to CyNMe2 extraction, independently of the intensity. In the case of PE and SM, the 

greatest improvement in the extraction was obtained at 44.56 ± 3.47 W cm− 2 prior to 

CyNMe2-12, where the concentration improved by 16.12 and 13.40 fold, respectively.  

 

Figure 4.6 illustrates the relative distribution of MPLs as a function of the extraction 

method. The MPLs fraction obtained via Folch extraction was made of PI (19%), PS (16%), 

PE (31%), PC (16%), and SM (16%). In contrast, the recovered fraction of MPLs via 

ultrasound (44.56 ± 3.47 W cm− 2 ) prior to CyNMe2-12 was mainly made of PI (32%), PE 

(30%), and SM (37%). Such observations exemplify the complexity of the MPLs 

arrangement within the protein membranes. 
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Table 4.3. Concentration (μg mL-1) of recovered milk phospholipids from beta-serum.  

Treatment Without ultrasound pretreatment 

PI PS PE PC SM Total 

Folch 28.71 ± 2.58 25.19 ± 2.26 46.75 ± 4.21 25.42 ± 2.28 24.67 ± 2.22 150.76 ± 13.26 

CyNMe2-3 27.62 ± 2.48 N.D. N.D. 23.10 ± 2.07 28.59 ± 2.57 79.33 ± 6.98 

CyNMe2-6 22.21 ± 1.99 27.86 ± 2.46 28.86 ± 2.59 45.11 ± 4.05 27.74 ±2.49 151.23 ± 13.31 

CyNMe2-12 63.07 ± 5.67 N.D. 36.82 ± 3.31 63.92 ± 5.75 54.96 ± 4.94 218.79 ± 19.25 

Acoustic intensity 15.38 ± 1.20 W cm-2 

Treatment PI PS PE PC SM Total 

CyNMe2-3 271.61 ± 24.44 N.D. 102.22 ± 9.21 N.D. 26.21 ± 2.35 400.05 ± 35.20 

CyNMe2-6 475.81 ± 42.82 16.78 ± 1.51 15.08 ± 1.35 46.51 ± 4.18 19.19 ± 1.72 573.39 ± 50.45 

CyNMe2-12 226.54 ± 20.38 N.D. 214.39 ± 19.29 N.D. 261.19 ± 23.51 702.13 ± 61.78 

Acoustic intensity 31.76 ± 2.46 W cm-2 

Treatment PI PS PE PC SM Total 

CyNMe2-3 371.01 ± 33.39 54.62 ± 4.91 340.76 ± 30.66 22.88 ± 2.05 28.62 ± 2.57 817.81 ± 71.97 

CyNMe2-6 1022.781 ± 92.07 N.D. 87.67 ± 7.89 N.D. 27.61 ± 2.48 1138.01 ± 100.14 

CyNMe2-12 1283.61 ± 115.52 80.21 ± 7.21 52.62 ± 7.21 N.D. 67.16 ± 6.04 1438.61 ± 130.55 

Acoustic intensity 44.56 ± 3.47 W cm-2 

Treatment PI PS PE PC SM Total 

CyNMe2-3 272.14 ± 24.49 N.D. 49.18 ± 4.42 226.58 ± 20.39 281.87 ± 25.36 829.79 ± 73.02 

CyNMe2-6 445.42 ± 40.98 N.D. 442.63 ± 39.83 N.D. N.D. 898.06 ± 79.03 

CyNMe2-12 638.84 ± 57.49 N.D. 604.60 ± 54.41 N.D. 736.56 ± 66.29 1980.02 ± 174.24 

CyNMe2-3 – extraction with N,N-dimethylcyclohexylamine at a solvent-sample ratio of 3; CyNMe2-6 – extraction with N,N-

dimethylcyclohexylamine at a solvent-sample ratio of 6; CyNMe2-12 – extraction with N,N-dimethylcyclohexylamine at a 

solvent-sample ratio of 12; PI – phosphatidylinositol; PS – phosphatidylserine; PE – phosphatidylethanolamine; PC – 

phosphatidylcholine; SM – phingomyelin; N.D. – not detected. 
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Overall, ultrasound pretreatment produced a higher concentration of PI and PE (Figure 

4.6) that are located on the inner parts of the membranes. PI and PE might be released to 

the aqueous medium upon sonication. The relative high concentration of PE is of 

technological interest since PE has been used for liposomes preparation (Ali et al., 2019). 

Recovered fractions using ultrasound prior to CyNMe2 extraction were high in SM, which 

is a desirable MPLs due to its potential health benefits (Ortega-Anaya & Jimenez-Flores, 

2019). The concentration and distribution of MPLs can be modulated with the acoustic 

intensity and solvent to sample ratio. Additional research steps are needed to quantify the 

oxidation products within the recovered fractions. 

Figure 4.6. Distribution of milk phospholipids after different extraction methods: (1) 

Folch extraction, (2) CyNMe2 extraction at solvent to sample ration of 3/1, (3)CyNMe2 

extraction at solvent to sample ration of 6/1, (4) CyNMe2 extraction at solvent to sample 

ration of 12/1, (5) ultrasound (15.5 ± 1.2 W cm-2) prior to CyNMe2 extraction at solvent 

to sample ration of 3/1; (6) ultrasound (15.5 ± 1.2 W cm-2) prior to CyNMe2 extraction at 

solvent to sample ration of 6/1; (7) ultrasound (15.5 ± 1.2 W cm-2) prior to CyNMe2 

extraction at solvent to sample ration of 12/1; (8) ultrasound (31.7 ± 2.4 W cm-2) prior to 

CyNMe2 extraction at solvent to sample ration of 3/1; (9) ultrasound (31.7 ± 2.4 W cm-2) 

prior to CyNMe2 extraction at solvent to sample ration of 6/1; (10) ultrasound (31.7 ± 2.4 

W cm-2) prior to CyNMe2 extraction at solvent to sample ration of 12/1; (11) ultrasound 

(44.5 ± 3.4 W cm-2) prior to CyNMe2 extraction at solvent to sample ration of 3/1; (12) 

ultrasound (44.5 ± 3.4 W cm-2) prior to CyNMe2 extraction at solvent to sample ration of 
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6/1; and (13) ultrasound (44.5 ± 3.4 W cm-2) prior to CyNMe2 extraction at solvent to 

sample ration of 12/1. PI – phosphatidylinositol; PS – phosphatidylserine; PE – 

phosphatidylethanolamine; PC – phoshatidylcholine; SM – phingomyelin. 

 

4.5 Conclusions 

The application of ultrasound prior to CyNMe2 extraction improved the extraction 

yield of MPLs from beta-serum. The analysis of particle size distribution, zeta potential, 

protein profile, and microstructure suggest that ultrasound can break the complex 

arrangement between membrane proteins and MPLs, releasing the MPLs into the aqueous 

medium. In addition, the relative distribution of the major classes of MPLs strongly 

depended on the extraction method. Upon further separation, MPLs can be used as 

ingredients for a number of applications, such as infant formula and instant powders. This 

work demonstrates that ultrasound prior to CyNMe2 has great potential for producing 

MPLs fractions from dairy byproducts.  
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CHAPTER 5 

EFFECT OF TEMPERATURE ON THE SWITCHABLE SOLVENT EXTRACTION 

OF PHOSPHOLIPIDS FROM BETA-SERUM4 

5.1. Abstract 

In this study, the extraction of milk phospholipids(MPLs) from beta-serum is a 

byproduct obtained from anhydrous milk fat, which contains many phospholipids that go 

to the aqueous phase during processing. The research aimed to improve the extraction 

yields of  MPLs utilizing temperature assisted N-N,dimethylcyclohexylamine(CyNMe2) 

extraction. The extraction conditions such as temperature (25,40,60 oC), time (3,10,18hr) 

and solvent ratio (3/1 ,10/1, 18/1 mL) were obtained using a factorial design. A temperature 

of 60oC  and a minimized solvent ratio(3/1 mL) and time (3 h) yielded 29.29% ± 0.06%  of 

MPLs, while only 7.57 ± 0.59% (12/1 mL and time 18 h ) were recovered without 

temperature. The extracted lipids were fractionated by Solid-phase extraction, and the 

individual MPLs of the sample were quantified, and they include (sphingomyelin, 

phosphatidylethanolamine, serine and choline) from the HPLC-CAD. The fraction of 

MPLs was made of phosphatidylinositol (59%), phosphatidylethanolamine (35%), and 

sphingomyelin (4.9%). Further confocal laser scanning images and scanning electron 

images were determined to reveal the microstructure and how it impacted the protein 

membranes rupture and released the phospholipids to the aqueous. The outcomes of this 

study show an alternative approach to extract the phospholipids from dairy by-products.  

 

 
4 A version of this chapter is to be submitted to the Journal of Food Process Engineering  
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5.2. Introduction 

Milk phospholipids (MPLs) are quantitatively classified into glycerophospholipids and 

sphingolipids based on their chemical structure (Avalli and Contarini, 2005). They account 

for about 0.5- 1%, in which 60-70% are present in the Milk fat globular membrane 

(MFGM) depending on the season and lactation stage (Contarini and Povolo, 2013a). The 

PLs choline (PC) and sphingomyelin (SM) are located outside the membrane. At the same 

time, the Phosphatidylethanolamine (PE), Phosphatidylserine (PS) and 

Phosphatidylinositol (PI) are present in the inner surface of the membrane (Contarini and 

Povolo, 2013b). The manufacturing steps greatly influence the PLs components during the 

process of milk into the byproduct. For a decade, works have been performed to develop 

methods for concentrating and isolating the milk fat globule membrane (MFGM), 

especially the PLs. This component has gained a lot of interest in recent times because of 

health benefits and nutritional aspects. They affect cell functions such as growth, memory 

processing, stress responses, effectiveness against gastrointestinal functions (Hellhammer 

et al., 2010, Hellhammer et al., 2014) and improvement in immunological functions 

(Kuchta-Noctor et al., 2016).  

 

Milk phospholipids (PLs) are considered unique due to the high proportion of 

Sphingomyelin (SM) and Phosphatidylserine (PS), which accounts for about 24 % and 12 

% respectively, compared to the vegetable source such as the soy 0 and 0.5% and the egg 

yolk which is 1.5 and 0% respectively (Contarini and Povolo, 2013a, Price et al., 2018, 

Huang et al., 2020b). The absence of SM in soy lecithin makes the milk PLs a potential 

ingredient formulation, especially in infant formula; this will enhance the nutritional 
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property of the infant formula and improve the economics of the dairy processing industry 

(Ortega-Anaya and Jimenez-Flores, 2019).  

Beta-serum (BS) is a byproduct obtained during the phase inversion of anhydrous milk 

fat (AMF), which has a similar composition as that of buttermilk (Catchpole et al., 2008, 

Price et al., 2019). It has a potential source of PLs and opens up possible ways for extraction 

and further commercialization (Cheng et al., 2019b, Price et al., 2020). The major challenge 

in extracting MPLs from the direct byproduct stream involves a multi-step procedure since 

it is a wet dilute material. It has to be concentrated, mixing of polar solvents, centrifugation, 

distillation and fractionation resulting in lower extraction yield and easily susceptible to 

oxidation. Various approaches are currently in use for the production of MPLs 

concentrates, which involves filtration, evaporation, drying, supercritical carbon-di-oxide, 

five-stage sequential process ((Costa et al., 2010, Barry et al., 2017a, Price et al., 2018, 

Huang et al., 2020b, Ubeyitogullari and Rizvi, 2020) all these approaches led to an enriched 

form of MPLs from 18 to 70%. The commercially available MPLs are from Fonterra is 

Phospholac 600, which contains more than 70 % of PLs, the process is not disclosed, and 

they are mostly used in infant formulas. 

 

An innovative alternative approach to extract the phospholipids is the use of tunable or 

switchable hydrophilicity solvents; the mechanism is based on the reversible reaction of 

amine, which can change its hydrophilicity by switching “on and off ” from water-

immiscible to water-miscible form by simply bubbling with CO2(Boyd et al., 2012, 

Alshamrani et al., 2016). A recent investigation by (Cheng et al., 2019c) using N, N, 

dimethyl cyclohexylamine to extract the phospholipids from different dairy byproducts 
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reported that 7% of MPLs were extracted from the dilute material of BS and improvements 

in extraction yield reported that 69 % of MPLs were obtained by using ultrasound treatment 

prior to the switchable solvent extraction (Rathnakumar et al., 2020).  

So far, there is no data available on the cumulative effects of temperature, extraction 

time, the solvent ratio on the extraction of milk phospholipids from Beta serum using 

switchable solvents. Hence this study emphasizes the utilization of response surface 

methodology, especially central composite design, to maximize or minimize the process 

variables. In this process, time(3,6 and 18hr) was considered as the response on the yield 

of total PLs. This due to the nature of the process, the reversibility reaction of amine, which 

is based on the Le-Chatliers principle. The composition of individual phospholipids 

quantified using HPLC-CAD for all 27 treatments. The conditions which gave a higher 

yield of total phospholipids was analysed for Scanning electron microscopy (SEM) and 

Confocal laser scanning microscopy (CLSM) to understand the effect and influence these 

extraction conditions have on the protein and lipidic material.  

 

5.3. Materials and methods 

5.3.1. Materials 

The Beta Serum was obtained from a local cheese plant (Valley Queen, Milbank, SD, 

USA). N, N-dimethyl cyclohexylamine (CyNMe2, 99%, Sigma Aldrich, St. Louis, MO, 

USA), hexane (99%, Sigma Aldrich), methanol (99%, Sigma Aldrich), chloroform (99%, 

Sigma Aldrich), HPLC-grade water (Sigma Aldrich), red Nile (Fisher Scientific), fast 

green (FCF, Fisher Scientific), Rd-dope (Avanti Polar Lipids Inc., Alabaster, AL, USA).  
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5.3.2. Compositional Analysis 

B-serum was analyzed for total solids, total protein, lactose, fat and phospholipids 

following the methodology reported (Cheng et al., 2019b). The B-serum's fatty acid profile 

was determined using methyl esters, and the extracts were analyzed using Gas 

chromatography, as mentioned in (Mannion et al., 2016).  

