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ABSTRACT

CHARACTERIZATION OF THE RUMEN BACTERIAL COMMUNITIES OF BISON

HEIFERS FED A GRASS-BASED DIET VS A GRAIN-BASED FREE-CHOICE DIET

ANLLY FRESNO RUEDA
2021

A century ago, the North American grasslands and prairie ecosystems were
dominated by bison. At least 30 million bison roamed the Great Plains when the first
explorers arrived. By 1900, there were little over a thousand bison remained in the United
States and Canada. Recovery efforts has been made since the 20" century to reestablish
the herds and increase the bison population. Today, over 500,000 bison are distributed
across North America, with more than 90% of the existing bison population under
commercial production. Modern conservation strategies are made via the collaborative
efforts of conservationist, producers, and researchers, resulting in increased number of
proposed research to better understand bison’s biology. Given that the ruminal bacterial
communities of North American bison are one of the most understudied areas of bison
research, the aim of the current study was to determine and compare the diversity and
composition of ruminal bacteria between bison heifers on two different diets at two
different ranches. Stomach tubing was used to collect rumen fluid from lifetime grass-fed
heifers between 25 and 30 months of age distributed between 2 ranches located in
Standing-Butte (SBR; n=17), SD, and Blue-Creek (BCR; n=17), NE, respectively. A
second set of samples was collected after the same individuals had been transitioned to a

grain-based free-choice diet for 100 days. Bacterial composition was determined by



Xi

Illumina MiSeq (2x300) sequencing of PCR amplicons generated from the V1-V3 region
of the 16S rRNA gene. Next-Generation Sequence data was analyzed using a
combination of custom Perl scripts, and publicly available software (Mothur v.1.40, RDP
classifier and NCBI Blast). Taxonomic analysis identified Bacteroidetes and Firmicutes
as the dominant phyla across all samples analyzed. A total of 57,132 and 59,133 species-
level Operational Taxonomic Units (OTUs) were identified in SBR and BCR grass-fed
heifers, respectively, in contrast to 13,240 and 22,516 OTUs that were found in the same
animals on a grain-based diet. A comparative analysis using the most abundant OTUs
from each group was conducted using the Kruskal-Wallis sum-rank test. In the Standing
Butte heifers, 28 abundant OTUs were found to be different between diets (P < 0.05),
including Bb-00031 (xgrass = 0.04% vs xgrain = 1.45%) and Bb-00018 (xgrass = 0.58%
vs xgrain = 0.06%). In the Blue Creek heifers, 17 of the most abundant OTUs were found
to be different between diets (P < 0.05), including Bb-00046 (xgrass = 1.24% vsxgrain =
0.45%) and Bb-00058 (xgrass = 0.03% vsxgrain = 1.22%). Together these results
indicate that the rumen of the North American bison harbors highly diverse bacterial
communities that undergo dramatic changes in response to changes in diet, and they
represent a starting point towards a better understanding of their rumen microbiome,

leading to prospective practical applications to bison conservation and production.



CHAPTER 1

Literature Review

1. AMERICAN BISON: A BRIEF HISTORY

The North American bison (Bison bison) is one of the eight known species of
bison (two extant and six extinct) that emerged around 5,000 to 10,000 years ago (Wilson
et al., 2008). Since its appearance, the bison was hunted by humans mainly for food and
clothing, and for political reasons to the point of near-extinction in the 19" century.
Isenberg (2020) stated that the over harvest in the 1800s was partially driven by the
intention of the U.S. government to restrict the range of bison and control Native
Americans whose diet and culture relied on the bison herds. In addition, introduced
bovine diseases and competition from domestic livestock (horses, cattle, sheep) also
reduced bison numbers (Flores, 1991; Isenberg, 2020). Based on the accounts of Euro-
American explorers, settlers, and hunters, the population of bison is estimated to have
once been between 15 and 100 million (Dary, 1989; Demarais and Krausman, 2000), but
by the late 19" Century, there were fewer than 1,000 remaining bison in North America

(Homaday, 1887; Seton, 1927).

