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ABSTRACT 

 

GENETICALLY MODIFIED CORN DIFFUSION AND BIOFUEL USAGE: 

IMPACTS ON CORN BELT CROPPING SYSTEMS CHANGES 

KENNETH ANNAN 

2021   

The adoption of genetically modified (GM) crops, the rise of ethanol production that 

produced an additional derived demand for corn, and the increasingly prominent 

position of corn and soybeans in crop rotations embody major changes in U.S. 

agriculture during the past decades. This study investigates the linkages among these 

developments in two ways. First, we look at how biotechnology and biofuels have 

influenced cropping system changes in the Corn Belt region of the United States, 

using state-level data from 2000 to 2019. Second, we investigate the determinants of 

corn acreage intensification levels and heterogeneity at the state level using data from 

2000 to 2017 for the same eleven Corn Belt states. In order to analyze these 

interconnections, we employed a linear mixed model to generate robust regression 

results estimates. In assessing the role of biotechnology and biofuels on U.S. Corn 

Belt cropping pattern changes, we find that (1) during this time period, farmers began 

to abandon relatively complex cropping patterns in favor of simpler crop rotation 

approaches; and (2) the widespread use of GM corn for biofuel appears to have had a 

positive impact on the increase in corn acres planted, although the consequences of 

biotech breakthroughs on producer planting decisions vary by state. As a result, future 

policy changes affecting farm-level corn production decisions are also likely to be 

varied. Further, in investigating the determinants of corn acreage intensification levels 

and heterogeneity in U.S. Corn Belt states, we find that (1) using the base regression 



ix 
 

model, the proliferation of GM crops, the implementation of renewable fuel 

regulations in the early 2000s, and the first lag of the relative corn to soybean price 

ratio all have positive effects on state-level corn acreage intensity; and (2) cropland 

released from the Conservation Reserve Program (CRP), a simple measurement of 

economies of scale, and the development of the ethanol production infrastructure are 

key contributors of corn acreage heterogeneity at the state level, while real cropland 

values – which partially represent cropland quality improvements such as tile 

drainage and irrigated agricultural acres – do not explain state-level corn acreage 

heterogeneity. Among the 11 Corn Belt states, Iowa had the largest increase in corn 

intensity of 7.6 percent over the period examined. Findings of this thesis back up and 

help explain well-documented shifts in cropping patterns, such as the loss of small 

grains and marginal lands in favor of corn and soybeans. Over a roughly two-decade 

period, this research sheds light on the determinants of corn acreage intensity levels 

and heterogeneity in Corn Belt states.  

 

 

 

 

 

 

 

  

 

 

Keywords: GM Corn Diffusion, Corn Production, Biofuel Policy, Crop Rotation 

Patterns, state heterogeneity, corn acreage intensification.  
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                                                       CHAPTER I 

INTRODUCTION 

 

U.S. agriculture has undergone major changes over the past decades, including the 

adoption of genetically modified (GM) crops, the expansion of ethanol production 

that created an additional derived demand for corn, and an increasingly dominant role 

of corn and soybeans in crop rotations. According to Wallander et al. (2011) farmers 

shifted their crops away from hay and small grains and toward corn and soybeans 

since the 1990s. The same time period also saw changes in biofuel policies and broad-

based agricultural policy. In addition, consumer demands, producers’ profit, and trade 

potential influence producers' decisions regarding their production practices and 

technology usage. This study seeks to assess determinants of cropping pattern 

changes. In particular, the study’s objectives are to study the role of GM corn 

adoption, the passage of the renewable fuel laws in the early 2000s, market forces, 

cropland released from the Conservation Reserve Program (CRP), economies of scale, 

the development of the ethanol production infrastructure, and cropland prices on the 

increasing relative contribution of corn in crop rotations. Results of the study may 

provide insights for agricultural policy makers as they consider the impacts of the 

adoption of possible future technological advancements, as well as those of biofuel, 

agricultural, and conservation policy changes on cropping pattern changes in the 

United States. 

Chapter II examines the role of biotechnology and biofuels in cropping system 

changes in U.S. Corn Belt states. This chapter also seeks to investigate the impact of 

the increased adoption of GM corn varieties, corn-based biofuel production, and the 

resulting surge in derived demand for corn on corn acreage intensity in these states. 

The findings of this chapter shed light on the complex set of factors that affect 
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cropping patterns changes, the widespread use of GM corn and the effects of 

biotechnological advances on producer planting decisions. 

Chapter III focuses on exploring sources of the heterogenous impacts of 

federal policies and GM corn adoption on corn acreage intensity in Corn Belt states. 

This chapter not only expands the analysis of Chapter II by examining the degree to 

which corn acreage intensity was affected by GM corn adoption, changing federal 

biofuel policies, relative corn prices, but also further investigates the sources of the 

heterogenous impacts. The results of this chapter provide insights on the sources of 

state-specific impacts of the federal policies, market conditions, and GM corn 

adoption on corn acreage intensity. 

The findings, conclusions, and implications from Chapters II and III are 

summarized in Chapter IV. While the findings of Chapters II and III are closely 

related to one another, Chapter III provides a more in-depth and expanded analysis 

and relies on a shorter period of analysis than that of Chapter II. 
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                                                           CHAPTER II 

 

THE ROLE OF BIOTECHNOLOGY AND BIOFUELS IN THE U.S. CORN BELT 

CROPPING SYSTEM CHANGES 

 

Abstract 

 

Using state-level data from 2000 to 2019, the effects of transgenic corn usage and 

federal biofuel policies on state-level cropping trends in the U.S. Corn Belt region are 

investigated. We find that 1) producers shifted away from complex cropping patterns 

and toward simpler rotational practices during this period; 2) the spread of genetically 

modified corn for biofuel use appears to have had a positive influence on the 

intensification of corn acres planted, but the effects of biotech advances on producer 

planting decisions differ across states. As a result, future policy changes impacting 

corn production decisions at the farm level are likely to be diverse. 

Introduction 

 

Based on state-level data from 2000 to 2019, we examine links between increases in 

the adoption of genetically modified (GM) corn varieties, corn-based biofuel 

production, and the related surge in the derived demand for corn on corn acreage 

intensity in U.S. Corn Belt states. The objective of the study is to analyze how federal 

biofuel policies, relative corn (Zea mays) to soybean (Glycine max) prices, and farm-

level GM corn adoption rates affected corn acreage intensity across 11 Corn Belt 

states over the 20-year period. This research adds to the current literature by 

considering the long-term effects of GM corn plantings and biofuel policy shifts on 

cropping patterns. The research also distinguishes the impact of changes in biofuel 

policies and technology on state-level cropping trends, which is a valuable 
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contribution. Also, following Fausti et al. (2014) this study updates literature on U.S. 

corn belt cropping pattern changes using the span of our data. Our empirical findings 

indicate that increased ethanol production in response to biofuel policy changes 

influenced cropping patterns, which was aided by the spread of GM corn varieties and 

relatively high corn prices. While these factors led to an increase in corn production 

intensity in the Corn Belt as a whole, the effects varied by state. The impact of biofuel 

policy adjustments on crop rotation patterns at the state level is complicated by 

heterogeneity throughout states. Thus, heterogeneity across states has important 

policy implications for how biofuel policy changes will affect crop rotation patterns at 

the state level1.  

Literature Review 

The Relationship Between GM Corn, Ethanol Production, and Corn Acreage 

Intensity. 

 

Agricultural land use has been shifting toward more intensive processing activities for 

a long time. In the United States' Prairie Pothole Area, Johnston (2014) described how 

grasslands, wheat, and other small grains were converted to corn and soybean 

production (which partially overlaps with the northwestern part of the Corn Belt 

region). In the eastern part of the Northern Great Plains, Claassen et al. (2010) 

reported on the conversion of marginal production acres (grasslands and hay land) to 

cropland, while Wright and Wimberly (2013) recorded grassland conversions in the 

western Corn Belt. More generally, Wallander et al. (2011) found that corn and 

soybean acreage increased throughout the United States, along with an increase in 

double-cropping and hay land conversions. 

 
1 This work is currently under the review by Renewable Agriculture and Food Systems (RAFS). 
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Cropping systems in the United States are becoming more homogeneous, 

especially in the Midwest (Aguilar et al., 2015; Plourde et al., 2013). In recent 

decades, the number of crops participating in rotation cycles in the Corn Belt of the 

United States has decreased (Fausti, 2015; Johnston, 2014; Stigler, 2019; Wallander et 

al., 2011). Crop rotation practices that include multiple crops can help preserve soil 

fertility, minimize negative environmental impacts of agricultural production 

including soil erosion and nutrient discharge, reduce crop damage from weed and 

insect pests, and increase crop productivity (Bowles et al., 2020; Claassen et al., 2010; 

Hunt et al., 2020; Landis et al., 2008; Seifert et al., 2017). Producers are increasingly 

relying on chemical and genetic technologies to preserve soil fertility and keep 

agricultural pests at bay, rather than traditional rotation practices (Davis et al., 2012; 

Hunt et al., 2017; Sindelar et al., 2016). This may exacerbate externalities, including 

soil degradation and water pollution (Amundson et al., 2015; Turner & Rabalais, 

2003).  

The decline in crop diversity partially coincided with changes in U.S. energy 

and agricultural policies, the increased usage of GM crops, and the growth of the 

ethanol and agricultural seed industries. U.S. federal and state policies and programs 

wield much influence on cropping systems diversity, as evidenced by agricultural 

producers managing the majority of U.S. farmland in accordance with farm bill 

guidelines, incentives, and mandates to qualify for commodity payments or other farm 

program subsidies(Medicine & Council, 2015). Farm policy generally evolves slowly 

and unevenly but the 1996 farm bill embodied a major policy change, by expanding 

the number of crops qualifying for farm program payments. This increased farmers’ 

ability to change crops, turn marginal lands into crop production, and switch from 

crop production to other agricultural uses while retaining program payments 
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(Claassen et al., 2010). Subsequent farm bills reversed some of this flexibility, but 

farmers retained much of their ability to respond directly to market signals, policy 

incentives, and technology changes (Mercier, 2011).  

One aspect of technology change affecting agriculture over the past two 

decades is the widespread adoption of crops that were developed using genetic 

engineering, which offers tools and strategies to supplement traditional breeding 

techniques and can improve disease resistance, insect resistance, herbicide tolerance, 

and drought tolerance of crops (Vincelli, 2016). GM crop technology provides a host 

of benefits at the farm level, such as reducing labor requirements for crop production 

and increasing profits(Brookes & Barfoot, 2018; Fernandez-Cornejo, 2002). Since 

GM crop varieties were first introduced for commercial production in the United 

States in 1996, farmers rapidly adopted herbicide tolerance, insect resistance, and 

stacked (both traits). GM corn and soybean varieties in their cropping systems. U.S. 

adoption rates of all GM corn and soybeans varieties increased from zero in 1995 to 

25 percent and 54 percent in 2000, to 86 percent and 93 percent in 2010, and to 92 

percent and 94 percent in 2020, respectively (Economic Research Service, 2021b).  