 

5.3.3. Extraction of Phospholipids  

The CyNMe2 extraction of MPLs from BS was conducted according to the 

methodology reported elsewhere (Cheng et al., 2019a). Different extraction conditions 

were employed such as temperature (25,40, 60o C),  time (3,10,18 hr) and solvent ratio 

(3/1,10/1, 18/1 mL). Each 1 g of  BS was mixed with different solvent volumes of CyNMe2 

and kept for 18 h at room temperature under constant agitation using a magnetic stirring 

(1500 rpm). Then, mL of water as that of the solvent was added into the mixture followed 

by bubbling CO2 (Organomation Associates Inc, Berlin, MA, USA) at room temperature 

for 4 h. Water was added to maintain the stoichiometry of the reaction, amine to salt. At 

the end of the bubbling, a lipid layer was formed at the top of the vial, and the lipid layer 

was dissolved in 3 mL hexane and transferred to a test tube for evaporation at 30°C under 

nitrogen flow. The total lipids were calculated using Equation (5.1), where the weight of 

dried lipids was divided by the sample weight.  

 

Total lipids (%) =
weight of dried lipids

weight of sample
∙ 100  (5.1) 
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The dried lipids recovered after solvent extraction were fractionated using a solid-phase 

extraction (SPE) column (1 cm x 10 cm) made of activated silica gel. The method of lipid 

fractionation via SPE can be found elsewhere (Donato et al., 2011). Dried lipids of 100 mg 

were dissolved in 1 mL of chloroform: methanol solution (95:5, v/v), and flowed through 

the SPE column, previously conditioned with 10 mL chloroform: methanol solution. 

Neutral lipids were eluted with 20 mL of the chloroform: methanol solution, while the 

MPLs were recovered with 10 mL of methanol followed 10 mL of chloroform: methanol: 

water (5:3:2 v/v/v). Solvents were evaporated at 40°C under vacuum. The recovered 

fraction was named total PLs calculated using Equation (5.2).  

Total phospholipids (%) =
weight of dried fraction

weight of lipids 
∙ 100  (5.2) 

 

5.3.4. Determination of pH 

The Orion pH-meter (Versa Star Pro, Thermo Fisher Scientific, Waltham, MA, USA) 

was used to determine the pH at every stage of the extraction process  to determine the 

process of switchable behaviour and its conversion to its salt form (Vanderveen et al., 

2014). 

 

5.3.5. Microstructure  

The microstructure on the four conditions for the extracted B-serum was determined 

using CLSM at two different stages i.) SHS +BS(after stirring) ii.) after CO2 at both the 

top and bottom phase. Images taken through CLSM were obtained using an Olympus 

FV1000 inverted confocal laser scanning electron microscope (Olympus America Inc., 
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Center Valley, PA). Before the analysis, proteins, fat, and phospholipids were stained with 

Fast green, Nile red, and Rd-dope, respectively, according to the methodology reported by 

Gallier et al. (2010b). The dyes were dissolved to final concertation of 0.01% using acetone 

as a solvent for Fast green and Nile red, and chloroform for Rd-dope. Samples of 20 µl 

were transferred to a test tube and mixed with the fluorescent dyes to a ratio 1:100 (v/v) 

for 20 min in the dark. A droplet of the stained sample was then placed in a microscope 

slide and dried at atmospheric conditions. The excitation of Fast green, Nile red, and Rd-

dope was achieved at 625, 488, and 559 nm, respectively, using emission from a diode 

laser. All images were acquired at room temperature. SEM images were also obtained for 

the four extracted conditions using an electron microscope (model S-3400N Hitabchi, Ltd. 

Tokyo, Japan) at the Electrical Engineering and Computer Science Department at South 

Dakota State University.  

 

5.3.6. Determination of individual phospholipids 

The quantification of the individual MPLs was determined using a UHPLC system 

(Dionex Ultimate 3000, Thermo Scientific) coupled to a charged aerosol detector (CAD, 

Dionex Corona Veo RS, Thermo Scientific). The methodology reported by (Braun et al., 

2010) was followed with modifications. Firstly, the recovered fraction of MPLs after SPE 

was dissolved in 1 mL of chloroform: methanol solution (9:1, v/v). Then, the MPLs were 

separated using a binary phase and two identical silica columns (4.6 mm x 250 mm, 5 μm 

particle size, Syncronis, Thermo Scientific). Mobile phase A consisted of ammonium 

acetate at a concentration of 3 g L-1, while acetonitrile-methanol (100+3, v/v) was used as 

mobile phase B. A gradient run (t) of 52 min was used to separate the major classes of 
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MPLs. An overall flow rate of 1 mL min-1, and the column oven was kept at 55°C. Fifty 

μL of resuspended samples were injected. The CAD was set to a power of 1.0, and the data 

acquisition rate was set at 2 Hz with a filter constant of 3.6. The evaporator temperature 

was held at 35℃. A corona nitrogen gas generator and air compressor (Peak Scientific 

Instruments, Billerica, MA, USA) supplied N2 gas to the detector. A standard curve was 

generated with the major classes of phospholipids at different concentrations, including 

phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), 

phosphatidylcholine (PC), and sphingomyelin (SM). The peaks corresponding to each 

standard were integrated using Chromeleon software Version 7 (Thermo Scientific). Each 

sample was analyzed in duplicates under the same conditions. The five major 

phospholipids were identified by their retention time and were quantified by comparing 

their peak area with a standard curve.  

 

5.3.7. Statistical analysis  

All extraction conditions were carried out in triplicates, and the mean values for the 

recovered MPLs were compared using Tukey’s test (p < 0.05). The statistical analysis 

was carried out using Design-Expert software (v7.0). 

 

5.4. Results and discussions 

5.4.1. Characterization of beta-serum 

The chemical characterization of the B-serum, such as total protein, fat, lactose, pH, 

total solids, has been reported in our previous reports (Cheng et al., 2019b, Rathnakumar 

et al., 2020). Table 5.1 shows the BS's fatty acid profile, where the results depicted the 
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higher presence of C14:0 (myristic), palmitic, oleic and linoleic fatty acids. They are found 

to be relatively higher in proportion than that of the soybean lecithin (Staňková et al., 2013; 

Mathiassen et al., 2015). A similar fatty acid profile has been observed for the buttermilk 

(Gallier et al., 2010b).  

 

5.4.2. Effect of temperature on the extraction of Phospholipids 

At 25 oC, Figure 5.1a. illustrated that for three different solvent ratios, the solvent ratio 

(3/1 mL) for the time 18h gave 2.41%±0.44% of PLs (Cheng et al., 2019b) the time 3 h 

and 10 h gave 0.99 %± 0.28% and 1.47%±0.19 respectively.  

 

Table 5.1. Fatty acid profile of Beta serum 

Crude Fat (W/W %) 3.02  

Fatty Acid Profile (Expressed as Percent of Total 

Fat) 

C14:0 11 

Myristoleic (9c-14:1) 0.64 

C15:0 1.43 

C15:1n5 0 

Palmitic (16:0) 34.49 

Palmitoleic (9c-16:1) 1.81 

Margaric (17:0) 0.79 

10c-17:1 0.22 

Stearic (18:0) 11.23 

Elaidic (9t-18:1) 1.76 

Oleic (9c-18:1) 17.81 

Vaccenic (11c-18:1) 0.64 

Linoelaidic (18:2t) 0.26 

Linoleic (18:2n6) 3.74 

Linolenic (18:3n3) 0.29 

g-Linolenic [C18:3n6] 0.03 

Stearidonic (18:4n3) 0 

Arachidic (20:0) 0.13 

Gonodic (20:1n9) 0 

C20:2 0.1 

Homo-g-linolenic [C20:3n6] 0.33 
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Homo-a-linolenic(20:3n3) 0 

Arachidonic [20:4n6] 0.3 

3n-Arachidonic (20:4n3) 0 

EPA (20:5n3) 0 

C21:0 0.03 

Behenoic (22:0) 0.18 

Erucic [22:1n9] 0 

C21:5n3 0 

C22:2n6 0 

Adrenic [C22:4n6] 0 

Clupanodonic (22:5n3) 0 

DHA (22:6n3) 0 

C23:0 0.16 

Lignoceric (24:0) 0.08 

Nervonic (24:1n9) 0 

 

At the solvent ratio (10/1 mL), the highest recovered PLs were 16.23%±1.26%  for the 

10 h, while for the solvent ratio(18/1 mL), the recovered PLs for 18 h was 9.89%±0.56%. 

At 40 oC, Figure 5.1b shows the recovered PLs for the solvent ratio (3/1 mL) showed that 

initially, the PLs content at 3 h was 5.60%±1.26%  further increased to 27.00%±0.04% at 

10 h and decreased again to 5.97%±3.45%. Similarly, for the solvent ratio (18/1 mL) for 

the time 3 h, the recovered PLs were 11.56%±0.17%, later at 10h it increased to 

17.15%±0.17% and decreased to 4.66%±0.10%.  The trend remained the same for solvent 

ratio (10/1 mL); at 3 h, the recovered PLs were  9.35%±1.10%, while at 10 h, it increased 

to 20.46%±0.42% and decreased to 14.25%±0.11%.  

At 60 oC, Figure 5.1c illustrated that overall higher recovery of PLs was observed at 

the solvent ratio (3/1 mL ) was 29.29% ± 0.06%  within a 3 h period, then decreased to 

8.25% ±1.33% and further decreased to 5.77%±0.54%. Contrary in the case of the solvent 

ratio (10/1 mL) in the 3 h, the recovered PLs was 4.80%±1.05%, which further increased 

to 24.09%±0.00% at 10 h and decreased to 9.00%±1.26% at 18 h. Likewise, in the case of 
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solvent ratio (18/mL) at 3 h, the PLs recovered were 3.95%± 0.08%, while at 10 h, it 

increased to 11.58%±0.54% and again decreased to 9.16% ±0.38%. 

Table 5.2. Different extraction conditions on the yield of total lipids and total 

phospholipids recovered from beta-serum 

Conditions Time 

(h)  

Temperature 

(oC) 

Solvent 

ratio (mL)  

Lipids % PLs% 

1 3 60 3 0.634±0.064 29.30±0.064 

2 10 40 3 0.084±0.044 27.007±0.044 

3 10 60 10 0.346± 0.008 24.096±0.008 

4 10 40 18 0.912± 0.179 17.151±0.179 

Mean ± standard deviation within each column with different letters are significantly 

different (p < 0.05) according to Tukey test. 
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Figure 5.1. Comparison of the different extraction treatments on the yield of total 

lipids from beta serum. , (a) CyNMe2 extraction at temperature 25 oC, time (3,10, 18 h) 

solvent to sample ration of 3/1,6/1 and 18/1 mL  (b) CyNMe2 extraction at extraction at 

temperature 40 oC, time (3,10, 18 h) solvent to sample ration of 3/1,6/1 and 18/1 mL (c) 

CyNMe2 extraction at extraction at temperature 60 oC, time (3,10, 18 h) solvent to 

sample ration of 3/1,6/1 and 18/1 mL. 
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Our previous study on BS by Cheng et al. (2019) reported yields of MPLs extracted 

from BS using Folch and CyNMe2 (5% and 2-7%, respectively). The effect of temperature 

had an increment in the amount of PLs up to 29% with a minimized solvent ratio of 3/1 

mL and time 3 h. Various reports in the literature reported that a concentrate containing up 

to 19% of MPLs was obtained using a two-step process that consisted of nanofiltration and 

supercritical carbon dioxide (Astaire et al., 2003).  

 

5.4.3. Microstructure  

Figure 5.2 shows the microstructure images from the scanning electron microscope for 

four extraction conditions which gave a higher yield of PLs, as presented in Table 5.2. The 

different extraction temperature for the B-serum depicted the presence of numerous porous 

structures of different shapes and sizes. The effect of temperature has seemed to disrupt the 

protein-membrane and releasing the phospholipids. 

Figure 5.3 illustrates the presence of proteins, lipids and PLs at the different stages. It 

was also observed the reduction in the aggregated protein-membrane, which eventually 

caused the release of PLs into the aqueous medium in the presence of temperature and 

CyNMe2 solvent. This also favoured the mass transfer between MPLs and the surrounding 

solvent, thereby causing an improvement in the yield of PLs (Rathnakumar and Martinez-

Monteagudo, 2020).  
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Figure 5.2. Scanning microscopy images of beta-serum: (a) CyNMe2 extraction 

condition -1: time (3 h), temperature(60 oC) and solvent ration(3/1 mL)  (b) CyNMe2 

extraction condition -2 : time (10 h), temperature(40 oC) and solvent ration(3/1 mL) (c) 

CyNMe2 extraction condition - 3 : time (10 h), temperature(60 oC) and solvent 

ration(10/1 mL) (d) CyNMe2 extraction condition - 4 : time (10 h), temperature(40 oC) 

and solvent ration(18/1 mL). 
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Figure 5.3. Confocal laser scanning microscopy images of beta-serum: at two different 

points i.) Stage 1(SHS +by-product) ii.) Stage 4 :(After CO2 - top and bottom phase) for 

four  different higher extraction yield of phospholipids after CyNMe2 extraction 

condition (a) time (3 h), temperature(60 oC) and solvent ration(3/1 mL)  (b) time (10 h), 

temperature(40 oC) and solvent ration(3/1 mL) (c) time (10 h), temperature(60 oC) and 

solvent ration(10/1 mL) (d)time (10 h), temperature(40 oC) and solvent ration(18/1 mL). 
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5.4.4. Distribution of individual Phospholipids 

Five major classes of MPLs were quantified in the recovered fraction, including PI, PS, 

PE, PC, and SM. The concentration and distribution of the PLs varied according to the 

temperature, time, and solvent ratio (Table 5.3). Overall a higher concentration of PI and 

SM was observed in all four conditions. Contrarily, the condition which recovered only 

17% of PLs had a higher concentration of PI, PS, PE, PC and SM. The PI and SM could 

have been released into an aqueous medium due to the influence of temperature. This 

component PI has more technological interests and can be used in liposomes preparation 

(Ali et al., 2019), while the SM is more significant due to its potential health 

benefits(Ortega-Anaya and Jimenez-Flores, 2019). The PS and PC were not detected at 

some conditions because this could have easily degraded due to the temperature, or it might 

have isomerized to other smaller components of PLs. Figure 5.4 illustrates the relative 

distribution of MPLs from the extraction condition presented in Table 5.3. A similar profile 

of MPLs has been reported from butter serum and buttermilk (Costa et al., 2010, Gassi et 

al., 2016), raw milk (Rombaut and Dewettinck, 2006) and beta serum (Price et al., 2019, 

Rathnakumar et al., 2020).  