There was public concern as the large herds decreased, but few laws were passed
to protect the bison (Danz, 1997). Most of the early attempts to conserve bison came
from individual acts of private citizens, and their efforts preserved the founding stock for
most contemporary bison herds (Gates et al., 2010). From the 1870s onwards, bison
hunting was prohibited, and the number of these ruminants increased considerably,

doubling between 1888 and 1902. In 1905, the American Bison Society (ABS) was



founded,; this organization managed to develop many public herds of bison after lobbying
the United States Congress (Coder, 1975; Danz, 1997). This initiative was also supported
by Canada (Ogilivie, 1979). By 1909, the bison was no longer considered an endangered
species (Coder, 1975). Then, by 1970, there were about 30,000 animals in North
America, with approximately half of them in public herds and half in private herds
(Demarais and Krausman, 2000). As of 2010, there were more than 20,500 bison in
publicly owned conservation herds (Gates et al., 2010) and more than 400,000 raised

privately, most for commercial purposes.

Nowadays, the bison herds are being restored via the combined efforts of
conservationists, ranchers, and scientists. The National Bison Association (NBA) for
example, is working towards achieving a goal of one million bison in the United States
and Canada. The initiative is called “Bison 1 million”, and it claims that if herds could
expand at a rate of around 10 % per year, the total North American populations would
surpass one million animals by 2025 (Association, 2006). Other attempts include the
reintroduction of free-ranging plains and wood bison at different places across their
historical ranges to preserve wild bison's survival. The long-term goal of this initiative
led by the Wildlife Conservation Society (WCS), is to reestablish large, free-ranging
herds in extensive native habitats to promote interactions with other species and therefore
support the ecological recovery of bison over their entire range. The future of bison
restoration is also oriented towards increasing bison research and collecting more
relevant data that will contribute to better understanding bison’s biology. South Dakota
State University, the NBA, and the National Buffalo Association worked in collaboration

to accomplish this objective. As a result, the Center of Excellence for Bison Studies was



established in 2020, and numerous bison research projects have been approved. From
now on, this center for advance bison research will support restoration and production of

bison herds in North America.

2. AMERICAN BISON: BIOLOGY

North American Bison possess unique physiological, anatomical, and behavioral
characteristics. Such characteristics have enabled them to adapt and thrive under the
broad range of North American climates and native habitats. Physiological adaptations,
including lower metabolic activities during the winter, were observed by Christopherson
et al. (1979), who showed major changes in seasonal energy metabolism compared to
most ruminants. Furthermore, bison developed a thick pelage that acts as an insulating
cape, helping them save energy during low-temperature periods (Peters and Slen, 1964).

These biological characteristics allow them to survive in extremely cold conditions.

Bison also exhibit behavioral traits unique to the species. Grass availability brings
together herds of cows, calves, and immature males with large bulls that naturally roam
in solitary to start a new breeding season (Berger and Cunningham, 1994). A well-
established behavior known as “wallowing”, often described as “dust bathing”, is
commonly seen in bison of all ages and genders. Male wallowing is more commonly seen
to stimulate females during the breeding season (Bowyer et al., 1998), but it can also help
them lower body temperature during the hot seasons and alleviate skin discomfort due to

insect bites (McMillan et al., 2000).

Bison distribution is very much dependent on the availability of food. When

looking for food, bison herds maintain defined paths (Hornaday, 1889), preventing harm



to the prairie, and favoring the establishment of robust vegetation and other animal
species inhabiting the area. For these ecological benefits, bison are often referred to in the

literature as a keystone species.

3. AMERICAN BISON: ECOLOGICAL ROLE

Bison are considered an ecologically important species in the United States and
Canada, as they help maintain native prairies and the biodiversity of grassland
ecosystems. They contribute to their habitats through selective grazing (grazing patches),
seed dispersal and trampling, nutrient redistribution (feces and urine deposition, as well
as organic matter from the dead bodies of free-roaming bison), and by rubbing their
bodies and horns on trees and shrubs (McHugh, 1958; Reynolds and Peden, 1987; Knapp
et al., 1999). Habitat selection of free-roaming bison is made primarily based on
nutritional requirements, forage quality, snow depth, and predator avoidance. Feeding
behavior studies (Coppock et al., 1983; Hudson and Frank, 1987; Singer and Norland,
1994; Wallace et al., 1995) have previously reported that bison select more nutritious
forages in a highly efficient manner that satisfies their nutritional needs. While such
behavior seems very similar to cattle, bison tend to avoid grazing on previously grazed
areas during the same growing season, thus minimizing overgrazing. In addition, bison
spend less time near water bodies, making more use of steep slopes, softening them and

reducing erosion (Reynolds et al., 1982; Miller et al., 2000).