Numerous authors have studied the rapid adoption and diffusion of the types 

of GM crop varieties that enable crops to withstand herbicide applications or that are 

toxic to insect pests or both and documented an array of implications of the increased 

reliance on GM crop varieties(Benbrook, 2012; Brester et al., 2019; Cattaneo et al., 

2006; Fernandez-Cornejo, 2002; Hutchison et al., 2010; Scandizzo & Savastano, 

2010). A comprehensive study by the National Academies of Sciences - Engineering 

and Medicine (2016) did not find conclusive evidence of increased environmental 

risks of GM crops relative to crops bred using conventional methods, but the report’s 

authors acknowledged the development of resistance to GM crop traits as a critical 
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problem for crop production, attributed mainly to poor resistance-management 

strategies.  

The case of target insect resistance development helps explain observed 

increases in the number of cropland acres treated with insecticides in selected 

locations – impacts that were unlikely to have been observed in the short run 

following the adoption and diffusion of GM crops – as reported by (Fausti et al., 

2018). Whether a consequence of poor management practices or the technology itself, 

the example of target insect resistance development points to the need for considering 

the long-term effects of the adoption and diffusion of GM crops (Catacora-Vargas et 

al., 2018). One of the contributions of this study is a consideration of the long-term 

consequences of GM corn plantings on cropping patterns. Also, following Fausti et al. 

(2014), this study updates literature on U.S. corn belt cropping pattern changes using 

the span of our data. 

The widespread adoption of GM crops was previously linked to the 

intensification of specific crops in the Midwest (Heinemann et al., 2014). Cap and 

Malach (2012) also reported changes in land use patterns elsewhere and in particular 

in Argentina, Brazil, Paraguay, and Bolivia, involving increased areas planted to 

soybeans in general and GM soybeans. More broadly, in assessing impacts of GM 

crop technology across the globe based on farm-level data from 1996 through 2016, 

Brookes and Barfoot (2018) noted increased production areas of the four main GM 

crops (soybean, corn, cotton, and canola), especially of corn and soybeans.  

Partially overlapping with the increased use of GM crops is the rise of 

biofuels. On the supply side, the development of corn and soybean-based biofuel 

conversion technology enabled the use of biofuels for transportation purposes. 

California’s decisions to ban methyl tert-butyl ether (MTBE) as a gasoline additive in 
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2002 and replace it with ethanol provided the initial impetus for the nationwide phase-

out of MTBE and its replacement by ethanol. The nationwide conversion from MTBE 

to ethanol led to a rapid increase in the demand for ethanol and an expansion of the 

ethanol industry (Bracmort, 2020). 

Biofuels were also upheld as an important energy source for the domestic 

economy to reduce the U.S. reliance on oil imports from abroad. To encourage the 

development of biofuel markets, U.S. energy policies include programs that set 

minimum requirements for biofuel usage blended with other transportation fuels. The 

two primary pieces of legislation are the 2005 Energy Policy Act, amended by the 

Energy Independence and Security Act of 2007. The latter’s Renewable Fuel Standard 

(RFS) statute sets minimum targets for renewable fuel volumes that increase each 

year, from 9 billion gallons in 2008 to 36 billion gallons in 2022. The RFS further 

prescribes sub-mandates for four broad-based biofuel categories (cellulosic, biomass-

based diesel, undifferentiated-advanced, and renewable energy), but it is subject to 

waivers that reduce the minimal usage of specific types of biofuels. For example, 

while the RFS statute requires using 30 billion gallons of renewable fuel in 2020, just 

over 20 billion gallons of total renewable fuel are used in practice, which corresponds 

to 11.6 percent of the total volume of the transportation fuel used. Due to the 

insufficient development of advanced biofuels, cornstarch-based ethanol remains the 

largest renewable fuel component, with annual maximum use of 15 billion gallons by 

2022 (Bracmort, 2020). 

According to the Renewable Fuels Association (2021), the United States 

produced 175 million gallons of ethanol in 1980. Since then, annual production levels 

initially grew relatively slowly to 1.6 billion gallons in 2000, but subsequently 

increased eight-fold to 13.3 billion gallons by 2010, and thereafter enlarged again 
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much more slowly to 15.8 billion gallons of ethanol in 2019. Correspondingly, the 

United States produced 9.9 billion bushels of corn in 2000, which increased to 12.4 

billion bushels in 2010 and 13.6 billion bushels by 2019 (National Agricultural 

Statistics Service, 2019). The ethanol industry consumed 0.5, 4.5, and 6.5 percent of 

the U.S. corn crop in 1980, 1990, and 2000, respectively, which increased to 38.5 

percent in 2010, before dropping to 34.8 percent of the total U.S. corn supply in 2019 

(Economic Research Service, 2021a).  

As growing shares of the total corn output in the United States were used for 

ethanol production, the corn-based ethanol industry grew to a major industry over 

fewer than 15 years (Cai & Stiegert, 2014). The expansion phase of the ethanol 

industry coincided with corn price increases that sent positive market signals to row 

crop producers to increase their corn production (Fausti, 2015).   

This study reports on the overlapping developments of GM corn use increases, 

changing federal farm policies, federal biofuel laws that mandated ethanol usage in 

transportation fuels, and their impacts on changing cropping patterns in the U.S. Corn 

Belt region, based on state-level data from 2000 to 2019. Given differences by state in 

terms of climate and soil conditions as well as state policies, understanding the effects 

of changes in policy and technology on state cropping patterns must account for state-

level characteristics, which we accomplish by using a mixed modeling approach that 

incorporates both random and fixed effects. An additional contribution of our study is 

that we consider the combined and separate impacts of these distinct but overlapping 

developments on cropping system changes. Given the 20-years period, our analysis 

takes a long-run view of factors affecting cropping system changes. Our results 

indicate that the intensification of corn acres planted was influenced by the spread of 

GM corn for biofuel usage, which likely contributed to moving toward simpler 
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rotational practices. We further find that the impacts of advancements in 

biotechnology on producer planting decisions varied across states. 

        

Data and Methodology 

 

For each year between 2000 and 2019, we used secondary state-level data on crop 

acres planted and GM corn coverage in eleven northern Corn Belt states – Iowa, 

Illinois, Indiana, Nebraska, Kansas, Michigan, Minnesota, Missouri, Ohio, South 

Dakota, and Wisconsin – resulting in a total of 220 observations. Data on annual crop 

acres planted were obtained from the National Agricultural Statistics Service (2019), 

and annual GM crop adoption rates from the (Economic Research Service, 2019). 

State-level data on GM crop adoption levels from before 2000 are not fully 

compatible with those of subsequent years, so they were not included in our analysis 

(Economic Research Service, 2019). A policy dummy variable was created to reflect 

the passage of the 2005 Energy Policy Act and the Energy Independence and Security 

Act of 2007 with a value of one for the years 2005 to 2019, zero otherwise. Annual 

average corn and soybean prices were collected from the (National Agricultural 

Statistics Service, 2019). 

Using annual data, we apply a linear mixed regression modeling approach to 

estimate a fixed-effects model with random intercepts by states to investigate the 

effects of GM corn adoption and the enactment of ethanol policies on changes in 

state-level corn acreage intensity. The dependent variable is the ratio of corn acres 

planted to total acres planted, referred to as corn acreage intensity (CAI). Explanatory 

variables include the ratio of corn prices to soybean prices (PR), a 2005 ethanol policy 

dummy variable (RFS=1 for years from 2005 to 2019), and the state‐level ratio of 

corn acres planted with GM corn (GMCS). State dummy variables were created to 
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measure the random effects of corn acreage intensity by state (with Michigan as the 

base state). Using the above predictors, the random intercept model provides 

estimates for corn acreage intensity by state, over the 20-year transition period. The 

random intercept model was estimated with the repeated effect option in the SAS proc 

mixed procedure to account for possible state-level heterogeneity (SAS Institute, 

1999). To account for possible endogeneity issues, the corn to soybean price ratio 

(PR) was lagged by one year (period t-1). We expect that data on acres planted are 

clustered due to the heterogeneity of individual state characteristics – such as climate, 

soil, landscape, and state agricultural and biofuel policies – leading to dissimilar 

responses to the introduction of biotechnology and bioenergy policies during the 

period covered by our study. Clustered data refer here to attributes associated with an 

individual state’s agricultural sector, such as climate, soil type, landscape, and state-

level agricultural policies that would result in a clustering of similar cropping patterns 

over geographically related states.   

The renewable fuel laws’ implementation is expected to have a positive 

relationship with corn acreage intensity, as outlined earlier. Also, the corn to soybean 

price ratio is expected to have a positive relationship with corn acreage intensity, 

because a decrease in the relative price of corn to soybeans would be expected to 

lessen corn acreage intensity (as soybean prices rise at the expense of corn prices, 

CAI decreases, and as corn prices rise at the expense of soybean prices, CAI 

increases). Lastly, the relationship between the ratio of total corn acres planted to GM 

corn acres planted and corn acreage intensity is expected to be mixed, in the sense that 

– while corn acreage intensity is expected to increase as the proportion of GM corn 

out of total corn acres grows during the period when the GM share increases – it has 

little or no impact in the long run. The price ratio variable captures the market 
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valuation of corn relative to other crops, the GM corn variable reflects the supply-side 

impact of genetically engineered corn on total corn production, and the renewable 

fuels policy dummy variable (RFS) captures the increased demand for corn due to 

corn-based ethanol production policy incentives. 

The standard assumptions associated with the linear mixed model (LMM) are 

listed in equations 1-4. Using the standard vector notation provided on page 121 in the 

SAS/Stat 9.3 User Guide  (SAS Institute, 2011), we define the general structure of the 

model:  

              1.   𝐶𝐴𝐼 = Χ𝛽 + 𝑍𝛾 +  𝜀, 

              2.    𝛾 ∼ 𝑁(𝑂, 𝐺), 

              3.    𝜀 ∼ 𝑁(𝑂, 𝑅), and  

              4.    𝐶𝑂𝑉(𝛾, 𝜖) = 0. 

The dependent variable CAI (corn acreage intensity) denotes the vector of 

dependent variable observations. Matrix X is the design matrix associated with β, 

which represents the vector of unknown fixed-effects parameters. Matrix Z is the 

design matrix associated with ϒ, representing the vector of unknown random-effects 

parameters. We specified the repeated statement option in our model because we do 

not want to assume that 𝑅 is equal to 𝜎2𝐼. The error term, ε, reflects an unknown 

random error. Equation 4 states that ϒ and ε are independent, which implies that 

following SAS Institute (1999), the variance of CAI can be defined as:  

               5.   𝑉𝐴𝑅[𝐶𝐴𝐼] = 𝑍𝐺𝑍𝑇 +  𝑅, 

where G and R are the covariance matrices associated with ϒ and ε, respectively. The 

superscript notation “T” denotes the transpose matrix operation. Examining the 

correlation between the model’s residuals and the exogenous variables showed 

correlation coefficients of less than 0.01, suggesting exogeneity. The model design 
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suggests the only predictor potential for endogeneity to be an issue is with the corn-

soybean price ratio. To avoid this issue, the corn-soybean price ratio was lagged for 

one period. The default covariance structure for the mixed procedure is variance 

components (SAS Institute, 1999). While other covariance structures for G and R 

were investigated, the variance component structure was selected based on the “Null 

Model Likelihood Ratio Test.” The LMM procedure in SAS provides flexibility when 

dealing with regression diagnostic issues (SAS Institute, 1999). We first employed a 

“sandwich estimator” approach to produce robust standard errors associated with β 

(Diggle et al., 1994; SAS Institute, 1999) 

 The linear form of the general model to be estimated is  

              6.   𝐶𝐴𝐼𝑖𝑡 =  𝛼 +  ∑ 𝛽𝑗
3
𝑗=1 𝑋𝑗𝑖𝑡 +  ∑ 𝛾𝑖

11
𝑖=1 𝑍𝑖𝑡 +  𝜀𝑖𝑡,   

                                    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 11, 𝑗 = 1 𝑡𝑜 3, 𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 20  

Parameter α is the fixed intercept, subscript “i” denotes the state, “j” refers to the 

explanatory variables, and “t” denotes time. The other parameters in equation 6 have 

been already explained above. 