Table 5.3. Concentration (μg mL-1) of recovered milk phospholipids from beta-serum 

from different extraction conditions 

T 

(h) 
T 

(oC) 
Solvent 

ratio 

(mL) 

PI PS PE PC SM 

3 60 3 843.2±2.48 N.D 511.9±2.11 N.D 70.4±2.57 

10 40 3 428.7±1.99 93.3±1.41 46.8±4.42 194.5±2.07 671±2.33 

10 60 10 677.6±3.21 41.3±4.31 40.3±3.84 477.2±1.05 548±5.82 

10 40 18 1514.6±2.68 201.8±2.34 657±2.01 701.8±2.03 699.4±6.01 

PI – phosphatidylinositol; PS – phosphatidylserine; PE – phosphatidylethanolamine; PC - 

phosphatidylcholine; SM –Sphingomyelin; N.D. – not detected. 
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Figure 5.4. Distribution of milk phospholipids after different CyNMe2 extraction 

condition(1)  : time (3 h), temperature(60 oC) and solvent ration(3/1 mL)  (2) time (10 h), 

temperature(40 oC) and solvent ration(3/1 mL) (3) time (10 h), temperature(60 oC) and 

solvent ration(10/1 mL) (4)time (10 h), temperature(40 oC) and solvent ration(18/1 mL) 

 

5.4.5. Conversion of  Switchable behavior  

The switchable solvent mechanism is based on its conversion to a hydrophilic 

bicarbonate salt in the presence of CO2. A solvent switchability can be determined in the 

following way that by its appearance, when a mixture of organic compound and water form 

two phases before the addition of CO2 and one phase after CO2, then it is called a switchable 

solvent(Vanderveen et al., 2014). During the conversion, the separation of lipids from the 

solids and water phase is a critical step. Therefore, in dairy byproducts, some components 

such as minerals, caseins, and smaller peptides might affect the overall equilibrium of the 

reaction and could result in incomplete conversion to its salt form. This can affect the 

overestimation of the lipid content and also the presence of the amine residue. To determine 
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whether the salt form's conversion is complete , pH was determined at every stage until it 

reaches a pH around 8 shows that the resulting solution indicates the bicarbonate salt 

(Durelle et al., 2014). Table 5.4 depicts the pH at different stage points for the four 

extraction conditions, and a pH of around 8 was obtained for all. It was observed that with 

a lesser solvent ratio (3/1 mL), the conversion was quicker, while for a higher solvent ratio 

such as 18/1 mL, the conversion took around 6 hrs, which seems to be a time-consuming 

process. (Boyd et al., 2012) reported incomplete conversion of the salt (18–24% of residual 

CyNMe2) during the lipid extraction from microalgae.  

Table 5.4. pH at different stage points during the N,N-dimethylcycloexylamine 

(CyNMe2) extraction 

pH stage points Condition 1  Condition 2 Condition 3 Condition 4  

SHS+B-serum(Before stirring)  10.97±0.000 11±0.000 10.76±0.005 10.58±0.005 

SHS+ B-serum(after stirring 10 hrs) 10.22±0.000 10.87±0.000 10.33±0.000 10.40±0.005 

After addition of water (before CO2) 11.11±0.005 11.46±0.005 11.32±0.000 11.49±0.000 

CO2 bubbling after3hrs   8.15±0.005 8.15±0.000 8.20±0.011 9.26±0.000 

After 4 h CO2 bubbling 8.05±0.000 8.04±0.005 8.1±0.000 8.95±0.000 

After 4 and ½ h CO2 bubbling 
   

8.57±0.005 

After 5 h CO2 bubbling 
   

8.42±0.000 

After 5 and ½ h CO2 bubbling 
   

8.21±0.005 

After 6 h     8.10±0.005 

 

5.5. Conclusions 

A fraction containing up to 29.29% ± 0.06% of MPLs was obtained when switchable 

solvents were subjected to a temperature of 60 oC, at minimized time and solvent ratio ( 3 

h and 3/1 mL respectively). The microstructural analysis SEM and CLSM show the impact 

of temperature on the membrane proteins disintegration and PLs and the release of PLs. 
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The relative distribution of the major classes of MPLs shows the predominance of PI and 

SM. This gives more insights for further separation and utilizes it in various ingredient 

formulations. This study provides a road map for the temperature assisted CyNMe2 

extraction of MPLs from beta-serum. Further research investigation can be carried out on 

determining the isomerization or degradation of the individual PLs. 
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CHAPTER 6  

UNDERSTANDING THE SWITCHABLE SOLVENT EXTRACTION OF 

PHOSPHOLIPIDS FROM DAIRY BYPRODUCTS5 

6.1. Abstract  

Dairy by-products represent a rich source of phospholipids with the potential for 

isolation and further commercialization. In this study, we extracted phospholipids from 

two dairy byproducts (buttermilk and beta-serum) using a tertiary amine (N,N-

dimethylcyclohexylamine, CyNMe2) as a switchable hydrophilicity solvent. For 

comparison, the phospholipids were extracted via Folch (chloroform: methanol). CyNMe2 

extraction resulted in recovery values of 98.66 ± 0.89 and 7.67 ± 0.51% for buttermilk and 

beta-serum, respectively. Insights into the extraction mechanism were obtained by the 

analysis of protein profile, particle size, zeta potential, and microstructure. CyNMe2 

generated microfractures and hollow openings in the solid matrix through ion pair 

formation that releases the phospholipids from the solid matrix. In comparison to Folch, 

CyNMe2 resulted in higher concentration of phospholipids (up to 9-fold increment), and it 

provided a different relative distribution, where phosphatidylcholine and 

phosphatidylinositol were the predominant phospholipids. The outcomes of this study help 

to gain insights into the extraction mechanism by which CyNMe2 acts and develop 

extraction strategies for dairy byproducts. 

 

 
5 A version of this chapter has been published in Food and Bioproducts Processing, 2021, 126, 175-183. 
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6.2. Introduction 

Phospholipids are a group of lipids containing phosphorus in their structure and found 

as bilayers in all the membranes of living organisms (Ali et al., 2019). They are classified 

based on their chemical structure, glycerophospholipids and sphingolipids. The 

phosphorus group in the glycerophospholipids is linked to a polar group and two fatty acids 

esterified to a glycerol backbone (Avalli and Contarini, 2005). Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) are 

classified as glycerophospholipids. Sphingolipids are made of sphingoid bases linked to 

fatty acid. Sphingomyelin (SM) is the dominant species within the sphingolipids (Contarini 

and Povolo, 2013).  

 

Phospholipids are relevant to human nutrition since they provide health benefits beyond 

their basic nutrition (Küllenberg et al., 2012). The ability of milk PLs (MPLs) to scavenge 

free radicals has been demonstrated in vitro by Huang et al. (2020a). Several other health 

claims have been investigated over the past years, including anti-inflammatory effect 

(Hartmann et al., 2009), protecting effect against gastrointestinal infections (Hellhammer 

et al., 2010), and improved immunological functions (Kuchta-Noctor et al., 2016). Most of 

the health claims of PLs have been related to PS and SM, whose concentration is relatively 

high in milk fat (12 and 24% of the total PLs, respectively) (Huang et al., 2020b).  

 

The frequent association between consumption of phospholipids and the reduced risk 

of several malignancies (Küllenberg et al., 2012) has driven the dairy industry to develop 

technological approaches to recover and further utilize MPLs (Huang et al., 2020a). 
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Buttermilk (BM) and betaserum (BS) are two common dairy streams (Huang et al., 2020b). 

Buttermilk is the byproduct of the manufacture of butter, and it consists of the remaining 

liquid after churning (Guggisberg et al., 2012). On the other hand, BS is the aqueous 

product(serum) produced after the phase inversion during the manufacture of anhydrous 

milk fat (Fletcher et al., 2013).The worldwide generation of BM was estimated to be 5.2 

million tons in 2013 (Barry et al., 2017). Conventional uses of BM and BS (ingredient for 

cheese, ice-cream, and yogurt) are not enough to expand the market of dairy byproducts. 

Thus, the extraction of MPLs from BM and BS offers opportunities for improving the 

current value of such industrial byproducts.  

 

One major challenge regarding the direct extraction of MPLs is the low efficiency due 

to the multiple steps within the entire process. In general, the extraction of MPLs from 

byproducts involves concentration, extraction, distillation, and fractionation (Huang et al., 

2020a; Cheng et al., 2019). A more viable approach is the production of MPLs concentrates 

through membrane filtration, concentration, and drying, where concentrates ranging from 

20 to 70% of MPLs are commercially available. The state-of-the-art regarding the 

production of MPLs concentrates has been reviewed elsewhere (Huang et al., 2020b).  

 

In a recent investigation, Cheng et al. (2019) extracted about 99 and 8% of the MPLs 

from BM and BS, respectively, using a tertiary amine (N,N-dimethylcyclohexylamine, 

CyNMe2) as a switchable hydrophilicity solvent. This new type of solvents can switch 

from a hydrophobic to a hydrophilic form by adding or removing CO2 (Jessop et al., 2011). 

The extraction yields from BM and BS using CyNMe2 were quite different, which raises 
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the intriguing question on the governing mechanisms. Understanding the CyNMe2 

extraction mechanism is essential for process development and further optimization. In this 

work, the extraction mechanisms of CyNMe2 were elucidated in the context of the yield 

of MPLs, protein profile, particle size, confocal laser scanning microscopy, and scanning 

electron microscopy.  

 

6.3. Materials and Methods 

6.3.1. Materials  

N,N-dimethylcyclohexylamine (CyNMe2, 99%, Sigma Aldrich, St. Louis, MO, USA), 

hexane (99%, Sigma Aldrich), methanol (99%, Sigma Aldrich), chloroform (99%, Sigma 

Aldrich), acetone (99%, Fisher Scientific, Hampton, NH), HPLC-grade water (Sigma 

Aldrich), phospholipid mixture (Soybean, P3817-1VL, Sigma Aldrich), activated silica gel 

(Silica gel 60 G, EMD Millipore), red Nile (Fisher Scientific), fast green (FCF, Fisher 

Scientific), Rd-dope (Avanti Polar Lipids Inc., Alabaster, AL, USA), Laemmli buffer (Bio-

Rad, Hercules, CA, USA), Trisacrylamide gels (4-15% Mini-Protean TGX precast gels 

with 10 wells, Bio-Rad), Tris/Glycine/SDS Buffer (Bio-Rad), ProteinTM Kaleidoscope 

standards (Bio-Rad), and 2-mercaptoethanol (Fisher Scientific) were purchased from a 

commercial supplier. Liquid buttermilk was obtained after churned raw cream at 4 ◦C using 

a laboratory-scale churner (TM 31 Thermomix, Vorwerk LLC, Thousand Oaks, CA, USA). 

Beta-serum was obtained from a local cheese plant (Valley Queen, Milbank, SD, USA). 
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6.3.2. Proximate analysis  

Buttermilk and BS were analyzed for pH, total solids, protein content, fat, and lactose. 

The pH was measured in 200mL of the sample using an Orion pH-meter (Versa Star Pro, 

Thermo Fisher Scientific, Waltham, MA, USA). Total solids were determined 

gravimetrically, according to the Association of Official Analytical Chemists (AOCA) 

method 990.20 (AOAC, 2000). Total protein was quantified by the Kjeldahl method 

(AOCA) method 990.20, while the Mojonnier extraction was used to quantify the fat 

content (AOCA) method 991.20 (AOAC, 2000). Lactose content was determined by HPLC 

following the methodology reported elsewhere (Amamcharla and Metzger, 2011). 

 

6.3.3. Extraction methods  

The CyNMe2 extraction of MPLs from BM and BS was conducted according to the 

methodology reported elsewhere (Cheng et al., 2019). Briefly, 1 g of either BM or BS was 

mixed with 12mL of CyNMe2, and kept for 18h at room temperature under constant 

agitation using a magnetic stirring (1500 rpm). Then, 12mL of water were added into the 

mixture followed by bubbling CO2 (Organomation Associates Inc, Berlin, MA, USA) at 

room temperature for 4h. Water was added to maintain the stoichiometry of the reaction, 

amine to salt. At the end of the bubbling, a lipid layer was formed at the top of the vial, 

while the bottom layer corresponded to the CyNMe2 salt dissolved in water. The lipid layer 

was dissolved in 3mL hexane and transferred to a test tube for evaporation at 30 ◦C under 

nitrogen flow. The extraction of MPLs from BM and BS was also carried out using the 

Folch method, following the protocol reported elsewhere (Cheng et al., 2019). Twenty mL 

of chloroform: methanol solution (2:1, v/v) were mixed with 1 g of either BM or BS. After 
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vortexed for 3min, the mixture was centrifugated at room temperature (4200 x g) for 5min. 