Feeding patterns have also shown important symbiotic relationships with other
animals. Bison, for example, are frequently seen surrounded by different species of birds.

These birds benefit from the insects that fly or move around in response to bison



movements and equally favor the bison by removing the ones that can cause discomfort
(Friedmann, 1929). Similarly, bison can also boost the habitat suitability for prairie dogs,
pronghorns, and other mammals. When grazing, bison reduce the height of the
vegetation, allowing the settlement and establishment of groups of these animals;
together, they preserve the vegetation's heterogeneity and create areas with high-quality
forage (Coppock et al., 1983; Coppock and Detling, 1986; Miller et al., 2000). During
rainy seasons, bison wallows can collect water favoring wetland plant species that allow
amphibians and invertebrates to reproduce (Polley and Wallace, 1986; Knapp et al.,
1999), representing an important feature for semi-arid ecosystems (List et al., 2007).
Other important ecological contributions of bison include being a food supply source for
scavengers and modifying fire regimes by consuming woody vegetation (Sanderson et

al., 2008).

4. AMERICAN BISON: NUTRITION
4.1. Feeding Preferences

4.1.1. Free-range bison

Historically, bison have been recognized as grass-eating species, but seasonal
variations, geographic areas, and management (e.g., confinement) can strongly influence
their diet. During the summer, autumn and spring, free-range bison eat a varied mix of
grasses, sedges, woody plants, and forbs. At the same time, much of their diet (>90%) in
the winter is composed of graminoids, including sedges and rushes (Reynolds et al.,
1982; Reynolds and Peden, 1987). Bison consume high-quality grasses during seasons of
abundance and, similar to cattle, avoid the use of woody plants and forbs (<10%)

(Hartnett et al., 1997; Steuter and Hidinger, 1999). However, during shortage periods,



when the only feeding choice is low-quality forages such as rushes and sedges, bison
show a superior adaptation and perform better compared to cattle (Feldhamer et al.,

2003).

The type of plants eaten by bison also varies according to the region. Numerous
studies have compared feeding preferences from different bison populations and seasons.
The reports include bison from Northeastern and Southwestern Colorado (Peden, 1976),
Southern Utah (Van Vuren and Bray, 1983), Yellowstone National Park, Wyoming and
Northern Canada (Meagher, 1973; Reynolds et al., 1978), Wood Buffalo National Park
(Soper, 1941) and Elk Island National Park (Holsworth, 1960). A preference for grasses
and sedges was observed at most sites. More precisely, the most common plants
consumed by bison included perennial grasses such as buffalo grass (Bouteloua
dactyloides), gramma grass (Bouteloua gracilis), sand dropseed (Sporobolus
cryptandrus), beard grass (Polypogon monspeliensis), windmill grass (Chloris spp.),
wheatgrass (Thinopyrum intermedium), brome grass (Bromus spp.), June grass (Koeleria
macrantha) as well as annual grasses such as wild oat grass (Avena spp.) and common
barley (Hordenum spp.). As an exception to grass consumption, a plant generally referred
to as four-wing saltbush (Atriplex canescens) had a higher intake in Arizona, accounting

for about 71% of the diet (Peden et al., 1974).

There are many factors that can influence bison nutrition, in particular food
intake, growth, and metabolism (Christopherson et al., 1979; Hawley, 1981). These
variations are usually linked to seasonal changes, hormone fluctuations, and forage
quality. For instance, the daily amount of food required by bison during the winter is

comparatively lower (1.4-1.8% of body weight) than that required by cattle, which



normally ranges between 2.5-3% of body weight (Feist, 2000a). When bison metabolism
slows down, so does consumption of feed. Even though the loss of weight is common,
such circumstances do not represent a significant challenge for free-range bison, as they
manage to cope with changes in seasons and survive. This physiology, however, can pose

a challenge for bison producers, trying to market animals in lean seasons.

4.1.2. Diet selection for bison in confinement: Grass-fed vs Grain-fed

Bison are finished for market based on producer philosophies and consumer
preferences. Although some ranches choose to keep their animals on grass until
marketing, others use a free choice combination of forage and grain feeds, while some

feed various total mixed ration formulas (TMR) in a confined setting.