Empirical Results 

 

Table 1 reports on the acres planted by a major crop over two periods in the Corn Belt 

from 1996 to 2019. Table 1 shows that the 11 U.S. Corn Belt states collectively 

experienced a major shift away from small grains, wheat (Triticum) and hay, toward 

corn and soybeans, in terms of annual crop acreage averages between a base period 

spanning from 1996 to 2004 and the 2005 to 2019 period. Between the first and 

second periods, the regional average of the proportion of corn and soybean acres 

planted out of total acres planted increased from 36.3 percent to 40.5 percent, and 

from 32.3 percent to 33.4 percent, respectively. The increase in corn acres planted 

over the two periods took place at the expense of cropland planted to barley, oats, 
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wheat, and other crops. This pattern confirms the broad assertion by Wallander et al. 

(2011) that an increase in corn and soybean acreage across the United States, which 

coincided with an increase in double-cropping and hay land conversion. 

Table 1: Acres planted by a major crop over two periods in the Corn Belt, 1996 to 

2019 

  

 

Crops 

(planted 

acres) 

 

Avg. 

(1996-2004) 

Period 1 

 

Avg. 

(2005-2019) 

Period 2 

 

 

Change 

Period 2 vs. 1 

1,000 acres % 1,000 acres % 1,000 

acres 

% 

Corn  64,283 36.3 71687 40.5 7404 11.5 

Soybean  57,103 32.3 59075 33.4 1972 3.5 

Barley*  524 0.3 193 0.1 -331 -63.2 

Oats* 2,077 1.2 1348 0.8 -729 -35.1 

Wheat 22,331 12.6 18350 10.4 -3981 -17.8 

Other 30627  17.3 26221 14.8 -4406 -14.4 

Total 

Area 

176945  100 176874 100 -71 -0.04 

 * Oats: Avena sativa; Barley: Hordeum vulgare. Source: Compiled from USDA data, 

https://quickstats.nass.usda.gov/. 

 

 

Table 2 summarizes changes in cropping patterns in the 11 Corn Belt states between 

1996 and 2019, divided over two sub-periods: 1996-2004, and 2005-2019. The table 

shows that each state experienced an increase in corn acres planted from the first to 

the second period, measured as a proportion of total acres planted, as described 

earlier. However, with the exception of Iowa and Illinois, all the other nine states 

experienced an increase in soybean acres planted from the first to the second period. 

This may be because Iowa and Illinois had the largest percent of the corn acres 

planted. 

https://quickstats.nass.usda.gov/
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Table 2: Changes in crop area shares in the Corn Belt, by state, 1996 to 2019 

    Corn Soybean Barley Oats Wheat Other crops 

State/  Acres Acres Acres Acres Acres Acres 

Region  Period  Planted  Planted  Planted  Planted  Planted  Planted  

  ********* As a Percent of Total Principal Crop Area*********  

Iowa 1996-04 49.8 42.4 0.0 1.0 0.1 6.6 

 2005-19 55.3 39.4 0.0 0.6 0.1 4.6 

Illinois 1996-04 47.2 44.0 0.0 0.3 4.4 4.1 

  2005-19 52.4 41.9 0.0 0.2 3.1 2.4 

Nebraska 1996-04 44.3 22.5 0.0 0.8 10.1 22.3 

 2005-19 48.8 26.1 0.0 0.6 7.90 16.6 

Minnesota 1996-04 36.1 34.9 1.5 1.9 10.4 15.2 

  2005-19 40.7 36.7 0.5 1.2 7.90 12.9 

Indiana 1996-04 45.7 44.1 0.0 0.3 4.4 5.6 

 2005-19 47.2 44.6 0.0 0.1 3.2 4.8 

South 

Dakota 1996-04 23.8 22.5 0.6 2.4 19.7 31.0 

  2005-19 30.5 26.5 0.2 1.6 15.9 25.3 

Wisconsin 1996-04 45.3 16.8 0.8 5.1 2.2 29.8 

 2005-19 49.2 21.8 0.4 3.3 3.4 21.9 

Ohio 1996-04 32.4 43.6 0.0 1.0 10.4 12.7 

  2005-19 35.2 46.3 0.0 0.6 7.4 10.5 

Kansas 1996-04 13.1 11.3 0.0 0.5 44.5 21.6 

 2005-19 19.7 16.6 0.1 0.4 39.2 24 

Missouri 1996-04 20.7 36.2 0.0 0.3 8.0 34.8 

  2005-19 24.3 39.1 0.0 0.2 5.9 30.5 

Michigan 1996-04 34.6 29.5 0.3 1.3 8.8 25.5 

 2005-19 37.0 31.0 0.2 1.0 9.1 21.7 

Corn Belt 1996-04 36.3 32.3 0.3 1.2 12.6 17.3 

  2005-19 40.5 33.4 0.1 0.8 10.4 14.8 

Source: Compiled from USDA data, https://quickstats.nass.usda.gov/. 

 

Table 3 provides summary statistics of the main variables used in our analyses. From 

1996 through 2019, the mean corn and soybean acres planted in the 11 Corn Belt 

states are 6,265 and 5,303, respectively. Also, the minimum and the maximum values 

for all the field crops denote that corn has a wider range of its coverage than the other 

crops. Again, on the average, GM corn has a bit higher coverage than GM corn 

varieties, however, both traits have the same range of approximately 98 percent. The 

https://quickstats.nass.usda.gov/
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prices for corn, soybean and wheat also indicate that the prices of soybean are higher 

than the other two crops. This is evidenced in the mean and the maximum values for 

soybean in Table 3. 

Table 3: Descriptive statistics (1996-2019) 

       
Variable Units N Mean St Dev Minimum Maximum 

       

       

Corn  1,000 acres  264 6265 3521.8 2,150 14,300 

Soybean  1,000 acres  264 5303 2695.0 930 11,000 

Barley  1,000 acres 264 28.8 69.4 0 600 

Oats  1,000 acres 264 147.4 122.0 0 530 

Wheat  1,000 acres 264 1804 2,609.7 0 11,800 

Total acres  1,000 acres 264 16082 6,163.4 460 25,021 

GM corn Percent  264 58.9 35.8 0 98 

GM soybean Percent  264 73.0 34.1 0 98 

Corn prices USD/bu 264 3.4 1.4 1.7 6.7 

Soybean prices USD/bu 264 8.4 2.9 4.4 14.1 

Wheat prices USD/bu 264 4.3 1.5 1.8 8.1 

       

 

 

Table 4 lists the fit statistics and the estimated Intraclass Correlation Coefficients (ICC) 

for each model. The ICC estimates exceed 90 percent for the random intercept model, 

suggesting that the effects of biotech advancements on producer planting decisions are 

heterogeneous across states. Regression diagnostic analyses confirmed that the mixed 

model approach was more robust than a simple fixed effects model. A restricted 

maximum likelihood estimation procedure was employed. To gauge the goodness of fit 

of the mixed model approach, we ran a simple fixed effect-only model. Furthermore, 

the variance components estimating procedure found that the variance associated with 

matrix G’s contribution to the variance of matrix V (the covariance matrix of corn 

acreage intensity) was significant at the five percent level or less for the random 

intercept model (Table 4). Regression diagnostics confirm the decision to select a 



17 
 

 
 

variance-covariance structure that corrects for serial correlation in the model (Table 4). 

The --existence of clustered data results in biased standard errors. Clustering was 

confirmed, and a process for correcting it was implemented (ICC statistics reported in 

Table 4). 

Table 4: Variance Components Statistics and Global Fit Statistics 

Random intercept model: 

Simple 
Covariance Parameter estimate 

Fit Statistics 

 
 

 

Random intercept 0.01374**   

 (0.006174)  

Residual 0.000501***   

 (0.000074)  

AR(1)† 0.4910***  

 (0.000501)  

ICC‡    96.5% 

-2 Log Likelihood  -1024.7 

AIC  -1018.7 

BIC  -1017.5 

Notes: ***, **, and * indicate significance at 0.01, 0.05, and 0.10 levels, respectively; 

and standard errors in parentheses; † AR(1) is the autoregressive (1) diagnostic to 

account for serial correlation and state-level heterogeneity; ‡ ICC is the Intraclass 

Correlation Coefficient, given by the ratio of the random intercept to the sum of the 

random intercept and the residual, expressed in percentage points.  

Table 5 reports on the random intercept model estimates for corn acreage 

intensity, by state from 2000 to 2019. The random intercept model provides estimates 

for the fixed effects and random effects parameter estimates at the regional and state 

levels, respectively. All fixed effects parameter estimates are statistically significant at 

the one percent level, except for GM corn which is statistically significant at about 5.4 

percent. These findings suggest that an increase in the lagged corn to soybean price 

ratio, the adoption and diffusion of GM corn technology, and the passage of the 

biofuels acts of 2005 and 2007 each positively affected corn acreage intensity in the 

Corn Belt region. The fixed effects intercept has a value of 0.2851, which can be 

interpreted as an estimate of the regional average of the proportion of corn acres to 
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total acres planted, indicating that over the 20-year span of our data, corn acreage 

intensity averaged 29 percent. The random intercept coefficients reflect the deviation 

from the regional average. The coefficients for Kansas, Missouri, and South Dakota 

are statistically significant and negative, implying that these states’ intercepts are 

smaller than the regional average intercept. The coefficients for Minnesota, Ohio, and 

Michigan are not statistically significant, implying that these states’ intercepts are at 

the regional average. The random intercept coefficients of the remaining five states 

(Iowa, Illinois, Nebraska, Indiana, and Wisconsin) are statistically significant and 

positive, which implies that these states’ intercepts are above the regional average. 

The simple mixed model confirms that the GM corn adoption rate, relative crop 

prices, and biofuel policy all contributed to an increase in corn acreage intensity in the 

eleven states. Furthermore, the random intercept estimates confirm heterogeneity in 

cropping decisions across states due to individual state attributes, including those 

related to agricultural production and state-specific policies. 

Synopsis of Empirical Results 

 

The parameter estimate for the fixed effects intercept component of the model of 

0.2851 reflects the proportion of corn acres planted at the regional level assuming that 

GM corn diffusion and biofuel policies were unchanged. The random intercepts are 

interpreted as the state-specific deviation from the fixed effects intercept for the 

region as a whole, so states without a statistically significant random intercept 

(Minnesota, Ohio, and Michigan) had a proportion of corn acres planted equal to the 

regional average. Statistically significant positive random intercept terms indicate 

states whose proportions of corn acres planted were above the regional average prior 

to the significant increase in GM corn adoption and implementation of biofuel 

policies (Iowa, Illinois, Nebraska, Indiana, and Wisconsin). Conversely, states with 
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statistically significant and negative coefficients represent those with less corn 

intensity than the regional average before the widespread diffusion of GM corn and 

implementation of biofuel policy incentives (Kansas, Missouri, and South Dakota).  