The upper phase was discarded, while the lower phase was transferred to a test tube for 

evaporation of chloroform at 45 ◦C under nitrogen flow. The total lipids were calculated 

using Eq. (6.1), where the weight of dried lipids was divided by the sample weight. 

 

 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑𝑠 (%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑙𝑖𝑝𝑖𝑑𝑠

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
∙ 100  (6.1) 

 

The dried lipids recovered after solvent extraction were fractionated using a solid-phase 

extraction (SPE) column (1cm× 10cm) made of activated silica gel. Guidelines of lipid 

fractionation via SPE can be found elsewhere (Donato et al., 2011). One hundred mg of 

dried lipids were dissolved in 1mL of chloroform: methanol solution (95:5, v/v), and 

flowed through the SPE column, previously conditioned with 10mL of the 

chloroform:methanol solution. Neutral lipids were eluted with 20mL of the chloroform: 

methanol solution, while the MPLs were recovered with 10mL of methanol followed 10mL 

of chloroform: methanol: water (5:3:2 v/v/v). Solvents were evaporated at 40 ◦C under 

vacuum. The recovered fraction was named total PLs calculated using Eq. (6.2). 

 

𝑇𝑜𝑡𝑎𝑙 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑𝑠 (%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑𝑠 
∙ 100  (6.2) 

 

 

6.3.3. Microstructure  

The microstructure of BM and BS was determined before and after the CyNMe2 and 

Folch extraction by confocal laser scanning microscopy (CLSM) and scanning electron 
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microscopy (SEM). Images taken from untreated BM and BS were denominated as before 

extraction. Images after extraction were taken prior to the CyNMe2 switched to its 

corresponding salt, after 18h of extraction. In the case of the Folch extraction, the images 

were obtained after centrifugation of the mixture, sample and chloroform: methanol. 

Images taken by CLSM were obtained using an Olympus FV1000 inverted confocal laser 

scanning electron microscope (Olympus America Inc., Center Valley, PA). Before the 

analysis, proteins, fat, and phospholipids were stained with Fast green, Nile red, and Rd-

dope, respectively, according to the methodology reported by Gallier et al. (2010a). The 

dyes were dissolved to final concertation of 0.01% using acetone as a solvent for Fast green 

and Nile red, and chloroform for Rddope. Samples of 20l were transferred to a test tube 

and mixed with the fluorescent dyes to a ration 1:100 (v/v) for 20min in the dark. Then, a 

droplet of the stained sample was placed in a microscope slide and dried at atmospheric 

conditions. The excitation of Fast green, Nile red, and Rd-dope was achieved at 625, 488, 

and 559nm, respectively, using emission from a diode laser. All images were acquired at 

room temperature. Scanning electron images (SEM) were obtained using an electron 

microscope (model S-3400 N Hitabchi, Ltd. Tokyo, Japan) at the Electrical Engineering 

and Computer Science Department at South Dakota State University.  

 

6.3.4. Analytical determinations  

6.3.4.1. Protein profile  

The protein profile was determined by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) under reducing conditions. Details on the methodology can 

be found elsewhere (Meletharayil et al., 2015). Two mL of sample were mixed with 20mL 
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of a chloroform: methanol solution (2:1, v/v). Then, the mixture was placed in a freezer for 

1h at −18 ◦C, and then, centrifugated (Jouan CR412, Jouan Inc., Winchester, VA, USA) 

for 15min at 3600 rpm at 0 ◦C. After centrifugation, the supernatant was discarded, while 

the pellets were dissolved with phosphate buffer (3mL, 0.1 N). Five L of the dissolved 

pellets were transferred into a test tube followed by the addition of 4.75L of 2x Laemmli 

sample buffer (Bio-Rad, Hercules, CA, USA), and 0.25L of 4% 2-mercaptoethanol (Fisher 

Scientific, Hampton, NH, USA). Then, the tested tubes were capped and heated for 5min 

at 90◦C. Afterwards, an aliquot of 10L was loaded into Tris-acrylamide gels (4-15% Mini-

Protean TGX precast gels with 10 wells, Bio-Rad), and the gels were run for 1h at 200 V 

using Tris/Glycine/SDS Buffer (Bio-Rad). Then, the gels were removed from the cassettes 

and stained with Bio-safe Coomassie G-250 stain (Bio-Rad). A molecular weight standard 

(Bio-Rad, USA; Precision Plus ProteinTM Kaleido scope Standards) was used as 

reference. Finally, the gels were de-stained with a de-staining solution containing 100mL 

of acetic acid, 300mL of methanol, and 600mL of distilled water. The gels were scanned 

using Bio-5000 Microtek (Microtex, Taiwan).  

 

6.3.4.2. Particle size distribution and zeta potential  

 

The particle size distribution and zeta potential were determined by using a ZetaSizer 

Nano ZS (Malvern Instruments Ltd, Cambridge, UK), according to the guidelines provided 

elsewhere (Ma et al., 2018). Before the analysis, the samples were brought to room 

temperature (25 ◦C) and equilibrated for 20min. An aliquot of 10L was transferred to 

disposable cuvette (DTS 0012, Sigma-Aldrich, St Louis, MO, USA), and diluted 100x with 

deionized water to prevent multiple scattering. Then,the cuvettes were placed in the 
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measuring chamber, where the samples were equilibrated for 120 s at 25 ◦C. For particle 

distribution, the analysis was conducted at a scattering angle of 173◦ and a refractive index 

of 1.46. The average size and distribution of particles were obtained in the percentage of 

volume as a function of droplet diameter in the range of 0.6−6000nm. In the case of zeta 

potential, deionized water was used as a diluent and placed inside a disposable 

polycarbonate cuvette (ATA scientific, DTS1061). Measurements were repeated a 

minimum of 10 times per run with a minimum of 7 runs.  

 

6.3.5. Determination of individual phospholipids  

The quantification of the individual MPLs was determined using a UHPLC system 

(Dionex Ultimate 3000, Thermo Scientific) coupled to a charged aerosol detector (CAD, 

Dionex Corona Veo RS, Thermo Scientific). The methodology reported by Braun et al. 

(2010) was followed with modifications. Firstly, the recovered fraction of MPLs after SPE 

was dissolved in 1mL of a chloroform: methanol solution (9:1, v/v). The, the MPLs were 

separated using a binary phase and two identical silica columns (4.6mmx 250mm, 5m 

particle size, Syncronis, Thermo Scientific). The mobile phase A consisted of ammonium 

acetate at a concentration of 3 g L−1, while acetonitrile-methanol (100 + 3, v/v) was used 

as mobile phase B. A gradient run (t) of 52min was used to separate the major classes of 

MPLs using the following conditions: 5% A and 95% B at t = 0min; 5% A and 95% B at t 

= 2min; 25% A and 75% B at t = 35min; 25% A and 75% B at t = 40min; 5% A and 95% 

B at t = 41min; 5% A and 95% B at t = 52min. An overall flow rate of 1mL min−1, and 

the column oven was kept at 55 ◦C. Fifty L of resuspended samples were injected. The 

CAD was set to a power of 1.0, and the data acquisition rate was set at 2 Hz with a filter 
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constant of 3.6. The evaporator temperature was held at 35◦C. A corona nitrogen gas 

generator and air compressor (Peak Scientific Instruments, Billerica, MA, USA) supplied 

N2 gas to the detector. A standard curve was generated with the major classes of 

phospholipids at different concentrations, including phosphatidylinositol (PI), 

phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and 

sphingomyelin (SM). The peaks corresponding to each standard were integrated using 

Chromeleon software Version 7 (Thermo Scientific). Each sample was analyzed in 

duplicates under the same conditions. The five major phospholipids were identified by their 

retention time and were quantified by comparing their peak area with standard curve. 

 

6.4. Results 

6.4.1. Extraction of total lipids and total phospholipids 

Table 6.1 presents the composition of BM and BS prior to the extraction. The fat 

content in both byproducts was relatively high, representing about 42 and 49% d.b.for BM 

and BS, respectively. Lactose was the second most predominant compound, accounting for 

about 41 and 37% d.b. in BM and BS, respectively. On the other hand, the protein content 

was between 3 and 2% d.b. for both byproducts. Overall, the composition for BM reported 

in the literature varied between 6-18% for fat, 3- 31% for protein, and 40-50% for lactose 

on dry basis (Huang et al., 2020a; Astaire et al., 2003; Costa et al., 2010).  

 

Table 6.1. Composition of buttermilk and beta-serum 

Parameter Butter Milk Beta-serum 

Protein (% d.b.) 3.43 ± 0.01 2.20 ± 0.01 

Fat (% d.b.) 42.47 ± 4.26 49.57 ± 0.49 
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Ash (% d.b.) 9.73 ± 0.83 12.73 ± 1.77 

Lactose (% d.b.) 41.33 ± 4.05 36.47 ± 1.88 

Total Solids (%) 9.63 ± 0.03 8.17 ± 0.34 

pH 6.38 ± 0.01 6.74 ± 0.01 

 

Total lipids extracted from BM and BS using Folch and CyNMe2 extraction are given 

in Figure 6.1a. Mojonnier extraction reported by Cheng et al. (2019) was included in the 

graph for comparison. The recovered lipids from BM were significantly higher with Folch 

than CyNMe2, where values of about 29 and 8% d.b. were obtained, respectively. Similar 

trend and values were obtained for BS (37 and 15% d.b., respectively). Interestingly, 

Mojonnier extraction resulted in higher content of total lipids regardless of the byproduct. 

Figure 6.1b shows the total MPLs recovered from BM and BS using Folch and CyNMe2 

extraction. In the case of BM, only 5.34 ± 0.05% of MPLs were recovered using Folch, 

while the CyNMe2 extraction resulted in 98.55 ± 0.78% of the total MPLs. The CyNMe2 

extraction yielded higher values than Folch for BS (7.61 ± 0.51 and 5.31 ± 0.65%, 

respectively). Phospholipids extracted via Mojonnier showed relatively low values (2.66 ± 

0.66 and 3.92 ± 0.33% for BM and BS, respectively).  
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Figure 6.1. Total lipids (a) and total phospholipids (b) recovered from buttermilk and 

beta-serum after Folch and N,N-dimethylcycloexylamine (CyNMe2) extraction. Mean ± 

standard deviation within each column with different letters are significantly different (p 

< 0.05) according to Tukey test. The Mojonnier extraction was added for reference.  

 

6.4.2. Protein profile  

The protein distribution of BM and BS before and after Folch and CyNMe2 extraction 

was evaluated using SDS-PAGE (Figure 6.2). The initial stream of BM and BS (column 

2 and 4 in Figure 6.2) displayed three major classes of proteins whey proteins (α-

lactalbumin and β-lactoglobulin at 10 and 50 kDa, respectively), caseins (α-casein and β-

casein at 20 and 25 kDa, respectively) and milk fat globule membrane (MFGM) at >50 

kDa (adipophilin, butylophilin, and xantane oxidase). Similar protein profile has been 

reported elsewhere (Price et al., 2020; Rombaut et al., 2007). Changes in the protein profile 

due to Folch extraction were marginal, judging by the similarities of the bands for BM and 

BS. Contrary, the bands corresponding to the MFGM were markedly different after 

CyNMe2 extraction. 
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Figure 6.2. SDS-PAGE patterns of dairy byproducts. (1) Molecular weight standard, (2) 

buttermilk, (3) buttermilk after Folch extraction, (4) buttermilk after CyNMe2 extraction, 

(5) beta-serum, (6) beta-serum after Folch extraction, (7) beta-serum after CyNMe2 

extraction. 

 

6.4.3. Particle size distribution and zeta potential  

Figure 6.3 shows the effect of extraction method on the particle size distribution of 

BM and BS. Untreated BM (Figure 6.3a) showed a distribution of particles characterized 

by the presence of two distinctive peaks. The first peak spanned from 200 to 550nm, and 

it corresponds to about 83% of the total particles. The second peak spanned from 40 to 

150nm, accounting for the remaining of the particles. Untreated BS (Figure 6.3b) also 

exhibited two peaks (from 130 to 300nm and 20–100nm), accounting for about 80 and 20% 

of the total particles, respectively. Folch extraction produced a broader distribution of 

particles (40–1200nm) in BM. Similar behavior but less pronounced was observed in BS 

treated by Folch extraction, where a peak spanned from 120 to 1000nm was observed. On 

the other hand, CyNMe2 for BM resulted in a broader and smaller distribution of particles 

than that obtained in Folch extraction. Interestingly, BM and BS exhibited similar 



120 
 

distribution of particles, a single peak spanned from about 80–500nm. 

 

Figure 6.3. Particle size distribution before and after Folch and N,N-

dimethylcycloexylamine (CyNMe2) extraction for buttermilk (a) and beta-serum (b). 

 

Table 6.2 shows the zeta potential for BM and BS before and after Folch and CyNMe2 

extraction. Before extraction, BM and BS presented values of -29.5 ± 5.2 and -34.2 ± 

6.1mV, respectively. For Folch extraction, the values for zeta potential decreased to -61.8 

± 11.5 and -72.9 ± 10.3mV for BM and BS, respectively. CyMNe2 yielded large negative 

values (-81.1 ± 8.7 and -82.2 ± 10.3mV, respectively). 

 

Table 6.2. Zeta potential of buttermilk and beta-serum before and after Folch and N,N-

dimethylcycloexylamine (CyNMe2) extraction. 