The goal behind grass-fed or grass-finished bison is to raise animals under
‘natural’ conditions, reduce environmental effects, and produce leaner and healthier meat
products (Carter et al., 2010). Nevertheless, these types of production systems face
significant operational challenges, including the need for sufficient land availability,
longer time to finish animals (between 26 and 36 months), lighter finishing weights,
inconsistent delivery into marketplace, and reliance on local weather and environmental
conditions (Carter et al., 2010). Finishing bison with grain can overcome some of these
issues. A challenge for grain-feeding operations is the lack of knowledge on the effects of
a high starch diet on bison rumen physiology and its microbial composition, and

consequently on the animal’s overall health (Carter et al., 2010).

For grass-fed operations, the type and extent of the naturally grown grass depend

on the area in which the ranch is located. Rotational grazing systems, which are



traditionally used in livestock, are not extensively used in bison production (Gegner,
1999). However, Carter et al. (2010), suggest implementing these grazing systems as an
economical and sustainable type of production, which also improves pasture quality. On
the other hand, diets consisting of grain or concentrate are normally offered either in
totally mixed or free choice rations. Corn (the basis of most high-energy diets), barley,
oats, and field peas are among the ingredients widely used in grain-based diets (Feist,
2000b). The use of these diets increases during heat waves or harsh winters, where it

becomes a struggle to bring bison to market weight.

Both feeding methods bring positive aspects that contribute to current market
strategies. Researchers at Colorado State University conducted a test panel of grass-fed
versus grain-fed bison meat (Moseley, 2001). Results showed that consumers had no
preference in terms of softness and juiciness between the meats in both diets, implying
that both feeding systems produce an acceptable quality product for the consumer.
However, taste preference was greater for meat from bison-fed concentrate compared to
grass-fed meat. Similarly, a more recent research conducted at South Dakota State
University (Janssen et al., 2021) evaluated the influence of Grain- and Grass-Finishing
systems on carcass characteristics, meat quality, nutritional composition, and consumer
sensory attributes of bison meat. They concluded that finishing system had an impact on
nutrient content and fatty acid composition, more specifically, that grass-finished bison
steaks had lower cholesterol content, percent fat, and omega 6:3 fatty acid ratios when
compared to grain-finished bison steaks, however similar to Moseley (2001) study,
differences in carcass and meat quality characteristics did not translate to differences in

consumer preferences. Another study, conducted at Thompson Rivers University



(Canada), showed nutritional differences between grass-fed and grain-fed bison products.
Bison fed with grass contained omega 6 and omega 3 ratios of 3:1 while, those fed with
grain were 7:1 (Turner et al., 2014). Together, these studies suggest that grass-fed meat
should be marketed to health-conscious customers interested in a more balanced ratio of

Omega 6 to Omega 3.

4.2. General Digestion

Bison digestive physiology is similar to other ruminants such as cattle, sheep,
goats, and deer, including a stomach, divided into four separate compartments, which
allows efficient digestion of fibrous materials. After the feed is ingested, it is immediately
stored in the second and largest compartment known as the rumen. There, food is
partially digested into cud through microbial fermentation, then pushed back into the
reticulum, the first compartment of the stomach, before being sent back to the mouth for
additional mechanical grinding by mastication (rumination). When rumen content
achieves a smaller particulate size, it is redirected to the stomach's third and smallest
compartment, the omasum. There, excess water from the digesta is absorbed, and the
solid materials are further broken down into smaller particles. Digesta is then sent to the
last stomach compartment, the abomasum, also known as the true stomach, where acidity
and host enzymatic processes further digest the original rumen contents, including
microbial biomass. Digesta then reaches the small intestine, where absorption of nutrients
occurs. Finally, materials that have not been digested reach the hindgut, where

fermentation by resident microbial communities takes place.
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While bison digestive processes have shown to produce similar results to those in
cattle during periods of high feed abundance, higher digestive efficiencies have been
reported for bison when food quality and quantity is limited (Feldhamer et al., 2003).
Greater bison efficiency has been largely attributed to the microbial fermentation
processes that occur in the rumen, as it provides nutrients that the animal directly uses as

a source of energy.

4.3. Rumen physiology

Ruminants can obtain nutrients from plants that humans and other non-ruminant
species cannot digest. They owe this ability to their digestive system structure and its
symbiosis with the microorganisms inhabiting the rumen. Frequently referred to as a
fermentation vat, the rumen enables ruminants like bison to break down structural
carbohydrates (cellulose, hemicellulose, and pectin), which animal enzymes cannot
efficiently digest. The rumen can also digest other dietary components, including starch,

fat, and proteins.