Table 5: Random intercept model estimates for corn acreage intensity, by state, 2000-

2019 

       

Coefficients estimate Random intercept model 

  

  

Fixed Effects    

  Intercept  0.2851***  

  (0.03372) 

  GM corn 0.0341* 

  (0.01759) 

  RFS 0.0240*** 

  (0.004651) 

  Price Ratio 0.1560*** 

  (0.02013) 

Random Effects   

  Iowa  
0.1466*** 

   (0.03619) 

  Illinois  
0.1221*** 

   (0.03619) 

  Nebraska  
0.0824** 

   (0.03620) 

   Minnesota  
0.0048 

   (0.03620) 

  Indiana  
0.0797** 

   (0.03621) 

  South Dakota  
-0.1041*** 

   (0.03625) 

  Wisconsin  
0.0922** 

   (0.03619) 

  Ohio  
-0.0395 

   (0.03625) 

   Kansas  
-0.2055*** 

   (0.03620) 

  Missouri  -0.1529*** 

   (0.03619) 

  Michigan   -0.0258 

   (0.03620) 
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Notes: ***, **, and * indicate significance at 0.01, 0.05, and 0.10 levels, respectively; 

standard errors in parentheses;  type 3 test for fixed effects indicated the interaction 

coefficient in Models 1-4 are significant (P-value < 0.01); parameter estimates 

rounded to 4 decimal places. 

Discussion 

 

As the proportion of corn and soybean acres out of total crop acres planted increased 

between the pre-and post-RFS periods, total acres planted to small grains and hay 

declined and producers moved away from conventional rotation practices in the 

region. Based on the empirical evidence produced by a random intercept model with 

fixed effects, biotechnology advances in energy and crop production, as well as 

previous government policy decisions in the areas of energy and agriculture, appear to 

have had a positive impact on the intensification of corn acres planted in the Corn 

Belt region. The results also suggest that state-level corn acreage intensification due 

to the introduction of GM corn and biofuel technology was heterogenous across the 

eleven-state region during the 20-year period of this study. This suggests that possible 

changes in energy policies, relative crop prices, and the ability of GM technology to 

continue providing pest protection will therefore also likely affect crop rotation 

patterns differently from state to state.  

Cropping pattern shifts in general, as well as corn's increasing dominance in 

the eleven states' crop production systems, had a slew of anticipated and unforeseen 

consequences. For example, the relatively high corn prices experienced in the years 

following the passage of the renewable fuels standards led to a drop in other crop 

production, global price rises for other crops, and a rise in the cost of growing 

livestock Corn production intensification, aided in part by the use of GM varieties, 

resulted in improved corn pest resistance (Gassmann et al., 2011) and insecticide 

coverage of planted acreage (Fausti et al., 2012). At the outset of crop biotechnology's 
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widespread use, neither the degree of pest resistance nor the resulting rise in 

insecticide acreage coverage was expected. 

The findings of this study, though focused on data collected in the eleven-state 

Corn Belt region, may be applicable to other parts of the country. Corn production has 

increased not only as a result of widespread adoption of GM corn varieties and biofuel 

policies but also as a result of other factors such as climate change and advancements 

in plant breeding technology. Therefore, the issues raised in our research pose a 

challenge to agriculture in the United States and are crucial to its future success. 

Conclusion 

 

This study explores the overlapping developments of the increased GM corn 

acreage as a share of total corn acreage, changing federal agricultural policies, the 

implementation of federal biofuel laws mandating ethanol usage in transportation 

fuels, and their impacts on changing cropping patterns in the U.S. Corn Belt region, 

based on state-level data from 2000 to 2019. Agricultural land use has long moved 

toward increased intensity. This study reports on developments over the past two 

decades that involved an expansion of corn and soybean acreage at the expense of 

small grain acreage and an acceleration of grassland conversions to cropland. The 

increased homogeneity in cropland usage corresponded with a steady move toward 

simpler crop rotations with associated soil health concerns and an increased reliance 

on chemicals to hold pests at bay. The past two decades have also seen changes in 

renewable fuel policies, increased corn production for ethanol use, and a near-

complete spread of GM corn as a proportion of total corn acres. 

The study found that the spread of GM corn for biofuel use influenced the 

intensification of corn acres planted, and the impacts differed across states, using a 

mixed modeling approach with both random and fixed effects. As a result, potential 
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policy changes impacting corn production decisions at the farm level are likely to be 

inconsistent across states. 

A key contribution of this study to the existing literature is that it considers the 

long-term consequences of GM corn plantings and biofuel policy changes on 

cropping patterns. An additional contribution is that the study distinguishes the effects 

of changes in biofuel policies and technology on state-level cropping patterns. This 

research could pave the way for future studies examining the direct effects of GM 

crop adoption, federal biofuel rules, and federal agricultural policies on crop rotations. 

Future research may be able to disaggregate the disparate effects of federal policies 

and GM corn adoption at the state level. 
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                                                            CHAPTER III 

DETERMINANTS OF CORN ACREAGE INTENSIFICATION LEVELS AND 

HETEROGENEITY IN U.S. CORN BELT STATES 

 

Abstract 

 

The determinants of corn acreage intensification levels and heterogeneity in the U.S. 

Corn Belt states are explored using state-level data from 2000 to 2017 by employing a 

linear mixed model that includes both fixed and random effects. We find that (1) the 

proliferation of GM crops, the introduction of renewable fuel laws in the early 2000s, 

and the first lag of the relative corn to soybean price ratio all have positive effects on 

state-level corn acreage intensity, using the base regression model; (2) cropland 

released from the Conservation Reserve Program (CRP), as simple approximation of 

economies of scale, and the development of the ethanol production infrastructure are 

key contributors of corn acreage heterogeneity at the state level, while real cropland 

values – as a proxy for cropland quality improvements by way of tile drainage and 

irrigated agricultural acres – do not explain state-level corn acreage heterogeneity. 

Among the 11 Corn Belt states, Iowa had the largest increase in corn intensity of 7.6 

percent between 2000 and 2017. 

 

Introduction  

 

U.S. agriculture underwent major changes over the past decades, including but not 

limited to the adoption of genetically modified (GM) crops, the expansion of ethanol 

production that created an additional derived demand for corn, and an increasingly 

dominant role of corn and soybeans in crop rotations. Chapter II showed that the 



24 
 

 
 

prominence of corn acres as a share of total cropland planted was positively 

influenced by the spread of GM corn for biofuel use in the Corn Belt region between 

2000 and 2019, but the effects varied across states. This study seeks to build on the 

previous study by exploring the sources of the heterogenous impacts of federal 

policies and GM corn adoption on corn acreage intensity in Corn Belt states. In 

particular, this study’s objectives are to assess the influences of GM corn adoption, 

the passage of the renewable fuel laws in the early 2000s, market forces, cropland 

released from the Conservation Reserve Program (CRP), a simple approximation of 

economies of scale in production agriculture, the development of the ethanol 

production infrastructure, and real cropland values on the increased prevalence of 

corn in crop rotations. 

 A striking change in cropland usage in the United States over the past two 

decades is the increased predominance of corn acres as a share of total cropland 

acreage. At the national level, Wallander et al. (2011) documented an increase in corn 

and soybean acreage across the United States at the expense of cotton acreage and 

uncultivated hay land over the first decade in the 21st century. Similarly, Susanto et al. 

(2008) found that corn acreage expansion took place at the expense of other crops 

such as soybeans, wheat, and cotton, as well as part of the cropland enrolled in the 

Conservation Reserve Program (CRP).  

The increase in corn acres planted as a proportion of total cropland acres 

planted – which we refer to as corn acreage intensity – may be partially attributed to 

the expansion of ethanol production in the United States (Elobeid et al., 2007; Lin & 

Henry, 2016; Westcott, 2007), but other factors may have contributed as well. In their 

assessment of the likely effects of U.S. ethanol production on agricultural markets, 

Elobeid et al. (2007) noted a significant increase in demand for corn resulting in 



25 
 

 
 

growing crops on increasingly marginal areas, and observed an increased prevalence 

of continuous corn production facilitated by transgenic varieties. Further, in studying 

agricultural expansion and crop rotation patterns in nine Corn Belt states (IA, IL, MO, 

NE, SD, OH, MN, IN, and KS) from 2006 to 2013, Lin and Henry (2016) observed a 

continuous acreage expansion of corn and soybeans while most other crops underwent 

a decline in areas planted. With a net loss of 3.9 million acres, the authors noted that 

grassland took the largest loss. The authors found that rising agricultural commodity 

prices, spurred by ethanol production and a variety of socioeconomic factors had a 

substantial impact on land use and agronomic practices in the United States. Further 

research by Westcott (2007) also showed an increased role of corn as the most 

prevalent feedstock for ethanol production.  

The U.S. agricultural sector has undergone a series of additional changes, 

including but not limited to modifications in agricultural policies, the rapid and 

widespread increase in GM crop adoption, the implementation of biofuel policies, 

variations in market conditions, as well as changes in the scale of agricultural 

production operations. This study explores the influence of these developments on 

corn acreage intensity. In particular, the aim of the study is to investigate the degree to 

which corn acreage intensity was affected by GM corn adoption, changing federal 

biofuel policies, fluctuating corn prices relative to other commodity prices, federal 

programs in the form of CRP, ethanol production infrastructure, irrigated acres of 

land, average cropland values, and economies of scale in production agriculture. In 

doing so, the study elucidates sources of the heterogenous impacts of this set of 

factors on corn acreage intensity by state.  

Chapter II focused on factors contributing to the increased share of corn acres 

out of total cropland acres, including the increased production of corn-based ethanol 
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that created a derived demand for corn, broad agricultural and ethanol policy changes, 

relative crop price changes, and the increased usage of GM crops, based on secondary 

data on 11 Corn Belt states from 2000 to 2019. This research builds on the previous 

study by investigating how relative corn prices, agricultural and biofuel policies, the 

adoption of GM corn affect state-level corn acreage intensity. The current research 

also seeks to explore heterogenous impacts on corn acreage intensity due to the 

aforementioned factors based on data from the same 11 Corn Belt states from 2000 to 

2017. The findings of this research are important for agricultural producers and policy 

makers because they enable policymakers and agricultural producers to make 

informed decisions about factors affecting cropping patterns.  

 

Cropping System Changes 

 

U.S. corn and soybean acres increased from 79,551 and 74,266 thousand acres to 

90,819 and 83084 thousand acres, respectively, between 2000 and 2020, while other 

crop acres decreased from 174,868 to 136,211 thousand acres over the same period. 

That is, corn and soybean acres in the United States increased by 14.2% and 11.9 

percent, respectively, while other crop acres declined by 22.1 percent between 2000 

and 2020 (National Agricultural Statistics Service, 2021a). Figure 3 in the Appendix 

shows the increase in corn and soybean acres relative to other crops from 2000 to 

2020.  

Arora and Wolter (2018) argued that the origins of cropland conversions and 

cropping pattern changes are unclear and attributed inconsistencies to the different 

time periods that researchers use to investigate these linkages. However, other authors 

ascribe the increase in corn and soybean area to converting CRP land toward crop 
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production (Johnston, 2014; Wimberly et al., 2017), and again others attribute it to the 

conversion of marginal grasslands (Lark et al., 2015; Wright & Wimberly, 2013).  