Extraction Byproduct 

Buttermilk Beta-serum 

Untreated -29.5 ± 5.2 mV -34.2 ± 6.1 mV 

Folch -61.8 ± 11.5 mV -72.9 ± 10.3 mV 

CyNMe2 -81.1 ± 8.7 mV -82.2 ± 10.7 mV 
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6.4.4. Microstructure  

The microstructure of BM and BS before and after Folch and CyNMe2 extraction was 

analyzed through CLSM and SEM (Figure 6.4and Figure 6.5, respectively). Images 

through CLSM illustrated droplets of MPLs, while SEM images showed the gross 

morphology of the materials. Before extraction, droplets of MPLs were clearly visible for 

BM and BS (Figure 6.4a and Figure 6.4d). The MPLs in native or minimally disturbed 

MFGM are organized as liquid-disordered phase coexisting with liquid-order phase, 

having a size of 5000–10000nm (Gallier et al., 2010b). Folch extraction reduced the MPLs 

droplets (Figure 6.4b and Figure 6.4e), while CyNMe2 showed a greater reduction in the 

droplets of MPLs (Figure 6.4a and Figure 6.4f).  
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Figure 6.4. CLSM imagines of the microstructure of phospholipids droplets before and 

after extraction from dairy byproducts: (a) buttermilk; (b) buttermilk after Folch 

extraction; (c) buttermilk after N,N-dimethylcycloexylamine (CyNMe2) extraction; (d) 

beta-serum; (e) beta-serum after Folch extraction; (f) beta-serum after N,N-

dimethylcycloexylamine.  
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Figure 6.5. SEM imagines of the microstructure of phospholipids droplets before and 

after extraction from dairy byproducts: (a) buttermilk; (b) buttermilk after Folch 

extraction; (c) buttermilk after N,N-dimethylcycloexylamine (CyNMe2) extraction; (d) 

beta-serum; (e) beta-serum after Folch extraction; (f) beta-serum after N,N-

dimethylcycloexylamine (CyNMe2) extraction.  

 

6.4.5. Profile of milk phospholipids 

The recovered fraction after solid-phase extraction was analyzed by HPLC-CAD to 

quantify the major classes of MPLs. Five major classes of MPLs were quantified, including 

PI, PS, PE, PC, and SM (Table 6.3). Overall, CyNMe2 extraction yielded higher 

concentration for all MPLs compared with Folch extraction. Among the MPLs, PS and SM 

are regarded as highly bioactive lipids due to their health claims (Huang et al., 2020b). 

Slightly higher concentration of PS was obtained in BM after Folch than that obtained for 

CyNMe2 (73.8 ± 3.6 and 68.1 ± 4.1g mL−1, respectively). In BS, CyNMe2 resulted in 2.1- 

fold increment in the concentration of PS than that obtained for Folch.  
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Table 6.3. Concentration of recovered milk phospholipids from buttermilk and beta-

serum.  

Phospholipid 

(μgmL-1) 

Buttermilk 

after Folch 

Buttermilk 

after CyNMe2 

Beta-serum 

after Folch 

Beta-serum 

after CyNMe2 

PI 62.6 ± 4.1 718.2 ± 35.9 22.2 ± 1.7 960.1 ± 48.1 

PS 73.8 ± 3.6 68.1 ± 4.1 45.5 ± 4.1 98.8 ± 4.9 

PE 41.8 ± 4.1 158.8 ± 10.1 34.5 ± 1.7 484.1 ± 24.5 

PC 69.1 ± 7.4 541.8 ± 30.1 445.9 ± 29.5 669.8 ± 33.9 

SM 47.1 ± 8.4 410.6 ± 20.5 560.6 ± 30.1 584.9 ± 29.2 

PI – phosphatidylinositol; PS – phosphatidylserine; PE – phosphatidylethanolamine; 

PC – phosphatidylcholine; SM – sphingomyelin 

 

The recovery of SM from BS was remarkably higher in CyNMe2 extraction compared 

with Folch (410.6 ± 20.5 and 47.1 ± 8.4g mL−1, respectively), while similar concentration 

of SM was obtained for both extraction methods (584.9 ± 29.2 and 560.6 ± 30.1g mL−1, 

respectively). The extraction via CyNMe2 resulted in 11.4 and 43.2 fold increment in the 

concentration PI for BM and BS, respectively. Similar behavior but less pronounced was 

observed for PE in BM and BS (3.7 and 14.1 fold, respectively).  

 

6.5. Discussion 

An efficient extraction of MPLs strongly depends on the composition of the 

byproducts. In this investigation, we used BM and BS as industrial byproducts obtained 

from the manufacture of butter and anhydrous milk fat, respectively. The composition 

reported in the literature for BM is quite diverse due to the wide range of protocols used 

during the manufacture of butter.  
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Figure 6.6. Distribution of milk phospholipids after Folch and N,N-

dimethylcycloexylamine (CyNMe2) extraction from dairy byproducts. (1) buttermilk 

after Folch extraction, (2)buttermilk after N,N-dimethylcycloexylamine (CyNMe2) 

extraction, (3)beta-serum after Folch extraction; (4) beta-serum after N,N-

dimethylcyclohexylamine (CyNMe2) extraction. PI – phosphatidylinositol, PS – 

phosphatidylserine, PE – phosphatidylethanolamine, PC – phosphatidylcholine, and SM – 

sphingomyelin. 

 

 

The working principles of the evaluated extraction methods are quite different. For 

instance, Mojonnier extraction involves the digestion of proteins by the action of a strong 

base (NH4OH) followed by the dissolution of lipids using a combination of organic 

solvents (Gallier et al., 2010a). Folch extraction combines an organic solvent, chloroform, 

and a polar alcohol, methanol. The alcohol destabilizes the proteins allowing the organic 

solvent to dissolve the lipids (Du et al., 2015). On the other hand, CyNMe2 is an organic 

base having strong basicity and medium polarity. Studies dealing with the physical and 

chemical characteristics of CyNMe2 can be found elsewhere (Vanderveen et al., 2014; 

Zhao et al., 2020a; Zhao et al., 2020b; Xu et al., 2020).  
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Over the past decades, a number of technological approaches have been developed to 

concentrate the MPLs in BM, BS, and whey protein phospholipid concentrate. Astaire et 

al. (2006) developed a two-step process to concentrate MPLs up to 19% of the total lipids. 

The process consisted of microfiltration of BM followed by supercritical CO2 extraction. 

Similarly, Costa et al. (2010) concentrated BM using the two-step process following by 

spray drying, obtaining a powder up to 61% of MPLs. Another investigation on the use of 

enzymatic treatment followed by ultrafiltration showed an 8.5-fold increase in the MPLs 

content. Moreover, these authors further concentrated the BM with supercritical CO2 to 

obtained a product containing up to 56% of MPLs. More recently, Price et al. (2018) 

concentrated up to 58% of the MPLs in whey protein phospholipid concentrate after five 

stages of sequential precipitation of proteins with ethanol. Similarly, Price et al. (2020) 

studied a set of pretreatments (pH changes, temperature, and concentration of salts) prior 

to ethanol extraction for improving the recovery of MPLs from whey protein phospholipid 

concentrate. These authors concentrated between 24-38% of MPLs under optimal 

conditions (pH = 6.5, 30◦C, and 25mM of zinc acetate). Sprick et al. (2019) removed 

neutral lipids from whey protein phospholipid concentrate by supercritical CO2, while the 

fraction containing the polar lipids was further concentrated (up to 26% of MPLs) using 

ethanol (10-20%) as a co-solvent during supercritical CO2. The recovered MPLs from BM 

using CyNMe2 is unprecedented, and it raises some intriguing questions on the mechanism 

by which CyNMe2 enhanced the recovery of MPLs. The first consideration is the 

conversion of the CyNMe2 into its respective salt, bicarbonate, in the presence of CO2: 
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Table 6.4. Nitrogen content during the N,N-dimethylcycloexylamine (CyNMe2) 

extraction. 

 

Sample point Nitrogen content (%) 

CyNMe2+Byproduct 1.44 ± 0.07 

Lipid phase 0.37 ± 0.10 

After solid phase extraction No detected 

 

This is a critical step that allows the separation of lipids from the solids and water phase. 

The conversion of a neutral group to a protonated state by CO2-responsive species have 

been critically reviewed by Alshamrani et al. (2016). In the case of dairy byproducts, the 

presence of minerals and other components might affect the overall equilibrium of the salt 

formation. This is an important consideration since the total MPLs were quantified 

gravimetrically, and residual CyNMe2 in the lipid phase can led to overestimation of the 

MPLs. Additional set of experiments were conducted to measure the nitrogen content at 

the beginning of the extraction (byproduct +CyNMe2), after the salt conversion (lipid 

phase), and after solid phase extraction (MPLs), Table 6.4. As expected, the highest 

nitrogen content was detected at the beginning of the extraction (1.44 ± 0.07%). Nitrogen 

content was also detected after the addition of CO2, corresponding to 25% of the initial 

nitrogen. Two possible scenarios can explain the outcome: 1) an incomplete conversion of 

the salt, and 2) fragments or residual proteins presence in the lipid phase. Boyd et al. (2012) 

reported incomplete conversion of the salt (18–24% of residual CyNMe2) during the lipid 
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extraction from microalgae. Interestingly, nitrogen content was not detected in the 

recovered MPLs after solid phase extraction. Therefore, the quantification of MPLs was 

not impacted by the incomplete conversion of the salt.  

 

Results from gel electrophoresis, particle size, zeta potential, and microstructure 

revealed insights into the mechanism by which CyNMe2 extracts MPLs. The 

disappearance of the bands corresponding to the membrane proteins (Figure 6.2 columns 

4 and 7) indicates severe protein modification by CyNMe2, while the whey proteins and 

caseins remain in the solid matrix. This observation helps to explain the large amount of 

PE and PI (Error! Reference source not found.) recovered by CyNMe2 since these MPLs a

re primarily located at the inner parts of the membrane. On the other hand, the protein 

bands remained visible for the Folch extraction, suggesting a moderate modification of the 

membrane proteins and lower concentration of PE and PI (Error! Reference source not f

ound.). The disappearance of the protein bands could also be a result of dissolution of the 

membrane proteins during the addition of CyNMe2. The extraction using CyNMe2 not 

only yielded higher concentration of MPLs (Figure 6.6) but also a different relative 

distribution. A graphical representation of such observation is given in . Folch extraction 

resulted in a relative distribution of MPLs comparable to that reported elsewhere (Price et 

al., 2020; Costa et al., 2010; Spence et al., 2009). The relative distribution of MPLs for 

CyNMe2 was noticeable higher in PI and PE, which are mainly located on the inner parts 

of the membranes. Importantly, the final distribution of MPLs can be optimized 

considering the extraction time, temperature, and solvent to sample ratio.  
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The ability of CyNMe2 to modify the solid matrix is also evident by the analysis of 

the particle size distribution. Overall, lower particles favored the diffusion into the solvent 

and enhanced the extraction. Rosenthal et al. (1998) related the extraction yields with the 

degree of cells disruption. However, the numerical relation between recovered MPLs and 

disruption of the membrane proteins will require time-dependent experiments, which is 

beyond the scope of this work. The zeta potential offers insights into the interaction 

between the membrane proteins and CyNMe2. Untreated samples, BM and BS, presented 

values of zeta potential (-29 and −34mV) within the stability region of colloidal 

suspensions (Czapla et al., 2000). After extraction, the values of zeta potential suggested 

some degree of ionization, being greater for CyNMe2. In the presence of CyNMe2, the 

carboxyl groups of the proteins become negatively charge (-COO−) and the amino groups 

become neutral (-NH2), which could result in the formation of ion pairs between CyNMe2 

and the carboxyl group. The formation of ion pairs may reduce the interaction between 

MPLs and the solid matrix, exposing the MPLs located on the inner parts of the membrane. 

 

Important changes were also observed in the gross morphology of BM and BS (Figure 

6.5). In the Folch extraction, a disruption of the morphology was observed that exposes the 

MPLs and enhanced solvent percolation. Such a disruption needs to be substantial 

considering that the MFGM thickness is about 20nm (Gallier et al., 2010a). It appears that 

the mechanisms governed the Folch extraction involves the diffusion of MPLs into the 

solvent, whereas proteins and lactose remain in the solid matrix. After CyNMe2 extraction, 

the surface of BM and BS was greatly destroyed, where microfractures and hollow 

openings were generated. During the fracture or rupture process, the solid matrix became 
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porous and soluble compounds within the membrane proteins were dissolved by CyNMe2. 

Thus, disruption of the protein membranes by CyNMe2 favors the mass transfer between 

MPLs and the surrounding solvent, improving the extraction of the MPLs. This process is 

fundamentally different form the Folch extraction, which relies on the diffusion of the 

solvent into the solid matrix and solubilization of MPLs. Upon solubilization, the MPLs 

droplets are surrounded by solvent, destabilizing the electrostatic forces and creating a 

reduction in the droplet size (Figure 6.4).  

 

CyNMe2 can be used as a protein destabilizing agent and it can be potentially pair with 

different solvents to shorten the extraction time. The repeated use of the CyNMe2 need to 

be studied for further development. The analysis of the basicity and ionic strength of the 

CyNMe2 and byproduct will provide essential information to select suitable extraction 

conditions.  

 

6.6. Conclusions 

Extraction of MPLs from dairy byproducts via CyNMe2 resulted in high yields (up to 

98%). The high efficiency was attributed to a rupture of the protein membranes through 

ion pair formation, followed by a release of the MPLs from the solid matrix. Microstructure 

and charged particle analysis seem to support the proposed mechanism. Compared with 

Folch extraction, CyNMe2 resulted not only in higher concentration of MPLs (up to 9-fold 

increment) but also a different relative distribution, where PI and PC were the predominant 

MPLs. The outcomes of this work will help to design novel extraction strategies for the 

recovery and isolation of MPLs.  
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CHAPTER 7  

APPLICATION OF BETA-SERUM IN ICE-CREAM MANUFACTURING6 

7.1. Abstract  

Beta-serum (BS) is the aqueous product (serum) produced after the phase inversion 

during the manufacture of anhydrous milk fat. Although its gross composition resembles 

non-fat dry milk (NFDM), BS contains about 6-8% of phospholipids (PLs) on a dry basis. 