The size of the rumen varies according to age and animal size. In most bovines, it
is estimated to account for around 6% of the live weight of the animal (Membrive, 2016),
however it only accounts for about 3% in bison (DeLiberto, 1995). The volumetric
capacity of the cattle rumen varies from 100 to 300 liters (Membrive, 2016), while
ruminal volumetric capacity in bison was estimated to be approximately 57 liters

(DeL.iberto, 1995).

Ideal rumen conditions enable the optimal growth of microorganisms responsible

for fermentative digestion. Such conditions include optimal pH and buffering capacity,
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temperature, osmotic pressure, as well as anaerobic (oxygen-free) conditions. Normal
rumen pH ranges from 5.5 to 7.0 (Krause and Oetzel, 2006; Membrive, 2016), and it is
strongly influenced by diet and buffering capacity. Bison rumen samples showed a more
alkaline environment, with pH values between 7.19 and 7.25 (Ribeiro et al., 2017).
However, feeding high-quality alfalfa hay and low-quality prairie hay (Towne et al.,
1989), alfalfa corn based diets (Varel and Dehority, 1989), or prairie hay per se (Towne
et al., 1988), resulted in similar pH responses to those observed in cattle. Maintaining a
normal rumen pH also depends on the buffering capacity of saliva (Castillo-Gonzalez et
al., 2014). Longer rumination periods stimulate ruminants to produce larger amounts of
saliva (Bailey, 1961); a constant supply of saliva (pH = 8.2) sent to the rumen helps to
maintain a favorable environment for microbial growth (Grosskopf, 1965; Krause and
Oetzel, 2006). Consumers of grass and roughage such as bison have been reported to
spend more time grazing and less time ruminating, suggesting lower levels of saliva

production (Asplund, 1994).

Microbial activity is also conditioned by a relatively constant rumen temperature.
Hungate (2013) stated that ruminal temperature normally exceeds the ruminant’s body
temperature (38°C). Factors such as food intake and fermentation processes (Gilchrist,
1957), cold water consumption (Cunningham et al., 1964), and ambient temperature
(Boehmer et al., 2015) can influence ruminal temperature conditions (39°C - 40°C).
Ruminal temperature above normal levels may affect the survival of rumen-populating

microorganisms, as many of them cannot survive above 40 °C (Hungate, 2013).

Ruminal content retains an osmotic pressure to prevent excessive water loss. This

osmotic pressure is often subject to change with feeding regimens. For instance, rumen
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osmotic pressure before feeding has been reported at < 200 mOsmol Kg™ (Warner and
Stacy, 1977), but this value increased to 350-400 mOsmol Kg* after a meal (Warner and
Stacy, 1977; Bennink et al., 1978). Constant homeostatic conditions are necessary for
ruminal microorganisms, as their survival can be compromised when high and sudden

rumen osmolality variations occur (Griinberg and Constable, 2009).

Most rumen microorganisms are strictly anaerobic, meaning that they cannot use
oxygen and will only survive in its absence. Anaerobic digestion of feed produces short-
chain fatty acids (SCFA), mainly acetic, propionic, and butyric acids, as well as carbon
dioxide (CO2) and methane (CH4). SCFAs are removed from the rumen through
absorption by the epithelial cell wall and become the ruminant's main source of energy,
as they conserve a large part (75%) of the energy from feed that is stored as glucose
(Hungate, 2013). Other products of microbial metabolism, such as CO, and CHa, are

eliminated through eructation.

5. AMERICAN BISON: RUMEN MICROBIOLOGY

5.1. Importance of studying the rumen microbiome

It is important to study ruminal microorganisms (microbes) and their genomes
(microbiome) because of their direct impact on the ruminant’s productive efficiency and
health. This direct relationship has been demonstrated in cattle by a number of studies
conducted over the last decade (Jami et al., 2014; McCann et al., 2014a; Myer et al.,
2015; Shabat et al., 2016; Li, 2017a; Schéren et al., 2018). For example, Jami et al.
(2014), found a connection between the physiological parameters of dairy cattle (milk

yield and composition) and their resident rumen bacteria; in that study, Prevotella was
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negatively associated with milk fat production. Other studies have also found members of
the Prevotella genus that are associated with rumen acidosis (Golder et al., 2014), or with

positive residual feed intake (p-RFI) in Brahman cattle (McCann et al., 2014b).