Johnston (2014) showed that crop rotation practices underwent a reduction in 

complexity and became increasingly dominated by corn and soybeans over the past 

decades. In their analysis of cropping pattern changes in the North Dakota and South 

Dakota, O'Brien et al. (2020) found that a combination of grassland conversions, the 

return of CRP land to crop production, and crop rotation simplification resulted in an 

increase in total cropland area and a rapid spread of corn and soybean rotation 

systems. Our focus differs from the latter study in the sense that we analyze cropping 

pattern changes in eleven Corn Belt states and investigate the sources of state-level 

corn acreage heterogeneity.  

While not a direct focus of this study, the growth in corn and soybean acres at 

the expense of small grains and grassland acres contributed to a series of related 

issues such as a rise in the number of acres treated with insecticide (Fausti et al., 

2018; Fausti et al., 2012; Gassmann et al., 2011). Neither the extent of pest resistance 

nor the subsequent increase in the number of acres treated with insecticides was 

unanticipated at the onset of the widespread use of crop biotechnology.  

 

The Spread of GM Corn 

 

GM crop varieties have become widely adopted in the United States since their 

introduction for use in agricultural production in the 1990s. The three most important 

GM crop varieties – corn, soybeans, and cotton – are each planted on well over 90 

percent of their respective total crop areas in the United States (Economic Research 

Service, 2021b). Agricultural producers have become reliant upon GM crop varieties 

for maintaining pest control, reducing their labor input, and increasing overall output. 
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This has provided them with net economic benefits and reduced input and output 

uncertainty (Benbrook, 2012; Brester et al., 2019; Brookes & Barfoot, 2018; Cattaneo 

et al., 2006; Fernandez-Cornejo et al., 2014). Scandizzo and Savastano (2010) noted 

that the process of adopting GM crops is largely irreversible, in the sense that farmers 

find it difficult to return to growing conventional, non-GM, crops.  

Numerous authors studying the impacts of GM crops have raised concerns 

about their effects on a variety of aspects. For example, Anyshchenko (2019); Prakash 

et al. (2011); Wilkinson and Ford (2007) expressed concerns about the environmental 

effects of growing GM crops. However, an extensive report published by the National 

Academies of Sciences - Engineering and Medicine (2016) found no conclusive 

evidence of increased environmental risks from GM crops when compared to crops 

bred using traditional methods. The report’s authors acknowledged the development 

of resistance to GM crop traits as a critical problem for crop production, but attributed 

the resistance to poor resistance-management strategies. They further indicated that 

new varieties – whether GM or traditionally produced – be subjected to safety 

assessments if they contain unexpected traits or potential risks. The report’s authors 

noted that producers who embraced GM soybean, cotton, or corn generally 

experienced positive economic outcomes, although results vary depending on insect 

abundance, farming practices, and agricultural infrastructure.  

Due to its rapid and widespread adoption since the 1990s, we include a focus 

on GM corn as a possible contributing factor to the increase in corn acreage intensity 

in the eleven Corn Belt states over the past two decades. 

 

Market Forces 
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Claassen et al. (2010) documented that agricultural producers were encouraged to 

respond more directly to the market signals, policy incentives, and technological 

changes as a result of agricultural policy changes of the late 1990s than had been the 

case before. Figure 4 in the Appendix shows the changes in U.S. commodity prices 

from 2000 to 2020 for three common crops in the Corn Belt: corn, soybeans, and 

wheat. Between 2000 and 2012, prices of all three commodities rose to historically 

very high levels, but subsequently fell. Even in the face of large annual and seasonal 

variations, U.S. corn prices rose from $1.85 to $4.3 per bushel, while soybean prices 

increased from $4.54 to $11.15 per bushel between 2000 and 2020, corresponding to 

price increases of 132 percent for corn and 146 percent for soybeans (National 

Agricultural Statistics Service, 2021a).  

 

Renewable Fuel Policies Affecting the Demand for Corn 

 

Solomon et al. (2007) documented that a key factor underlying the initial increase in 

ethanol production was the ban on methyl tertiary butyl ether (MTBE) as a fuel 

additive in the early 2000s. Following the ban, ethanol was used in its place as an 

oxygenate, which led to a strong increase in the demand for corn as its fuel stock. 

However, the main energy policy changes directly boosting the demand for ethanol 

and thus the derived demand for corn were the 2005 Energy Policy Act (EPA) and the 

2007 Energy Independence and Security Act (EISA). These two laws called for the 

development of renewable fuel standards that mandated the blending of ethanol into 

transportation fuel. According to the Renewable Fuels Association (2021), the 

mandate of the 2005 EPA was to blend ethanol with gasoline annually through 2012, 

while the 2007 EISA extended the mandate through 2022. The largest renewable fuel 

component consists of cornstarch-based ethanol, with an annual maximum of 15 
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billion gallons through 2022 (Bracmort, 2020). While the Renewable Fuel Standard 

(RFS) statute sets minimum targets for renewable fuel volumes for each year, it is 

subject to reductions due to waivers of the RFS requirements. As a result of the two 

renewable fuel laws, corn-based ethanol has become a major source of fuel in the 

United States over the past decades.  

In examining the implications of the U.S. ethanol mandate using data from 

1960 through 2010, Roberts and Schlenker (2009) found that RFS policy changed the 

supply of ethanol-blended gasoline and influenced agricultural production costs. 

Related, in analyzing how ethanol refineries affect the likelihood that a field will be 

planted to a particular crop based on annual data from 2002 through 2012, Stevens 

(2015) found a significant impact of ethanol refineries on the cropland usage, 

especially in areas near ethanol processing plants. These issues are particularly valid 

for Midwestern states because of the region’s high concentration of ethanol plants. 

 

Linking CRP, Mean Cropland Asset Value, Irrigation and Corn Acreage 

Intensification  

 

The Farm Service Agency (FSA) administers the Conservation Reserve Program 

(CRP). This federal program allows farmers to retire environmentally vulnerable 

farmland currently in crop production in exchange for annual rental payments (Farm 

Service Agency, 2021; National Agricultural Statistics Service, 2019). Enrollment 

contracts are typically signed for 10-15 years. Several studies report that during times 

of high commodity prices, cropland released from CRP has a significant role in land 

use shifts (Hendricks & Er, 2018; Ifft et al., 2019; Janssen et al., 2008; Secchi & 

Babcock, 2015). CRP’s long-term purposes are to restore and maintain land cover in 

order to improve water quality, minimize soil erosion, and limit wildlife habitat loss. 
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However, as land is released from CRP and turned into crop production, we expect 

that a disproportionately large share of the released cropland will be used for planting 

corn. Therefore, we expect CRP acres as a share of total cropland acres to have a 

negative relationship with corn acreage intensity. 

Another aspect of change in production agriculture involves investments in 

land quality improvements by way of tile drainage and irrigation. To the best of our 

knowledge, no comprehensive state-wide data exist on the number of acres that are 

drained by tile in the Corn Belt for the entire period of analysis used in this study. 

However, the number of acres having drainage tile was included in the last two 

Censuses of Agriculture, and showed that tile drainage in the United States increased 

from 48.6 million acres to 55.6 million acres between 2012 and 2017, representing an 

increase of 14.5 percent (National Agricultural Statistics Service, 2021b). During the 

same period, the irrigated farm acres increased by 13.9 percent.  

 

Economies of Scale in Agriculture 

 

Economies of scale are frequently associated with mechanization in agriculture, 

which allows for the employment of more powerful and high-performance machines. 

To assess the above claim, Delord et al. (2015) indicated that individual expenses 

differ significantly from one farm to the next, regardless of farm size, a feature that 

might lead to inefficiencies. Also, Paul et al. (2004) assessed the elements that 

influenced Corn Belt farms’ scale economies and efficiency from 1996 to 2001 and 

found that the potential for significant scale and scope economies, as well as some 

increased technical efficiency, appear to drive trends toward larger farm sizes and 

decreased competitiveness of small family farms. Similarly, USDA reports the 
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average U.S. farm size increased from 434 acres in 2000 to 444 acres in 2017 

(National Agricultural Statistics Service, 2019).  

A commonly-used empirical measure for skewness – defined as the third 

moment of the probability density function – is Pearson’s second skewness coefficient 

(median skewness) also referred to as the Pearson 2 measure of skewness (Doane & 

Seward, 2011) is defined as (mean-median)/(standard deviation). Given that no data 

are available on the standard deviation, we assume that the mean minus the median 

provides a rough measure of the distribution of acres operated in a state, whereby a 

positive skewness value implies that large farms dominate acres operated in a state. 

We use the difference between average and median farm size as a proxy for 

economies of scale. 

 

Farm Programs Effects 

 

Agricultural producers generally use farm programs to help manage market risks, 

recover from possible calamities, and help conserve and maintain the country’s 

natural resources Farm Service Agency (2021). A key component of environmental 

and agricultural policy in the United States centers on alleviating negative 

externalities. McGranahan et al. (2015) argued that the policy objective of reducing 

negative externalities is accomplished in two ways. One is that farmer involvement in 

voluntary conservation projects tends to fluctuate depending on policy and market 

conditions (Stuart & Gillon, 2013). The other fundamental purpose of U.S. farm 

policy is to help stabilize commodity prices and increase farm incomes (Claassen et 

al., 2008; Ribaudo et al., 2001). As documented by Johnston (2014); Secchi and 

Babcock (2015); Wright and Wimberly (2013) and others, increased commodity 

prices fueled the expansion of intensive agriculture in the United States. This 



33 
 

 
 

contributed to a transformation of agricultural land use that took the forms of a 

reduction in agricultural diversification, a decrease in integrated animal agriculture, 

and a reliance on a few, high-input crops. 

Program payments have long been skewed toward large farm operations and 

agricultural safety net program benefits are concentrated among the largest, wealthiest 

farms. This may have contributed to scale enlargement in farm operations and 

consolidation according to research conducted over the last 50 years (Bekkerman et 

al., 2019; MacDonald, 2013). We seek to explore how these factors may have affected 

corn acreage intensity heterogeneity at the state level.  

While no single variable can directly capture the broad and diverse aspects of 

agriculture policy, we utilize a one-year lag of the corn to soybean price ratio to 

quantify program impacts, in part because agricultural commodities became 

increasingly subject to market pressures in the late 1990s. After the early 2000s, 

however, commodity markets once again increased their reliance on government 

subsidies, this time in the form of crop insurance indemnity payments. We expect that 

the lagged relative commodity prices has a positive influence on corn acreage 

intensity. 

 

Conceptual Framework 

 

Based on findings from Chapter II, we expect that the rapid adoption and diffusion of 

GM crops increased corn acreage intensity. However, because GM crop technologies 

were first introduced in the 1990s and subsequently replaced nearly all 

conventionally-bred corn planting over a span of little more than a decade, we expect 

the relationship between GM crops and corn acreage intensity to be increasingly less 
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noticeable as time progresses, and so mixed over the nearly two decades period of 

analysis of the current study.  