Such a concentration of PLs may improve the emulsification during icecream. The 

objective of this work was to evaluate the effect of BS on selected quality parameters of 

ice cream. A secondary objective was to monitor the presence of PLs within the serum 

phase at different processing steps of icecream manufacture, including mixing, 

pasteurization, freezing, and melting. Icecream formulated with NFDM was used as a 

control treatment. Icecream mix formulated with and without BS was centrifugated (4000 

rpm for 30 min) to separate the serum phase (upper phase) and solid phase (lower phase), 

which were analyzed for total lipids and total phospholipids. Additionally, the presence of 

PLs in both phases was monitored through confocal laser scanning microscopy. Overall, 

the majority of PLs were found at the bottom phase during mixing, pasteurization, and 

melting. The particle size and zeta potential measurements were observed to be 474.6 ± 

13.21 and 564.8 ± 12.7 nm, -37.9 ± 5.90 and -43.1 ± 4.90 mV for the control icecream and 

B-serum icecream, respectively. The PLs reported after meltdown using a sieve (0.833mm) 

for IC control and B-serum were 58.03 ± 4.10 and 63.47 ± 3.02%, respectively, while 

before meltdown it was reported 4.04 ± 1.49 and 11.27 ± 0.56%, respectively. The flow 

cure indicated a shear-thinning behavior for both samples. Therefore, results document the 

 
6 A version of this chapter is to be submitted to the International Dairy Journal  
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presence of PLs in the manufacturing of ice cream and significant quality attributes with 

the addition of Beta-serum. 

7.2. Introduction  

Icecream is the most popular frozen dessert consumed all over the world. According to 

the International dairy federation, 2020, icecream consumption per person each year in the 

US alone is around 2L. Ice cream global sales represent over USD 73.8 Billion per year, 

with annual growth of close to 5 % (Velásquez-Cock et al., 2019) and are projected to 

increase around USD 97 billion by 2023. Icecream is a complex food-generated emulsion 

(oil in water ) containing fat globules, air bubbles, ice-crystals, and unfrozen viscous 

serum(Akbari, Eskandari, & Davoudi, 2019) along with proteins, mineral salts, 

polysaccharides and water. Regular ice cream contains fat 10-16% from dairy or non-dairy 

sources, an essential component in the icecream, non-fat milk solids, sweeteners, 

stabilizers, and flavouring components. Cow's milk serving as the main ingredient for the 

icecream, contains a wide variety of high-quality nutrients for human health, such as 

protein, vitamins, and minerals(Agrawal, Karkhele, Karthikeyan, Shrivastava, & Geetesh, 

2016).  

 

In recent times, the dairy industry has been paying attention to dairy by-products such 

as buttermilk, pro-cream, beta-serum. Dairy by-products are low-cost materials that are 

low in fat and have excellent technological and functional properties that benefit human 

health. Dairy by-products represent 80% of the total milk and, therefore, generate high 

disposal costs (Panesar & Kennedy, 2012)discard their by-products in the environment, 

causing intense pollution due to the high concentration of organic matter, i.e.) high 
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chemical (COD) and biochemical oxygen demands(BOD) (Barbosa de Meneses et al., 

2020). These by-products can cause a serious impact on the environment. The dairy 

industry and researchers are interested in applying the valuable components to a lower cost, 

sustainable dairy product, and icecream is a potential vehicle for reusing the dairy by-

products. 

The beta serum is a by-product obtained from the phase inversion of anhydrous milk 

fat (AMF). The starting material for beta serum is cream, which is further processed to 

AMF. And they contain a significant quantity of fat and protein and a high level of 

phospholipids that has a composition similar to buttermilk and butter serum (Price, Fei, 

Clark, & Wang, 2019). The beta-serum contains a higher protein content and a different 

protein profile when compared to the whey-by-products. The health benefits of consuming 

milk phospholipids have been discussed extensively in various reports (Ali et al., 2019; 

Shouyun Cheng, Rathnakumar, & Martínez-Monteagudo, 2019; Ortega-Anaya & Jimenez-

Flores, 2019). Therefore, because of its health benefits and functionality (Rebouillat & 

Ortega-Requena, 2015), it can be used in a variety of foods such as frozen desserts, bakery, 

pumping hams and other meats. They are often referred to as powerful natural emulsifiers, 

oxidation stability, milky taste, and a good stabilizer that makes it possible for ingredient 

formulation(Rebouillat & Ortega-Requena, 2015), an active health ingredient, especially 

in icecreams.  

 

Recent works have focused on the effect of dairy by-products such as ricotta whey 

(RW), cheese whey (CW), and butter whey (BUW) as replacers of whole milk (WM) by 

(de Meneses et al., 2020; Meneses, Silva, Monteiro, Rocha-Leão, & Conte-Junior, 2020), 
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the stability and rheological properties (Barbosa de Meneses et al., 2020) and sensory 

characteristics in chocolate icecream (de Meneses, Guerra Monteiro, dos Santos, da Rocha-

Leão, & Conte-Junior, 2021) all portray the potential milk replacing by the dairy by-

products. Delactosed whey permeate (DLP) and pro-cream, a by-product of microfiltration 

during whey protein isolate production, were made and assessed for application in ice 

creams as a source of protein fat (Bund & Hartel, 2013). All these studies showed the 

potential application of dairy by-products in icecream. In this context, the study aimed to 

investigate the effect of the icecream's quality attributes with non-fat dry milk and freeze-

dried beta-serum powder. Further, to map the phospholipid presence at each stage (Mixing, 

pasteurization, Freezing and Hardening) using both quantitative and quality measurements.  

 

7.3. Materials and Methods  

7.3.1. Materials 

Methanol (99.9%, Sigma Aldrich), chloroform (99.9%, Sigma Aldrich), hexane 

(99.9%, Sigma Aldrich), HPLC-grade water (Sigma Aldrich), activated silica gel (Silica 

gel 60 G, EMD Millipore), phospholipid mixture (Soybean, P3817-1VL, Sigma Aldrich), 

Rd-dope (Avanti Polar Lipids Inc., Alabaster, AL, USA), Laemmli buffer (Bio-Rad, 

Hercules, CA, USA), Tris-acrylamide gels (4–15% Mini-Protean TGX precast gels with 

10 wells, Bio-Rad), Tris/Glycine/SDS Buffer (Bio-Rad), ProteinTM Kaleidoscope 

standards (Bio-Rad), and 2-mercaptoethanol (Fisher Scientific) were purchased from 

commercial suppliers. Beta-serum was obtained from a cheese plant (Valley Queen, 

Millbank, SD) and was freeze-dried using a laboratory freeze drier(Harvest right) to obtain 

the B-serum powder.  
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7.3.2. Ice cream processing 

The formulation used in this study is exhibited in Table 7.1. The ingredients were 

purchased from a local market in Las Cruces, New Mexico, USA. The blend of stabilizers 

consisted of guar gum, locust bean gum, carrageenan, polysorbate 80, and mono- and 

diglycerides obtained from(Continental Colloids, Inc., West Chicago, IL). Dry ingredients 

were dissolved in skim milk and heavy cream at 45 oC and blended using a laboratory 

blender (Polytron, CH-6010,60Hz, Switzerland) for 15min at room temperature followed 

by pasteurization (FT74 UHT/HTST processing system) at 80 oC for 30 s, further the mix 

was aged at (4 C for 12 h) and a final step the freezing of ice cream was done in a batch 

type icecream maker (Breville, Smart Scoop). The draw temperatures during the freezing 

were measured using a data logger (Omega Engineering Inc., Stamford, CT ) connected to 

a K-type thermocouple mounted inside the freezer. Then, the icecream was transferred to 

plastic cups left for hardening at -40 C for 8 hrs and then was kept in a conventional freezer 

(-18 C ) until further analysis.  

 

Table 7.1. Ice cream formulations with Non-fat dry milk and Beta-serum powder 

 

 

Ingredient Formulation 

Control (%) B-serum(%) 

Heavy cream  35 26 

Skim milk 40.72 46.72 

Beta serum - 10 

Non-fat dry milk(NFDM) 6 - 

Sweeteners 18 17 

Stabilizers 0.28 0.28 
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7.3.3. Physiochemical analysis  

The samples control and B-serum were tested for total solids, pH and titratable acidity 

(TA). The pH was directly measured using a digital pH meter (Fisher Scientific, AB 15). 

The titratable acidity (TA) was measured by titration with 0.1 N NaOH, and results were 

expressed as per cent lactic acid, and the ash content was measured using a muffle 

furnace(Thermo scientific, Lindberg Blue M) according to the Association of Analytical 

Chemists (AOAC International, 2012). The total solids were determined gravimetrically at 

103 º C for 15 h using a laboratory oven (Thelco laboratory Oven, NM, USA), and protein 

was determined using the Kjeldahl method (AOCA) method 990.20.  

7.3.4. Quality analysis of Ice-cream  

7.3.4.1. Fat destabilization  

Fat destabilization measurements were calculated as the percentage of turbidity in ice 

cream compared to the turbidity in ice cream described elsewhere (Adapa, Dingeldein, 

Schmidt, & Herald, 2000). Turbidity measurements were made with the UV-

spectrophotometer(Thermo scientific Genesys 10 UV-VIS mode # 840-208200) set at 540 

nm. The formula of fat destabilization was expressed as  

 

(𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑐𝑒 − 𝑐𝑟𝑒𝑎𝑚)/(𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑥)   × 100          (7.1) 

 

7.3.4.2. Particle size distribution  

 

ZetaSizer Nano ZS (Malvern Instruments Ltd, Cambridge, UK) was used to determine 

the particle size distribution of the ice cream mix and ice cream samples, according to the 

methodology reported elsewhere (H. Goff, Verespej, & Smith, 1999). The dilution of the 
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samples at 1:1000 was done using deionized water before placing the sample chamber and 

further transferred to a disposable cuvette (DTS 0012, Sigma-Aldrich, St Louis, MO, 

USA). Diluted samples were transferred to the measuring chamber and equilibrated at room 

temperature for 120 s. A scattering angle of 170◦ with a refractive index of 1.46 was used 

to determine the average size.  

 

7.3.4.3. Zeta Potential  

Ice cream mix and ice cream samples were analyzed for the zeta-potential using a 

Zetasizer Nano (Malvern Instruments Ltd., Cambridge, UK). Diluted samples (1000x) 

were transferred to a disposable polycarbonate cuvette (ATA scientific, DTS1061). 

Measurements have repeated a minimum of 10 times per run with a minimum of 7 runs. 

 

7.3.4.4.Desorption index  

The ice cream samples (control and B-serum) were observed for desorption according 

to the methodology reported by (Meneses et al., 2020) with slight modifications. A 50 mL 

graduated cylinder was filled with melted ice cream was slightly sealed and observed at a 

controlled temperature of 29 ± 1 oC for 2- 3 hrs. Observation of phase separation, the 

volume of the serum fraction formed in each sample was obtained. The desorption index 

was determined using the following equation:  

 

(
𝐻𝑠𝑒𝑟𝑢𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐻𝑚𝑒𝑙𝑡𝑒𝑑 𝑖𝑐𝑒 𝑐𝑟𝑒𝑎𝑚 
) × 100                                (7.2) 
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Where H serum fraction = volume of the whey layer formed (mL);  Hmelted ice cream = total volume 

of the melted ice cream (mL). 

 

7.3.4.5. Gel electrophoresis  

The protein profile of the ice cream mixes, icecream and the melted ice cream was 

determined using Sodium Dodecyl Sulfate- Polyacrylamide gel (SDS-PAGE) under 

reducing conditions as reported elsewhere (Rathnakumar, Ortega-Anaya, Jimenez-Flores, 

Reineke, & Martínez-Monteagudo, 2020). Briefly, 1:4 volume of sample to cold acetone(-

20 ºC) was mixed for the precipitation of the proteins, the mixture was placed in a freezer 

at - 4 ◦C for 1 h and centrifuged (3600 rpm) (Jouan CR412, Jouan Inc., Winchester, VA, 

USA) for 20 min at 0◦C. The supernatant was discarded, and the pellets were dissolved in 

1x phosphate buffer saline(PBS). Then, 5 μL of dissolved pellets were transferred into a 

vial containing 4.75 μL of 2x Laemmli sample buffer (Bio-Rad, Hercules, CA) and 0.25 

μL of 4% 2-mercaptoethanol (Fisher Scientific, Hampton, NH). Dissolved pellets were 

heated at 90 ◦C for 5 min. Upon cooling, 10 μL of the preparation was loaded into Tris-

acrylamide gels (4–15% Mini-Protean TGX precast gels with 10 wells, Bio-Rad). Gels 

were run for 1 h at 200 V using Tris/Glycine/SDS buffer (Bio-Rad). Then, the gels were 

removed and stained using Bio-safe Coomassie G-250 stain (Bio-Rad) and destined to get 

the protein pattern. The individual proteins were estimated based on the molecular weight 

using the standard from BIO-RAD (Precision plus protein standards, 161–0375).  
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7.3.4.6. Overrun 

Overrun measurements were taken by comparing the weight of ice cream mix and ice 

cream in a fixed 100 mL volume container(Muse & Hartel, 2004) calculated using the 

formula: 

 

𝑂𝑣𝑒𝑟𝑟𝑢𝑛 =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚 𝑚𝑖𝑥−𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑐𝑒−𝑐𝑟𝑒𝑎𝑚
 × 100         (7.3) 

 

7.3.4.7. Steady shear measurements  

 

The icecream mixes flow curve was determined in a rheometer (Discovery Hybrid 

rheometer, HR 30, TA instruments ) equipped with a 20 mm parallel plate and a peltier 

steel plate (108783). Flow sweep measurements were carried out in the shear rate range 

from 100 1/s to 1 1/s at 4℃. The flow behavior was characterized by the Herschel-Buckley 

model in equation (7.4): 

𝜎 = 𝜎0  + 𝐾 𝛾𝑛          (7.4) 

 

where σ0 represents yield stress (Pa), κ is consistency index (Pa.sn), is the shear rate (s−

1), and η is a dimensionless number known as flow behavior index (n = 1 for Newtonian 

fluids, n < 1 for pseudoplastic, and n > 1 for dilatant). 