Diet is the main factor influencing the type of microorganisms in the rumen
(Henderson et al., 2015). Inclusion of new ingredients, supplements, or additives to
ruminant diets have led to improvements in feed utilization, mitigation of metabolic
disorders, as well as the reduction in methane production, thus achieving higher
efficiencies. Certain tannins, for instance, have been found to favorably modulate the
rumen microbial ecosystem, improving body weight, milk yields, and reproductive
performance, as well as decreasing methane production (Patra and Saxena, 2011).
Furthermore, Lettat et al. (2012) suggested that the use of bacterial probiotics
(Lactobacilli and Propionibacterium) is efficient in preventing subacute rumen acidosis
(SARA). These types of approaches are not always effective in adult ruminants due to the
resistance of the microbial environment to changes (Weimer et al., 2010). Hence, more
research is directed towards interventions in pre-ruminant animals, which could
theoretically give an animal good immune responses along with adulthood permanence

(YYanez-Ruiz et al., 2015).

One of the most controversial topics today is the emergence and spread of
antibiotic-resistant genes (ARG) and the contribution of animal production to this
problem. It has been recently discovered that diet has important effects on the
representation of ARG in microbial rumen populations, with potential consequences for
human and animal health (Auffret et al., 2017). In that study, high grain diets enhanced

the abundance and diversity of ARG.
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Development of new research techniques has led to important advances in
microbiome knowledge in dairy and beef cattle. A better understanding of the rumen
microbial composition has and will continue to lead to strategies that improve animal

performance and well-being.

5.2. The rumen microbial ecosystem

The ruminal microbiota is a diverse and complex assortment of microbial groups
that, in relation to its metabolic functions, constitute a crucial element for the
development, health, and nutrition of the ruminant (Morgavi et al., 2010). These
microorganisms can differ widely depending on several factors, including diet, host
species, genetic background, age, geographic location, and season (Harrison and
McAllan, 1980; Li et al., 2009; Romero-Pérez et al., 2011). The rumen microbiome is
often described as a complex and dynamic ecosystem, given the large number of resident
microorganisms and their taxonomic diversity. Differences in rumen microbial
composition between ruminants of different species, between individuals of the same
species, and even within individuals of the same herd, have already been documented
(Jami and Mizrahi, 2012; Henderson et al., 2015; Indugu et al., 2017; Li et al., 2019).
These variations stem primarily from differences in diet, environmental conditions, host

genetics, and feeding behavior.

Regardless of the ruminant species, the rumen ecosystem is mainly populated by
bacteria (10°- 10% cells/ml of ruminal content), followed by methanogenic archaea (108
cells/ml), protozoa (108 cells/ml), and fungi (10* cells/ml). Beneficial, harmful, and

competitive relationships are formed between these microorganisms for what is
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considered a constantly changing system (Czerkawski, 2013). Rumen microorganisms
are mainly classified on the basis of their function or the substrate they use (Hynd, 2019).
The most common groups include cellulolytic (fiber utilizers), amylolytic (starch
utilizers), proteolytic (protein utilizers), and lipolytic (lipid utilizers) microorganisms.
Cellulolytic and amylolytic microorganisms hydrolyze polysaccharides, releasing
oligosaccharides and simple sugars into the medium for their own use and that of other
groups of microorganisms (Doré and Gouet, 1991), producing fermentation end products
for use by the host. Microbial proteins and vitamins can be released by digestion of
microbial cells in the abomasum. Methanogens (archaea) maintain low hydrogen gas (H>)

in the rumen by using it as a substrate for methane production.

Every microorganism in the rumen plays an important role in the breakdown and
digestion of feed. However, the role of bacteria is more highly investigated since they
account for more than 95% of the total microbial species and express a wide range of
metabolic activities (Zhou et al., 2015). These characteristics give rumen bacteria a

central role in ruminant nutrition and are consequently of interest for in-depth research.