In the same way, due to the increased derived demand for corn linked to the 

expansion of corn-based ethanol production, about 40 percent of corn produced is 

used primarily for fuel production, leaving the remainder for other uses, including 

livestock feed and high-fructose corn sweeteners. Ceteris paribus the increased 

demand for corn increases the price of corn, which in turn encourages corn producers 

to increases their production and thus creates an upsurge in the amount of corn for 

ethanol production (Hanon, 2014). Hence, we expect the biofuel policy changes 

occurring in the early 2000s and relative corn prices to be positively associated with 

corn acreage intensity. Furthermore, given that climate and soil conditions vary 

geographically, understanding the effects of policy changes and technology 

improvements on cropping patterns must account for local characteristics. Thus, we 

expect the state-level corn acreage intensification due to the introduction of GM corn 

and biofuel technology to differ by state. This study seeks to investigate the sources of 

these heterogenous impacts. 

 

Data  

 

Annual data pertaining to the 11 Corn Belt states – Iowa, Illinois, Indiana, Nebraska, 

Kansas, Michigan, Minnesota, Missouri, Ohio, South Dakota, and Wisconsin – were 

collected for the period from 2000 through 2017, resulting in a total of 198 

observations. Table 6 provides a description of the variables used and their data 

sources. The time period of the dataset was limited on one end by a lack of consistent 

data on GM corn for years prior to 2000, and on the other end by the unavailability of 

data on irrigated land and median farm size for years beyond 2017. Annual 
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observations were available for all data, except for acres of irrigated land and median 

farm size, which were obtained from the Census of Agriculture for 1997, 2002, 2007, 

2012, and 2017. For the intervening years, the data on these two components were 

approximated by way of linear interpolations. Besides the irrigated acres and median 

farm size data – as well as ethanol production data which were obtained from the U.S. 

Energy Information Administration (EIA) – all other data were obtained from NASS. 

A policy dummy variable was included to reflect the passage of the 2005 Energy 

Policy Act and the Energy Independence and Security Act of 2007, with a value of 

one for the years between 2005 and 2017, and zero otherwise.  

Table 6: Variable definitions and data sources, state-level observations 

Variable Name Definition Units Data 

Source 

CAI Corn acreage 

intensity  

 

Corn acres planted as a share of total 

cropland acres  

Ratio NASS 

CBratio Lag of 

corn/soybean 

price ratio 

Corn to soybean price ratio, 1-year 

lagged  

Ratio NASS 

GEC GM corn share GM corn acres planted as a share of 

total corn acres planted (ratio) 

Ratio NASS 

Ethanol Lag of ethanol 

production  

Ethanol production, 1-year lagged 1,000 

barrels 

EIA 

CRP CRP acreage 

intensity 

CRP acreage as a share of total 

cropland acres including CRP acres 

Ratio NASS 

IFA Irrigated farm 

acres 

Irrigated acres as a share of total 

cropland acres including CRP acres 

 Ag 

Census 

Scale Economies of 

scale proxy 

Difference between the mean and 

median farm size  

Acres NASS, 

Ag 

Census,  

Avgcrop Mean cropland 

asset value 

Average cropland value deflated by 

the CPI-U  

$/acres  NASS, 

BLS 

RFS  Renewable fuels 

standard policy 

1 for 2005 to 2017, zero otherwise Dummy  

 Total cropland  Sum of acres in corn, soybean, wheat, 

….., and CRP 

Acres  NASS 

 Average farm size Mean of farm size Acres NASS 

 Median farm size Median farm size  Acres Ag 

Census 
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Table 7 provides descriptive statistics of the variables used in the analysis. The 

mean of corn acreage intensity (CAI) was nearly 37 percent, suggesting that the 

average proportion of corn acres planted out of total cropland acres was 

approximately 37 percent in the eleven Corn Belt states over the 18-years of analysis. 

Corn acreage intensity varied from approximately 11 to 54 percent over the period 

and states covered. The mean of the one-year lag of the corn to soybean price ratio 

(CBratio) in the 11 states was 0.40, and the average proportion of GM corn acres 

planted as a share of total corn acres planted was 68 percent, varying from a low of 

nine percent to a high of 98 percent. The one-year lag of ethanol production varied 

from zero to 95.5 thousand barrels. CRP intensity – defined as the number of acres 

enrolled in the CRP as a share of total cropland acres – had a mean of 5.8 percent, and 

varied between 1.8 percent and 12.6 percent. The number of irrigated farm acres out 

of total cropland acres averaged approximately 7.5 percent, with a range from 0.4 

percent to 42.7 percent. The scale variable – defined as the difference between the 

median and the mean farm size acreage – had a mean of 306.8 acres, and a range from 

64.4 to 1,042 acres. The scale variable provides a proxy for the presence of economies 

of scale. Finally, the Avgcrop variable, representing real cropland value per acre – 

calculated as the nominal cropland value per acre adjusted for inflation using the CPI-

U – had a mean of $1,487 per acre and varied between $316 to $3,616 per acre. While 

imperfect, the Avgcrop variable was used to capture cropland quality improvements 

due to tile drainage.  

 

Table 7: Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Max 

CAI 198 0.368 0.115 0.111 0.543 
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CBratio 198 0.400 0.045 0.328 0.482 

GEC 198 0.684 0.270 0.090 0.980 

Ethanol 198 14.387 18.232 0 95.513 

CRP 198 0.058 0.026 0.018 0.126 

IFA 198 0.075 0.110 0.003 0.427 

Scale 198  306.8 262.538 64.400  1,042 

Avgcrop 198 1,487 719.016 316.492  3,616 

 

Table 8 lists the Pearson correlation matrix, which shows that all bivariate 

correlations between the predictors are smaller than 0.5, except for those between the 

real cropland value per acre and ethanol production variables (0.65), and between the 

real cropland value per acre and the proportion of cropland in CRP variables (-0.62). 

To avoid multicollinearity, predictors with bivariate correlation coefficients greater 

than 0.5 were not included in one and the same model. Initial information based on 

the correlation coefficients suggests that the ethanol production, CRP intensity, real 

cropland value, and economies of scale variables may serve as good predictors of corn 

acreage intensity.  

 

Table 8: Correlation Matrix 
 

CAI CBratio GEC Ethanol CRP IFA Scale Avgcrop 

CAI 1 
       

CBratio 0.05791 1 
      

GEC 0.07319 0.08658 1 
     

Ethanol 0.48173 0.04196 0.47997 1 
    

CRP -0.6388 -0.0453 0.06747 -0.07700 1 
   

IFA 0.03281 -0.0005 0.14403 -0.13934 0.07182 1 
  

Scale -0.2916 -0.0107 0.35614 0.05035 0.27019 0.36055 1 
 

Avgcrop 0.67087 0.08454 0.34782 0.64606 -0.6199 -0.2147 -0.3923 1 
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Methodology 

 

For analyzing the data, we used a mixed regression modeling approach to estimate a 

fixed-effects model with a random intercept by state. We estimated six alternative 

models to capture conditions that vary by state pertaining to GM crop plantings, 

renewable fuel usage, and the relative price of corn and to further investigate the 

sources of these heterogenous impacts. Model 1 is the base model that includes the 

variables GM corn, biofuel policies and the lag corn to soybean price ratio, with 

random intercept terms that capture the state-specific effects. Models 2 through 6 add 

variables to the base model one at a time, and also seek to assess the state-specific 

heterogenous impacts.  

The aim of the six regression models is to investigate the contribution of each 

additional predictor. The dependent variable is corn acreage intensity (defined as the 

ratio of corn acres planted to total acres of cropland including cropland in CRP). 

Explanatory variables of the base model include the one-year lag of the ratio of corn 

to soybean prices, a dummy variable capturing ethanol policy changes, and the share 

of GM corn acres out of total corn acres. The additional predictors included in Models 

2-6 are the CRP intensity (acres enrolled in CRP divided by total cropland acres 

including CRP acres), economies of scale, irrigated land (acres of irrigated land 

divided by total cropland including CRP acres), the one-year lag of ethanol 

production, and real cropland value (nominal cropland value deflated by the CPI-U).  

We performed a likelihood ratio test to validate the use of each additional 

variable relative to the base model. The price ratio variable represents the market 

valuation of corn relative to that of soybeans. We used a one-year lag of the relative 

crop price to account for possible endogeneity between corn acreage intensity and 
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relative crop prices. Further, the GM corn variable captures the supply-side effect of 

biotechnology on the production of corn, and the renewable fuels standard policy 

dummy variable reflects the demand for corn due to policies affecting the corn-based 

ethanol industry.  

Considering the nature of the state-level cross-sectional dataset, a stationarity 

test was conducted to avoid spuriousness. We used the Phillips-Perron unit root test 

and found that our variables were stationary (the p-values of the tau test statistic are 

greater than 0.05), suggesting the variables need to be in their levels, not their first 

difference.  

The six models estimated are as follows. Model 1 serves as the base regression 

model. Model 2 adds the CRP variable, and in its place Models 3-6 include the scale 

economies, irrigation, first lag of ethanol production and mean cropland values to the 

base model, respectively.  

Due to different climate and soil conditions by region, the nature of the 

agricultural sector varies by state. The assumptions of our mixed modeling approach 

are given by the equations below. We define the generic form of our model following 

the standard notation of the SAS user guide as: 

    𝐶𝐴𝐼 = Χ𝛼 + 𝑍𝜏 +  𝜀                                                                                                                                   (1) 

      𝜏 ∼ 𝑁(𝑂, 𝐺)                                                                                                                                               (2) 

      𝜀 ∼ 𝑁(𝑂, 𝑅)                                                                                                                                               (3)  

     𝐶𝑂𝑉(𝜏, 𝜀 ) = 0                                                                                                                                            (4) 

Taking the variance of equation 1 and using the conditions in equations 2, 3, and 4, 

equation 1 is rewritten as equation 5: 

       𝑉𝑎𝑟( 𝐶𝐴𝐼) = 𝑉𝑎𝑟(Χ𝛼 + 𝑍𝜏 +  𝜀 )                                                                                                       

      𝑉𝑎𝑟( 𝐶𝐴𝐼) = 𝑉𝑎𝑟(𝑍𝜏 + 𝜀  )                                                                                                       

𝑉𝑎𝑟( 𝐶𝐴𝐼) = 𝑉𝑎𝑟(𝑍𝜏) + 𝑉𝑎𝑟( 𝜀 ) + 2𝐶𝑜𝑣 (𝑍𝜏, 𝜀 )                                                                                  
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𝑉𝑎𝑟( 𝐶𝐴𝐼) = 𝑍𝑉𝑎𝑟(𝜏)𝑍𝑇 + 𝑉𝑎𝑟( 𝜀 ) + 2𝑍𝐶𝑜𝑣 (𝜏, 𝜀 )                                                                              

     𝑉𝑎𝑟( 𝐶𝐴𝐼) = 𝑍𝐺𝑍𝑇 +  𝑅                                                                                                                        (5)    

In equation 2, the dependent variable 𝐶𝐴𝐼𝐸 is the corn acreage intensity and 

measures the vector of dependent variable observations for all four models. Vector 

Χ𝛼 measures the unknown fixed effects estimates and matrix Χ is the design matrix 

associated with α. Vector 𝑍𝜏 measures the unknown random-effects estimates and 

matrix 𝑍 is the design matrix associated with ′𝜏′. Because equations 3 and 4 are 

normally distributed, this implies that equation 5 holds. Following SAS Institute, 

1999: p. 2087, the variance of corn acreage intensity is given by equation 6 above. 