 

7.3.4.8. Melting behaviour  

Icecream samples were evaluated for melting rate using oscillatory analysis with an 

MCR92 225 rotational rheometer (Antor Paar USA Inc.) coupled with a Peltier chamber 
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with a plate-plate 226 geometry (25 mm diameter). Guidelines of the methodology can be 

found elsewhere (Eisner, Wildmoser, & Windhab, 2005; Wildmoser, Scheiwiller, & 

Windhab, 2004). The oscillatory analysis was conducted within a temperature range of 20 

to 10°C, at a heating rate of 0.5°C min-1, a deformation amplitude of 0.5%, a frequency of 

10 Hz, and a gap width between plates of 3 mm. The 𝐺′ and 𝐺" were recorded continuously 

during the analysis. 

 

7.3.5. Meltdown  

The meltdown studies were carried by following the method described 

elsewhere((Mahdian, MAZAHERI, & Nobahari, 2012; Muse & Hartel, 2004; Velásquez-

Cock et al., 2019) with slight modifications. The frozen ice cream samples of around 70 g 

were carefully removed from plastic cups and placed in a sieve (0.833 mm ) which was 

mounted on a beaker at a controlled temperature (25 ±1°C). The empty weight of the beaker 

was taken, and the time(min) from the beginning to end of the melting was measured. The 

meltdown icecream samples were further analyzed for total lipids, phospholipids and 

individual phospholipids, and the samples were also subjected to confocal laser scanning 

microscopy to determine the presence of phospholipids after the meltdown. The melting 

rate of the ice cream with and without Bserum was determined by taking the dropping 

weight and was measured every 5 min for 1 hr. 

 

7.3.6. Mapping of PLs  

The samples of the ice cream mix formulated with and without BS were collected at 

the different stages of the ice cream manufacturing process such as (mixing, pasteurization 
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and freezing) were centrifugated (4000 rpm for 30 min, at – 9 oC) to separate the serum 

phase (upper phase) and solid phase (lower phase). In order to map the presence of 

phospholipids, the samples were analyzed for microstructure using Confocal Laser 

Scanning Microscopy (CLSM), and the total lipids & phospholipids were quantified using 

the Folch method.  

 

7.3.6.1. Confocal laser scanning microscopy 

The serum phase and solid phase of all the samples at different processing stages, along 

with the samples obtained after the meltdown, were subjected to a confocal microscope 

(Leica TCS SP5 II, Leica,Wetzlar, Germany) to examine where the PLs are present during 

the ice-manufacturing process. According to the methodology described elsewhere, the 

samples were stained using Rd-dope (Gallier, Gragson, Cabral, Jimenez-Flores, & Everett, 

2010; Rathnakumar & Martinez-Monteagudo, 2020). A 50 µl of the test sample and 100 

µl Rd -dope were slightly vortexed and kept in the dark for 20 min. Images were captured 

at 10x magnification, and the excitation of the Rd-dope was achieved at 559 nm using 

emission from a diode laser.  

 

 

7.3.6.2. Total lipids and phospholipids  

A Folch extraction was carried to determine the amount of total lipids present at 

different stages of the ice cream manufacturing process (mixing, pasteurization, freezing 

and hardening), 2 g of samples were mixed with 20 mL of chloroform: methanol solution 

(2:1, v/v). The mixture was vortexed for 3 min, followed by centrifugation at room 
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temperature (4200×g) for 20 min. The upper phase was then discarded, while the lower 

phase was transferred to a test tube, where the chloroform was removed at 45 ◦C using a 

vacuum oven.  

 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑝𝑖𝑑𝑠(%) =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑙𝑖𝑝𝑖𝑑𝑠

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
. 100                             (7.5) 

 

The extracted lipids were fractionated to recover the MPLs using solid-phase extraction 

(SPE). An activated silica gel column (1 cm × 10 cm) was used for the separation, following 

the methodology reported elsewhere (S. Cheng, Rathnakumar, & Martinez-Monteagudo, 

2019). Dried lipids around 0.1 g were dissolved in 1 mL of chloroform: methanol solution 

(95:5, v/v) and run through the SPE column previously conditioned with 10 mL of the 

chloroform: methanol solution. The MPLs were recovered with 10 mL of methanol, 

followed by 10 mL of chloroform: methanol: water (5:3:2 v/v/v). Finally, solvents were 

evaporated at 40 ◦C under vacuum, and the MPLs fractions were calculated using Equation 

(7.6). The extracted MPLs were stored at -20 oC until further analysis. 

 

𝑇𝑜𝑡𝑎𝑙 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑𝑠(%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑𝑠
. 100                 (7.6) 

 

 

7.3.6.3. Quantification of Individual phospholipids  

The quantification of the individual MPLs was determined using a UHPLC system 

(Dionex Ultimate 3000, Thermo Scientific) coupled to a charged aerosol detector (CAD, 

DionexCorona Veo RS, Thermo Scientific). The methodology was reported elsewhere 
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(Rathnakumar, Ortega-Anaya, Jimenez-Flores, & Martínez-Monteagudo, 2021b). Each 

sample was analyzed in duplicates under the same conditions. The five major 

phospholipids were identified by their retention time and were quantified by comparing 

their peak area with a standard curve. 

 

7.3.7. Statistical analysis  

All analysis was carried out in triplicates, and the mean values for the total lipids and 

recovered MPLs were compared using Tukey’s test (p < 0.05). The statistical analysis was 

carried out using Sigma plot software V11 (SPSS Inc., Chicago, IL, USA). 

 

7.4. Results and discussion   

7.4.1. Compositional analysis  

Table 7.2 shows the composition of the ICM resembled that of the typical icecream 

where fat and total solids were about 11%  and 40-43%, respectively, similar to studies by 

(Ruger, Baer, & Kasperson, 2002). The pH of an ice cream mix can be used as an indicator 

of mix quality. The pH of an ice cream mix and ice cream was around 6.5 -6.6 and is related 

to the solid content; as the solid portion of a mix increases, the normal acidity is elevated, 

and the pH is lowered (Holcomb, 1991). The titrable acidity(TA) and ash % depicted was 

0.11 to 0.18 %(Haque & Ji, 2003) and 0.77-0.89%, respectively, which were in agreement 

with results from (Meneses et al., 2020), who utilized different dairy by-products in 

icecream. The protein % of icecream was 0.48±0.00%  and 0.52±0.06 % for the control 

and B-serum icecream, respectively.  
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Table 7.2. Compositional analysis of Ice-cream 

 

 

7.4.2. Quality analysis of ice cream mix and Ice cream 

7.4.2.1. Particle size distribution and Zeta potential  

The zeta potential measurements are a tool to determine whether the constant stability 

of the icecream emulsions. According to Table 7.3, it was observed that the zeta potential 

increased along with the particle size for both the control and B-serum mix and ice cream, 

respectively. This behaviour doesn’t prevent the aggregation of droplets present in the ice 

cream mixes. The average particle size of the control mix and icecream were 411.6 ± 11.24 

and 474.6 ± 13.31, respectively, and they were found to be lesser compared to the particle 

size of the b-serum mix and icecream which was found to 685.7 ± 14.13 and 564.8 ± 12.7, 

respectively. Similar results on the particle sizes were observed by (Barbosa de Meneses 

et al., 2020), who utilized the dairy by-products cheese whey and ricotta whey in chocolate 

flavour icecream 684.43 ± 16.65 nm and 523.10 ± 18.42 nm, respectively. The zeta 

potential results also correlated with the results (Barbosa de Meneses et al., 2020). The 

Samples pH Titratable 

acidity(TA%) 

Ash(%) Total 

solids(%) 

Fat % 

Ice cream 

mix 

(control) 

6.63 ± 0.01 0.18±0.04 0.89 ±0.00 43.47±0.06 11.33±3.35 

Ice cream 

mix (B-

serum) 

6.65 ±0.07 0.13±0.00 0.86 ± 0.01 42.95±0.06 8.92±1.88 

Ice cream 

(control) 

6.53±0.01 0.12±0.00 

 

0.81± 0.01 42.11±0.03 32.49±1.49 

Ice cream 

(B-serum) 

6.53±0.02 0.11±0.00 0.77 ±0.01 40.33±0.15 19.39±0.56 
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particles with zeta potential greater than + 30mV or less than - 30mV usually are considered 

stable (Malvern, 2004). In our study, both the ice cream mixes control and b-serum was 

found to be stable. The zeta potential values of both the ice cream were above -30 mV, 

similar results were found in research carried out by (J. Cheng, Ma, Li, Yan, & Cui, 2015), 

in which the researchers evaluated the stability of various ice cream using different protein-

polysaccharide interactions showed a zeta-potential value range of - 30 to - 50 mV). Zeta 

potential often determines the surface charge density and interaction between the 

emulsions.  

 

Table 7.3. Zeta potential and average particle size of  Ice cream mix and control 

Samples Average particle size 

(nm) 

Zeta 

Potential(mV) 

Ice cream mix (control) 411.6 ±11.24 -24.3±4.3 

Ice cream mix (B-serum) 685.7±14.13 -27.1±5.1 

Ice cream (control) 474.6±13.31 -37.9±5.9 

Ice cream (B-serum) 564.8±12.7 -43.1±4.9 

 

7.4.2.2. Desorption index 

Desorption is a relevant quality parameter for ice creams, wherein the absence of phase 

separation during and after melting indicates a good ice cream (Bodyfelt et al., 1988). In 

our study, the ice cream did not present any syneresis, and, therefore, it was not possible 

to quantify the whey fraction. The proteins strong influence the phase separation after 

melting. Similar results were observed by (Syed, Anwar, Shukat, & Zahoor, 2018). There 

was no syneresis by replacing dry milk to dry whey protein in non-fat ice cream, and 

(Meneses et al., 2020) study on different dairy whey’s in ice cream showed no syneresis.  
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7.4.2.3. Flow behavior of Ice-cream mix 

Figure 7.1 exhibits the flow curves on ice cream mix samples. All ICM exhibited shear 

thinning behavior, typical behavior for regular ice cream mixes, where the viscosity 

decreased with the shear rate (Regand & Goff, 2003). This due to the breakage of the 

entangled network as the shear is exerted over the mix (Cavender & Kerr, 2020). The n 

values was found to be 0.7 for the B-serum mix and 0.9 for the control mix where the K 

values increase exponentially for the B-serum mix were 4.52 and 1.82 respectively. The 

highest viscosity observed was 16.0 Pa.s for the B-serum mix, while it was 0.96 Pa.s for 

the control mix at the shear rate 1 s-1 and decreased as the shear rate increased. Overall the 

ICM with B-serum was more viscous compared to the control. This could be because of 

the presence of large molecules present in the beta serum powder, large molecules tend to 

have a higher viscosity, as they have stronger intermolecular forces attracting to one 

another, and there is a greater strength that hinders molecular flow, hence more viscous 

(Pon, Lee, & Chong, 2015). The changes in the viscosity during ice cream manufacturing 

affects melting and overrun (Ismail, Hameed, Refaey, Sayqal, & Aly, 2020). 

 

7.4.2.4. Fat destabilization and  Over-run 

The fat destabilization for the ice cream control was 77.18±1.66 %, while the ice cream 

with B-serum was 63.10±2.10%, as in Table 7.4. Often the extent of fat destabilization 

depends on many factors such as viscosity, emulsifier type, shear forces, ice-crystals, air 

cells, total solids and fat content (Amador, Hartel, & Rankin, 2017; Hartel, Rankin, & 

Bradley Jr, 2017). The overrun of the IC with B-serum and without were 13.48 ± 0.67 and 
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14.11 ± 0.16, respectively. A low range of over-run was presented in this study is because 

freezing was done using batch freezing, and the air wasn’t incorporated into the mix.  

Figure 7.1.Flow curve of ice cream mixes control and b-serum. 
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Table 7.4. Fat destabilization and overrun  of ice cream 

Samples Fat destabilization % Overrun % 

IC - NFDM 77.18±1.66 14.11±0.16 

IC- B-serum 63.10±2.10 13.48±0.67 

 

7.4.2.5. Melting behavior of Ice-cream 

 

The two ice cream samples' melting behaviour was evaluated using an oscillatory 

test with a temperature sweep. A melting curve is given in Figure 7.2a, where 𝐺′ and 𝐺" 

are plotted against temperature. Additionally, the melting curve was also evaluated using 

the loss tangent (tan(𝛿), b. The storage modulus (G’) values illustrate the solid body like 

behavior of the material in terms of elastically stored deformation energy, while the loss 

modulus (G’’) values represent the viscous fluid behavior corresponding to the loss of 

deformation energy. As observed in Figure 7.2a, both G’ and G’’ values decreased as 

temperature increased. As proposed by (Wildmoser et al., 2004), the melting curve 

resembled a sigmoidal shape similar to the typical melting curve of hard ice cream (Freire, 

Wu, & Hartel, 2020; Tekin, Sahin, & Sumnu, 2017). G’ and G’’ curves were divided into 

three zones and the tan δ (G’/G’’) behavior, which is an important indicator of the phase 

melting during the test (Wildmoser et al., 2004). Zone 1 that exists at a temperature range 

of -20 oC to -10 oC explains the scoopability and rigidity. It was observed that the ice 

creams with B serum had higher G’ and G’’values compared to the control ice cream 

without changing the overall behavior of the melting curve. This shows that b serum 

powder in ice cream contributed to more rigid structures in the ice cream. 
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Figure 7.2. Melting curve of ice-creams control and B serum : (a) thermal variation of 

storage module (𝐺′) and loss module (𝐺") and (b) thermal variation of loss modulus (tan 
(𝛿). 
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Further heating of the ice -cream (zone II) -10 oC to 0 oC produced a sharp decrease of 

G’ and G’’ were observed for both the ice cream samples. The zone explains that a steep 

slope is related to the sensorial impression of coldness. The steeper slopes were observed 

in the B-serum ice cream compared to the control ice cream, which showed a dominance 

of icy structure. Further, zone 3, the temperature range between 0 oC and 10 oC, has a lower 

plateau level. All ice is melted in this temperature range and governed by the dispersed air 

and fat phase, which impacts the rheological characteristics (Wildmoser et al., 2004). In 

this zone, all samples exhibited G’ values higher than G’’, with higher G’ values, the B-

serum ice cream showed higher creaminess than the control.  