The linear mixed model (LMM) in SAS is flexible in that it helps do a robust check 

using the sandwich estimator. It also allows for conducting a robustness check of the 

model by employing a maximum likelihood estimation procedure.  

Transforming equation 2 gives a specific form of the LMM as shown in 

equation 6 below. 

  𝐶𝐴𝐼𝑖𝑡 =  𝜔 +  ∑  𝛼𝑗
3
𝑗=1 𝑋𝑗𝑖𝑡 +  ∑ 𝜏𝑖

11
𝑖=1 𝑍𝑖𝑡 + 𝜀𝑖𝑡 ,                                                            (6)   

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 11, 𝑗 = 1 𝑡𝑜 𝑗𝑘+1, 𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 18.  

In equation 6, ω is the fixed intercept parameter and subscripts i, j, and t 

denote state, explanatory variables, and time, respectively, while k represents the 

predictors added in Models 2-5. 

Models 1-6 are estimated as follows: 

𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio)                         Model 1 

𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio,  𝐶𝑅𝑃)                        Model 2 

𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio,  𝑆𝑐𝑎𝑙𝑒)          Model 3 

𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio, 𝐼𝐹𝐴)                      Model 4 

𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio,  𝐸𝑡ℎ𝑎𝑛𝑜𝑙)       Model 5 
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𝐶𝐴𝐼  = 𝑓 (𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio, Avgcrop)                                 Model 6 

The dependent variable for all six models, 𝐶𝐴𝐼, corn acreage intensity, is a function of 

the explanatory variables. 𝐺𝐸𝐶, 𝑅𝐹𝑆,CBratio  are the share of GM crops out corn 

acres planted with GM corn, the Renewable Fuel Standard Policy dummy variable, 

and the lagged relative price of corn to soybeans, respectively.  

 

Results 

 

Table 9 reports the variance components and global fit statistics of the estimated 

regression models. As noted above, Model 1 is the base model, and Models 2-6 are 

the extended models with the inclusion of the CRP, scale economies, irrigation, 

ethanol production, and real cropland value variables, respectively. The Table also 

shows the estimated Intraclass Correlation Coefficients (ICC) and autoregressive (1) 

diagnostics. For all six models, the ICC estimates exceed 90 percent, suggesting the 

models perform well and fit the data. Based on the ICC estimates, Model 3 performs 

better than the other five models, suggesting that the differing impacts of the biofuel 

laws and the adoption of GM corn on producer planting decisions across states can 

largely be attributable to the presence of economies of scale in the agricultural sector 

(Model 3). 

Table 9: Variance Components Statistics and Global Fit Statistics (II) 
 

Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 

 
Base model CRP effect Economies 

of scale 

effect 

Irrigation 

effect 

Ethanol 

effect 

Average 

cropland 

effect 

Covariance 

Parameter 

Covariance 

Parameter 

estimate 

Covariance 

Parameter 

estimate 

Covariance 

Parameter 

estimate 

Covariance 

Parameter 

estimate 

Covariance 

Parameter 

estimate 

Covariance 

Parameter 

estimate 

Random Int. 0.01362** 0.01084** 0.01940** 0.01439** 0.01285** 0.01253** 
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Residual 0.000418*** 0.000320*** 0.000359** 0.000509*** 0.000399*** 0.000407*** 

AR(1)* 0.4324*** 0.1862** 0.3310*** 0.4376*** 0.4058*** 0.4125*** 

ICC** 97.0% 97.1% 98.2% 96.7% 96.9% 96.9% 

Fit Statistics 
  

    

-2 Log Likelihood -934.5 -947.7 -923.0 -933.7 -923.6 -915.0 

AIC -928.5 -941.7 -917.0 -927.7 -917.6 -909.0 

BIC -927.4 -940.5 -915.8 -926.5 -916.4 -907.8 

Notes: * AR(1) is the autoregressive (1) diagnostic to account for serial correlation 

and state-level heterogeneity; and ** ICC is the Intraclass Correlation Coefficient, 

given by the ratio of the random intercept to the sum of the random intercept and the 

residual, expressed in percentage points. 

 

Table 10 lists the results of the six models by state. As in Chapter II, the share 

of corn acres out of total cropland acres increased at the expense of small grains, 

grazing lands, as well as CRP land. Model 1, the base regression, shows that corn 

acreage intensification is positively linked to the adoption of GM corn, the one-year 

lag of the corn-soybean price ratio, and the passage of the renewable fuel laws. 

Further, some states have corn acreage intensities that are consistently above (IA, IL, 

NE, IN, and WI), while others are below (SD, KS, MO), and the remaining ones (MN, 

OH, and MI) are no different from the regional average. Overall, the simple mixed 

model (base model) confirms that the GM corn adoption rate, relative crop prices, and 

biofuel policies each contributed to an increase in corn acreage intensity in the region 

overall. Furthermore, the random intercept estimates confirm heterogeneity in 

cropping decisions across states. These differences are likely due to individual state 

attributes, including those related to agricultural production and state-specific 

policies, as explored below. 
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Regression Models 2-6 reported in Table 10 seek to explore factors accounting 

for corn acreage intensity differences by state. The intercept term of Model 2 provides 

an estimate of the regional average of the proportion of corn acres to total acres 

planted of nearly 32 percent in the Corn Belt between 2000 and 2017. The fixed 

effects parameter estimates for RFS, the CRP variable, and the lagged corn-soybean 

price ratio are statistically significant at the one percent level, but the GM corn 

estimate is not significant. These findings suggest that an increase in the lagged corn 

to soybean price ratio and the passage of the biofuels laws of 2005 and 2007 

positively affected corn acreage intensity in the Corn Belt overall. The negative 

impact of the CRP variable on corn acreage intensity indicates that as cropland was 

converted from CRP to crop production, the proportion of corn acres planted out of 

total cropland acres increased, i.e., a disproportionate amount of the released CRP 

acres were planted to corn.  

Comparing the base regression model to Model 2 suggests that released CRP 

acres not only contributed to corn acreage intensity, but also help explain why some 

states are consistently above, below or at the regional intercept of corn acreage 

intensity. In particular, the coefficients for KS, MO, and SD are statistically 

significant and negative, implying that these states’ corn acreage intensities were 

below the regional average of 32 percent. The coefficients for MN, OH, and MI are 

not statistically significant, suggesting these states’ corn acreage intensities were at 

the regional average. Finally, the coefficients of the remaining five states (IA, IL, NE, 

IN, and WI) are statistically significant and positive, intimating these states’ corn 

acreage intensities exceeded the regional average.  

Similarly, the intercept term of Model 3 provides an estimate of the regional 

average of the proportion of corn acres to total acres planted of nearly 22 percent in 
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the Corn Belt between 2000 and 2017. The fixed effects parameter estimates for RFS, 

economies of scale, and the lagged price ratio are statistically significant at the one 

percent level, and the GM corn estimate is significant at the ten percent level. These 

findings suggest that an increase in the lagged corn to soybean price ratio and the 

passage of the biofuels acts of 2005 and 2007, economies of scale, and GM corn 

adoption positively affected corn acreage intensity in the Corn Belt overall. Further, 

the measure of economies of scale has a positive impact on corn intensity, indicating 

that as farm size skewness increases, the proportion of corn acres planted out of total 

cropland acres increases. A comparison between the base regression model and Model 

3 indicates that economies of scale helps explain why some states are consistently 

above, below or at the regional corn average intercept. The only difference between 

Model 3 and the base model is that the coefficient of NE is now insignificant. 

The coefficients for KS, MO, and SD are statistically significant and negative, 

implying that these states’ corn acreage intensities were below the regional average of 

22 percent. The coefficients for MN, OH, NE, and MI are not statistically significant, 

implying that these states’ corn acreage intensities were at the regional average. 

Finally, the coefficients of the remaining five states (IA, IL and WI) are statistically 

significant and positive, suggesting these states’ corn acreage intensities exceeded the 

regional average. These findings are the same as those of the base random intercept 

regression model, except for NE coefficient. 

In Model 4, the additional variable had no meaningful influence relative to the 

base model, suggesting that state-level irrigated acres do not aid in the explanation of 

why some states are consistently above, below or at the regional corn average 

intercept. The fact that irrigation is a costly and long-term investment with pay-offs 

spread over time may help explain the statistical insignificance of this variable. 
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Except for the irrigation variable, the fixed effects estimates are statistically 

significant in the same way as the base regression model.  

The intercept term of Model 5 provides an estimate of the regional average of 

the proportion of corn acres to total acres planted of nearly 27 percent in the Corn Belt 

between 2000 and 2017. The fixed effects parameter estimates for RFS, the first lag of 

ethanol production, and the first lag of the price ratio are statistically significant at the 

one percent level, and the GM corn estimate is significant at the ten percent level. 

These findings suggest that an increase in the lagged corn to soybean price ratio and 

the passage of the biofuels acts of 2005 and 2007, ethanol production in the previous 

year and the share of GM corn acres positively affected corn acreage intensity in the 

Corn Belt overall. The first lag of ethanol production has a positive impact on corn 

intensity, suggesting that ethanol production in the preceding year may have 

influenced farmers' decisions to grow more corn, thus increasing corn acreage 

intensity. When comparing the findings of the base regression model and those of 

Model 5, it appears that the previous year’s ethanol production level is a factor in 

explaining why some states are continuously above, below, or at the regional corn 

average intercept. This is justified by the random intercept coefficients in Model 5 and 

the base model (the significance of the random effects for Model 5 and the base 

model are consistent). 

Specifically, the coefficients for KS, MO, and SD are statistically significant 

and negative, implying that these states’ corn acreage intensities were below the 

regional average of 22 percent. Those for MN, OH, and MI are not statistically 

significant, implying that these states’ corn acreage intensities were at the regional 

average, while the coefficients of the remaining five states (IA, IL, NE and WI) are 

statistically significant and positive, suggesting these states’ corn acreage intensities 
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exceeded the regional average. The results of the random intercepts model with the 

base regression are the same. 

Finally, in Model 6, adding a variable to the underlying model had no 

discernible effect, suggesting that state-level real cropland values – partially 

representing quality improvements including in the form tile drainage – do not explain 

why some states are continuously above, below, or above the regional corn average 

intercept. This may be because real cropland value is not a perfect proxy for tile 

drainage and is also affected by other factors such as investment demand and financial 

portfolio diversification. The fixed effects coefficients in the base regression model 

and Model 6 show that the first lag of the corn to soybean price ratio and the RFS 

estimate have positive impacts on corn acreage intensity. For both the base model and 

Model 6, the random effects intercepts are fairly consistent. 

Table 10: Random intercept model estimates for corn acreage intensity, by state, 

2000-2017 (II) 

       Model 1 

Base 

model 

Model 2 

CRP 

effect 

Model 3 Model 4 Model 5 Model 6 

       Economies 

of scale 

effect 

Irrigation 

effect 

Ethanol 

effect 

Average 

cropland 

effect 

 Fixed Effects          

   Intercept  0.2686*** 0.3220*** 0.2240*** 0.2599*** 0.2700*** 0.2646*** 

   GEC 0.04399**  0.01959 0.03383* 0.04162** 0.03057* 0.02843 

   RFS 0.01995*** 0.02868*** 0.01693*** 0.01985*** 0.02027*** 0.02008*** 

   CBratio 0.1364*** 0.1482*** 0.1458*** 0.1385*** 0.1396*** 0.1341*** 

  CRP  -0.8342***     

  Scale   0.000163***    

  IFA    0.1272   

  Ethanol     0.000631**  

  Avgcrop      0.000010 

   Random Effects         

   IA   0.1306*** 0.1392*** 0.1509*** 0.1394** 0.1150*** 0.1247*** 

   IL   0.1276*** 0.1137*** 0.1377*** 0.1345** 0.1234*** 0.1198*** 

   NE   0.07426** 0.07210** 0.02607 0.03271 0.07620*** 0.07814** 

   MN   -0.00553 0.009001 0.01391 0.001154 -0.00558 -0.00273 

   IN   0.09526*** 0.06442** 0.1153*** 0.1004** 0.09490*** 0.08842** 

   SD   -0.1048*** -0.0934*** -0.2085*** -0.09762** -0.1028*** -0.0950*** 

   WI   0.08758** 0.08387*** 0.1214*** 0.09100** 0.09004*** 0.08634** 

   OH   -0.02379 -0.05130 0.005640 -0.01519 -0.02222 -0.03070 
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   KS  -0.2110 ***  -0.173*** -0.2454*** -0.2147*** -0.2070*** -0.2007*** 

   MO   -0.1541*** -0.1285*** -0.1301*** -0.1547*** -0.1497*** -0.1508*** 

   MI   -0.01611 -0.03568 0.01314 -0.01685 -0.01222 -0.01738 

Notes: ***, **, and * indicate significance at 0.01, 0.05, and 0.10 levels, respectively;  

type 3 test for fixed effects indicated the interaction coefficient in Models 1-4 are 

significant (P-value < 0.01); parameter estimates rounded to 4 decimal places.  

 

Model Comparison 

 

Table 11 reports on the Likelihood Ratio test (LRT) statistics. The LRT is a 

hypothesis test that aids in determining which of two nested models is the best. The 

full model should have more parameters than the reduced model, according to the 

LRT criterion (Wright & Charlesworth, 2004). The null hypothesis states that the 

simplified model is significant, in contrast to the alternative premise that the model 

requires more terms. With the exception of Model 4, the p-values suggest rejecting 

the null hypothesis for all of the models and including the extra terms. 

 

Table 11: Likelihood Ratio test 

Models DF Dev1 Dev2 Chi-square p-values 

1 & 2 1 -934.5 -947.7 13.2 0.00028 

1 & 3 1 -934.5 -923 11.5 0.000696 

1 & 4 1 -934.5 -933.7 0.8 0.37109 

1 & 5 1 -934.5 -923.6 10.9 0.000962 

1 & 6 1 -934.5 -915 19.5 1.01E-05 

Notes: For all models, dev1 and dev2 are the -2 loglikelihood test statistic values. The 

degrees of freedom are denoted by DF, while the goodness of fit test statistic is 

denoted by chi-square. 

 

Predicting Corn Acreage Intensity 

 

Expected corn acreage intensity is depicted in Figures 1 and 2. Figure 1 provides a 
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comparison of the proc means procedure estimates to the estimates of the corn 

intensity for all five models. Only the fixed effects coefficients are used to predict 

corn intensity for each model. For each predictor, it is derived by multiplying the 

fixed effects coefficients by the proc means procedure mean, and then summing. 

Model 3 predicts 36.6 percent corn acreage intensity for the fixed effects coefficients, 

as shown in Figure 1, higher than the other four models.  

Figure 2 shows the individual or the random effects predicted corn acreage intensity 

for each of the eleven states. As with the use of the fixed effects coefficients, Model 3 

predicts the highest level of corn intensity among the models analyzed. Model 3 also 

has the largest ICC estimate, suggesting it accounts for the majority of variability in 

corn acreage intensity. Figure 2 shows that IA, IL, IN, and WI have higher anticipated 

corn acreage intensities than the other states. Because these states’ intercepts are 

positive and statistically significant at the five percent level, their corn acreage 

intensities are positively impacted. Similarly, states like SD, KS, and MO have a 

greater anticipated corn intensity, but it is negative, suggesting that corn intensity is 

adversely affected in these three states. However, MN, OH, MI, and NE have an 

extremely low expected corn intensity, meaning that these states will have very little 

corn intensity relative to the states in the Corn Belt region as a whole. 

 

 Figure 1: Predicted Corn acreage intensity for all the six Models. 
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Simulating Corn Acreage Intensity 

 

The results of the six models are largely consistent and robust. The average proportion 

of corn acres planted at the state level is approximately 27 percent assuming that GM 

corn adoption, biofuel policies, market forces as reflected by the one-year lag of the 

corn/soy price ratio and all other factors are held constant, as represented in the base 

regression model. States without a statistically significant random intercept (MI, MN, 

and OH) have levels of corn acreage planted equal to the regional average (as does 

NE for Models 2, 5 and 6 at the five percent significance level). Similarly, states with 

statistically significant positive (negative) random intercept terms reflect those where 

the proportions of corn acres planted were above (below) the regional average before 

the widespread adoption of GM corn and implementation of biofuel policy incentives. 

At the five percent significance level, IA, IL, IN and WI had positive coefficients, 

while KS, MO and SD had a negative coefficient for the random intercept estimates in 

all six models.  

These findings indicate that GM corn adoption, relative price changes, and 

biofuel policies affected corn acreage intensity. They further show that Iowa has the 
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Figure 2: Predicted corn acreage intensity for all states using Model 3 
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highest predicted corn intensity (about 7.6%). Overall in the eleven Corn Belt states, 

the CRP, economies of scale factors, and ethanol production are the key sources of 

state-level corn acreage intensity. 

 

Summary and Conclusions 

 

This study addresses the determinants of cropping pattern changes at the state level. In 

particular, we explore the effects of GM corn adoption, the enactment of the 

renewable fuel laws in the early 2000s, market forces, cropland released from the 

Conservation Reserve Program (CRP), changes in economies of scale in agricultural 

production, the development of the ethanol production infrastructure, and cropland 

prices on the increased prevalence of corn in crop rotations. We also address the 

sources of state-level heterogeneity, which aids in identifying the state-specific 

features affecting cropping patterns. Results of the study are expected to increase 

awareness among policymakers and agricultural producers about changing cropping 

patterns and their implications for long-term sustainability, as well as help them make 

informed decisions about ways to mitigate these long-term term trends and their 

potentially negative environmental effects. 

Using state-level data of eleven Corn Belt states from 2000 to 2017, we 

applied a linear mixed model with both fixed and random effects to investigate these 

linkages. We estimated six models – a base regression model and five additional ones, 

with each adding a predictor to the base model in an effort to assess their individual 

contribution to corn acreage intensity. A log likelihood ratio test was used to examine 

the importance of each model relative to the base model. Based on their ICC scores, 

we then used the preferred model to predict each state’s corn acreage intensity.  
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Findings of the base model indicate that state-level corn acreage intensities are 

positively impacted by the spread of GM crops, the passage of the renewable fuel 

laws in the early 2000s, and the first lag of the relative corn to soybean price ratio. In 

addition, the main sources of heterogeneity of corn acreage intensity at the state level 

are cropland released from the CRP, a simple approximation of economies of scale in 

production agriculture, and the development of the ethanol production infrastructure. 

However, real cropland values – a proxy for cropland quality improvements including 

factors such as tile drainage – and irrigated farm acres do not represent sources of 

state-level heterogeneity in corn acreage intensity. Utilizing Model 3 (the preferred 

model, based on its ICC value), we predicted that Iowa would have the highest corn 

intensity of 7.6 percent among the eleven Corn Belt states. 

This research adds to the body of knowledge on cropping pattern changes by 

identifying factors that contributed to changes in cropping patterns at the state level. 

By and large, the same states exhibit levels of corn acreage intensity that are 

consistently above, below, or at the regional average. Our study sheds light on the 

determinants of corn acreage intensity levels for the Corn Belt region as a whole and 

for state-level heterogeneity over a nearly two-decade period. Our findings provide 

support for, and help explain, the well-documented changes in cropping patterns 

involving loss of acreage of small grains and marginal areas in favor of corn and 

soybeans.  

A caveat of our work is that data on the median farm size and irrigated acres 

are only available for census years, so the time period of analysis was constrained due 

to a method for integrating these data with the survey data. Also, because comparable 

data on GM corn was not available for years prior years, our analysis is based on 

annual data starting in 2000. Further, while factors such as tile drainage may be 
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closely associated with cropping pattern changes and may help explain differences in 

corn acreage intensity by state, data limitations prohibited us from a full exploration 

of the role of tile drainage in affecting corn acreage intensity. Future studies may be 

able to incorporate a reliable proxy for measuring tile drainage.  

An additional consideration for further research is whether elements of our 

analysis can be disaggregated to the county level. Another area worth exploring is the 

use of nonlinear models to further investigate the determinants of cropping pattern 

changes. Lastly, future research may consider interacting the RFS dummy variable 

with key independent variables of interest, which in effect splits the data into time 

periods before and after the Renewable Fuels Laws, while maintaining sufficient 

degrees of freedom.  

 

CHAPTER IV 

CONCLUSIONS 

 

This thesis first examined the role of biotechnology and biofuels on cropping system 

changes in 11 U.S. Corn Belt states. Second, we assessed the determinants of corn 

acreage intensification levels and heterogeneity among the same states. Based on 

state-level data from 2000 to 2019, results from Chapter II show the overlapping 

developments of increased GM corn acreage as a share of total corn acreage, changing 

federal agricultural policies, the implementation of federal biofuel laws mandating 

ethanol usage in transportation fuels, and their impacts on changing cropping patterns 

in the U.S. Corn Belt region. The study examined trends observed over at the past two 

decades, including an increase in corn and soybean acreage at the expense of small 

grains acreage and a conversion of grasslands to crop production. The findings of this 

study add to the existing literature by considering the long-term effects of GM corn 
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plantings and biofuel policy changes on cropping patterns. An additional valuable 

contribution of this study is that it distinguishes the impact of changes in biofuel 

policies and agricultural biotechnology on state-level cropping patterns.  

Results of Chapter III show that cropland released from the CRP, a simple 

proxy for economies of scale in production agriculture, and the development of the 

ethanol production infrastructure are key sources of variation in corn acreage intensity 

at the state level. However, real cropland values – partially representing cropland 

quality improvements by way of tile drainage – and irrigated farm acres are not 

identified as causes of state-level heterogeneity in corn acreage intensity. This study 

adds to the corpus of knowledge on cropping pattern changes by identifying factors 

impacting changes in cropping patterns at the state level. The study sheds light on the 

determinants of corn acreage intensity levels for the Corn Belt region as a whole and 

for state-level variation over a nearly two-decade period. Findings show that the same 

states have corn acreage intensity levels that are consistently above, below, or equal to 

the regional average. Findings also support and explain well-documented shifts in 

cropping patterns, such as the loss of small grain and marginal land in favor of corn 

and soybeans.    
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                                                     APPENDIX 
 

Figure 3: U.S. Cropping pattern changes (2000 to 2020) 

 

Source: NASS https://quickstats.nass.usda.gov/ 
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Figure 4: U.S. commodity prices movement (2000 to 2020) 

 

Source: NASS https://quickstats.nass.usda.gov/ 
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