 

7.4.2.6.Protein Profile 

The ice cream protein contributes to its structure, emulsification and water holding 

capacity, enhanced viscosity that provides a beneficial body to the ice cream, which 

increases the meltdown time and contributes to iciness(H. D. Goff, 1997). The protein 

pattern for both the mixes and ice cream were depicted in Figure 7.3. Therefore, three 

major classes of proteins were observed: milk fat globule membrane (MFGM), caseins, 

and whey proteins. Milk fat globule membrane included xantane oxidase, butylophilin, and 

adipophilin, displaying bands at 100, 75, and 50 kDa, respectively. On the other hand, α-

casein and β-casein revealed their characteristics bands at 20 and 25 kDa, respectively. 

Whey proteins (α-lactalbumin and β-lactoglobulin) showed their bands at a molecular 

weight of 10 and 15 kDa, respectively. They were similar to the bands present in beta-

serum (Price et al., 2019) and ultrasound treated beta-serum (Rathnakumar, Ortega-Anaya, 
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Jimenez-Flores, & Martínez-Monteagudo, 2021a). The SDS-page also provides insights 

into the proteins present in the mix and ice cream.  

 

Figure 7.3.SDS -page patterns of mix and ice cream. (1) molecular weight standard (2) 

ice cream mix without b-serum (3) Ice cream mix with b-serum (4) ice cream without B-

serum (5) Ice cream with b-serum. 

 

7.4.3. Meltdown 

The meltdown curve of the control and the b-serum was sigmoidal in shape, as shown 

in Figure 7.4, and the onset of the meltdown was at 10 minutes for the control ice cream 

and 15 minutes for the B-serum ice cream. The meltdown's maximum values for the control 

and B serum were 70.2% and 55.6%, respectively. The meltdown of ice cream is influenced 

by several factors such as air cell, stabilizer concentration and melted ice-crystals (Muse 

& Hartel, 2004). The ice cream with low over-run melted quickly (Sakurai, 1996), as 
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observed in our study. Air cells present in the ice cream structure were attributed to the 

slower meltdown rate, thereby increasing over-runs.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4.Meltdown of ice cream control and B-serum 

 

7.4.3.1. Total Lipids and phospholipids before and after the meltdown   

Figure 7.5 represents the amount of total lipids and PLs in the ice cream before and 

after the meltdown. The total lipids for the ice cream control and B-serum were 32.49±1.49 

and 19.39 ± 0.56, respectively, while after the meltdown, the total lipids were 13.05 ±4.1 

and 24.55±3.02, respectively. In the case of the total PLs, the control and B-serum ice 

cream before melting were found to be 4.04±1.49% and 11.27±0.56%, respectively, while 

after the meltdown, the samples were 58.03 ± 4.1% and 63.47±3.02%, respectively. From 

the quantitative results, both the samples had higher lipids before the meltdown and a 

higher amount of PLs at the melted phase. During melting, the conversion of ice to liquid, 
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water-soluble PLs is easily carried away to the melted side, resulting in a higher amount of 

PLs for both samples.  

 

The microstructure is shown in Figure 7.6 also supports the presence of PLs obtained 

after the meltdown in beta serum and the control Ice-cream. The SDS-page also provides 

insights into the proteins after the ice cream meltdown, as shown in Figure 7.7. The 

presence of α-lactalbumin, β-lactoglobulin, caseins, and other whey protein was present 

after the meltdown, which was also present in the ice cream before the melting.  

 

Figure 7.5.Total lipids and phospholipids for control and ice cream before and after the 

meltdown. 

 

7.4.4. Mapping of PLs 

Figure 7.8 and Figure 7.9 illustrate the recovered total lipids and phospholipids at 

every stage of the ice cream manufacturing process, such as [mixing (1), pasteurization (2) 
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and freezing (3)]. In typical ice cream manufacturing, ingredients are pre-blended before 

pasteurization. This pasteurization process destroys the pathogenic bacteria addition and 

helps the fat melt for proper homogenization (Goff, Verespej, & Smith, 1999). The 

homogenization process in ice cream begins the process of fat structure formation. During 

homogenization, the newly formed fat globule is practically devoid of any membranous 

material due to its tremendous increase in surface area and readily adsorbs amphiphilic 

molecules from the solution. They positively influence the physical/chemical condition of 

proteins, phospholipids, and any added emulsifiers. This creates a uniform fat-in-water 

emulsion preconditioned to “de-emulsify” (i.e., partial fat agglomeration) as needed. 

 

Figure 7.6. Confocal micrographs of the Ice-cream (control and B-serum) before and 

after a meltdown. 
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Figure 7.7. SDS- page patterns of melted ice cream. (1) molecular weight standard (2) 

control (3) B-serum. 

 

The centrifugation resulted in two-phase the top phase, the serum phase and the lower 

phase, the solid phase. The total lipids recovered from all the stages depicted a higher 

percentage in the upper phase. However, there was a difference in the amount of lipids 

from the samples with and without beta serum. From the three different stages 1, 2 and 3, 

the total lipids observed for the control samples at the upper phase were 55.54 ± 9.26%, 

47.69 ± 2.67% and 51.36 ± 9.8% respectively, while for the samples that contain beta serum 

were 30.08 ± 10.69%, 50.82 ± 5.45 and 31±0.39%, respectively. In the case of the lower 

phase of three stages (1,2,3), the total lipids obtained for the control mixes were 13.71 ± 

4.06%, 8.96 ± 0.12% and 13.6 ± 2.64% respectively, the beta serum samples contained 

7.59 ± 0.14%, 10.26 ± 0.48% and 15.11 ± 1.76% respectively.  
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It was evident that the fat portion remains on the top during the centrifugation 

resulting in higher lipids; however, there was a difference in the lipidic content for the 

samples with and without b-serum. The ice cream mix control had comparatively higher 

lipids in the upper phase in all three stages than the samples with b-serum. The solid phase 

consists of unabsorbed casein micelles in suspension in a freeze-concentrated solution of 

sugars, unabsorbed whey proteins, salts and high molecular mass polysaccharides. The fat 

phase undergoes partial coalescence during the freezing process resulting in an 

agglomerated fat that partially surrounds the air bubbles giving rise to a solid-like structure. 

(H. D. Goff, 1997). 

 

Furthermore, through solid-phase extraction, the total phospholipids were obtained. 

Figure 7.9 illustrates the amount of phospholipids from the three different stages. It was 

evident that the ice cream mix with Beta serum contained a higher amount of PLs, and it 

was noted a higher level of PLs was confined to the lower phase. In the ice cream mix with 

b-serum, the total PLs at the lower phase for three stages (1,2,3) were 39.48 ± 0.14%, 31.88 

± 0.48% and 10.14 ± 1.76%, respectively. Simultaneously, for the samples without b-

serum, it was observed to be 16.64 ± 4.06%, 17.73 ± 0.12% and 16.64 ± 2.64%, 

respectively, the higher PLs of the beta serum mix was depicted after pasteurization, and it 

was lowered during the freezing. In the upper phase of the mixes containing beta serum for 

three different stages, the PLs content were 3.10 ± 10.69%, 6.15 ± 5.45% and 4.62 ± 0.39 

% respectively, and the samples without b-serum were 2.28 ± 9.26%, 5.24 ± 2.67% and 

3.74 ± 9.8 % for the three stages respectively.  
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To support the presence of PLs, the microstructure of the icecream mixes at three 

different stages and for two phases were evaluated using confocal laser scanning 

microscopy (Figure 7.10). The staining for the PLs using Rd-dope (Gallier et al., 2010) 

revealed its presence at every stage. The phospholipids droplets have been dispersed within 

both phases, depicted through the images presented in (Figure 7.10). Compared to the 

control samples, the samples with B-serum showed more droplets of Pls emulsified within 

the ice cream matrix in both the serum and solid phase. It was also observed that the 

distribution was not even, this could be because of the lack of homogenization step during 

the manufacturing process that contributes to the development of the structure(H. D. Goff, 

1997).  

 

Figure 7.8.Total lipids (wt %) on the three-stage of the ice cream manufacturing process 

for both the samples control and b-serum. 
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Figure 7.9. Total phospholipids(%) from two samples (1) Mixing (2) Pasteurization (3) 

Freezing. 

 

7.5. Conclusions 

In the present study, Beta-serum powder was assessed for the first time for application 

in ice creams, one of the most commonly consumed frozen desserts. The quality attributes 

of the ice cream with non-fat dry milk and beta serum were evaluated. The rheological 

behavior for both the samples showed predominant pseudoplastic character, and the zeta 

potential values were below -30 mV for both the ice-cream mixes showed that they were 

stable. Further studies on the strain sweep measurements will provide more detailed 

information on the stability of the mix. Fat destabilization was lowest for the ice-cream 

containing Beta serum and had the lowest melting rate than the ice-cream with NFDM. The 

microstructure studies show the presence of phospholipids at every stage of the ice-cream 

manufacturing process . It was also depicted that the PLs were at the lower phase of and 
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after the meltdown, the presence of PLs was quantified at the melted phase in both the ice-

cream samples. This mapping can provide insights into where the PLs is during the ice-

cream manufacturing process. Further scale-up will require to study of the sensorial 

description of the product as well as consumer acceptance.  

 

Figure 7.10. Confocal laser scanning microscopy (CLSM) of the different stages of the 

ice cream manufacturing process. 
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CHAPTER 8 

OVERALL CONCLUSION 

Buttermilk, concentrated buttermilk and Beta-serum, are the low-value dairy by-

products that contain large amounts of milk fat globules where PLs are in their membranes. 

The extraction and separation of the dairy by-products were successfully achieved using 

the N, N dimethyl cyclohexylamine. For the first time, the feasibility of utilizing CyNMe2 

as a switchable hydrophilicity solvent was an effective way to produce milk PLs from the 

buttermilk, resulting in a 99% extraction yield when compared to the traditional methods 

such as the Folch and Mojonnier method. The extraction value of switchable solvents 

depended on the type of matrix used. The concentrated buttermilk was 77%, and B serum 

was 7%.  

 

Beta-serum was used in future studies because of its potential interest from the 

industries. This work demonstrated that ultrasound pretreatment prior to switchable solvent 

extraction has a  great potential for producing valuable PLs from the beta-serum or other 

similar dairy processing by-products. The application of ultrasound can disrupt the fat 

globules and enhanced the separation process. The phospholipid recovery was 70%, ten 

times higher compared to yield with pretreatment and a 31-fold increment in the 

concentration of individual PLs phosphatidylinositol (PI) was obtained compared to the 

untreated one.  

 

Optimization for extraction of phospholipids from the beta serum involving different 

conditions of time, temperature and solvent ratio were utilized. The optimization of the 
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extraction process aims at maximizing the amount of PLs while minimizing the use of 

solvent. The different combinations of temperature, solvent ratio and time is an approach 

to optimize the process and as well as to study the effect of temperature in combination 

with the switchable solvents. Therefore, manipulating these conditions may lead to 

obtaining valuable milk phospholipids and understanding the effects these extraction 

conditions have on the protein and the lipidic material. The temperature did not cause much 

impact in the process while the time was relevant since the entire relies on the reversibility 

of amine-based on the Le-chatliers principle. The distribution profile on the individual PLs 

seemed entirely different The maximum amount of PLs obtained at minimized solvent ratio 

(3/1 mL), temperature (60 oC) and time (3 h) yielded 29.29% ± 0.06%  of MPLs, while 

only 7.57 ± 0.59% (12/1 mL and time 18 h). Though this process did not provide a higher 

extraction yield of the PLs from Beta-serum as the ultrasound process, this work was a 

proof of concept. The experiments may provide insights for future work with practical or 

theoretical importance.  

 

An understanding on the mechanism of switchable solvents was investigated to know 

how the SHS accounted for a higher yield of PLs without the use of polar alcohols. The 

various analytical measurements obtained revealed a reduction in PLs droplets' size, which 

favored the diffusion into the solvent and enhanced the extraction. This study will help 

design novel extraction strategies for the recovery and isolation of phospholipids and other 

protein matrices.  
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The beta-serum application in ice cream manufacturing provides insights that dairy by-

product beta-serum can be used as replacers of non-fat dry milk replacers ice creams for 

sustainable and healthy markets. This work can help to effectively utilize the low-value by-

products and convert them into a high-value end product. However, evaluation of the 

sensory studies will be required for consumer acceptance.  

The technology utilized in these studies will allow the dairy industry to utilize dairy 

by-products more effectively and provide methodologies appropriate for industrial scale-

up. Further optimization to concentrate on valuable PLs classes, such as sphingomyelin 

and phosphatidylserine, can better understand these lipidic fractions and processing 

applications. Additionally, understanding the economics associated with each 

technological process and its associated costs will provide industrial scale-up insights. 

Other relevant aspects need further investigation, such as amine recovery, reusability, and 

percentage recovery of valuable components from reusable solvents can be determined. 

Further, evaluating the feasibility of different primary and secondary amines in the 

extraction process of the dairy by-products can be researched. Studies involving the 

utilization of milk PLs in the agglomeration process as a replacer of soy lecithin can be 

investigated in the future. The concentration of PLs is a complex procedure, and more 

alternative methods are required to bridge the gap existing between academia and industry. 

This technology can be used for low dairy-byproducts to produce dairy lecithin at a very 

low cost in the future years.  

 

 