5.3. Rumen Bacteria

Bacteroidetes and Firmicutes are generally the most common bacterial phyla
found in ruminants, typically comprising at least 75% of the total bacterial populations
(Deusch et al., 2017; Indugu et al., 2017; Liu et al., 2019; Min et al., 2019). In grain-
finished and grass-finished bison, Bacteroidetes were found to be abundant in the rumen,
while Firmicutes were mainly observed in the ileum (Bergmann, 2017). At the genus

level, Prevotella is considered the most common genus, representing at least 42% of



16

ruminal bacteria (Stevenson and Weimer, 2007). In bison however, Bergmann (2017)
found this bacterial genus to be more abundant in the hindgut (cecum, ascending colon,
transverse colon, descending colon, and rectum) than in the rumen. It has been estimated
that there are probably thousands of species of rumen bacteria, but only a limited number
have been studied in detail. They are commonly referred to as the classic rumen bacteria
and include cellulolytic bacteria, such as Fibrobacter succinogenes, a succinate, acetate
and formate producer, Ruminococcus albus, whose main final products are acetate and
formate, and Butyrivibrio fibrisolvens, which can produce acetate, formate, lactate and
butyrate (Hungate, 2013). Classic ruminal amylolytic bacteria include Ruminobacter
amylophilus and Prevotella ruminicola, which are both formate, acetate and succinate
producers, as well as Selenomonas ruminantium, Succinomonas amylolitica and
Streptococcus bovis, whose end products include acetate, propionate and lactate (Russell,
2002). Other bacterial species included in the list of classic rumen bacteria are
Bacteroides amylophilus and Anaerovibrio lipolytica, which display proteolytic and

lipolytic activities, respectively.

The composition and abundance of these bacterial species in the rumen of bison is
not yet clear. Because of the lack of research in bison rumen microbiome, it is assumed
that the digestive processes are carried out by strains of the classic rumen bacteria found
in well-studied ruminants such as dairy and beef cattle. However, major nutritional
differences in bison, such as feed preferences and higher efficiency in utilizing low-
quality pastures, suggest that gut bacterial composition in bison may be very distinct from

other ruminants.
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5.4. Factors affecting bacterial diversity and composition in the rumen

Recent studies characterizing the ruminal microbial communities of 32 ruminant
host species worldwide have shown that diet is the main factor influencing the rumen
microbiome and that it is of higher importance than host species or geographical location
(Henderson et al., 2015). Because of their greater abundance as well as phylogenetic and
metabolic diversity in the rumen, bacteria tend to be more likely to respond to changes in
dietary composition. In cattle studies, for example, rumen samples from individuals on
grain-based diets showed less bacterial diversity, with entirely different bacterial
populations compared to grass-based diets (Fernando et al., 2010; Plaizier et al., 2017;

Liu etal., 2019).

In addition to diet, it has also been shown that ruminant host species-related
factors, such as genetics and age, have an effect on rumen bacterial composition. For
example, differences in rumen microbiota composition have been observed between
Holstein and Jersey dairy cows who were given the same diet (Paz et al., 2016). Li et al.
(2019) also suggested that certain microbial characteristics of the rumen are heritable,
indicating that they can be affected by host genetics. To assess the effect of age, Jami et
al. (2013) analyzed the dynamics of bacterial composition of the bovine rumen in five
representative age groups ranging from birth to adulthood. They observed very distinct
microbiota in each age group, with evidence of convergent bacterial communities as age
increased. Furthermore, another study reported monthly temporal dynamics in the rumen
bacterial composition of steers fed the same diet (Qiu et al., 2019). This study also found
a positive correlation between Succinivibrionaceae and Ruminobacter abundances with

ambient temperature, showing that geographical areas and subsequent seasonal variations
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may also be reflected in changes in bacterial communities. (Resende et al., 2016). In that
experiment, the predominant microbiota was very different between seasons, and a
contrasting pattern of abundance of Bacteroidetes was also observed between the summer

and winter.

6. METHODS TO ANALYZE THE RUMEN MICROBIOME

In order to investigate ruminal microbial communities, which form a complex and
dynamic microbial ecosystem, several methods have been developed. Such methods can
be divided into two categories: 1) culture-dependent (culture-based) and 2) culture-

independent methods (DNA-based).

6.1. Culture-dependent methods

The rumen microbial ecosystem was traditionally investigated using techniques
that were based on microbial cultures. Isolation and counting were among them, as were
phenotypic or "observable™ features including morphology, development, and metabolic
and biochemical properties (Hashsham, 2007; Zhou et al., 2015). Although these methods
are low-cost, reproducible and have allowed the identification of more than 200 microbial
species (Russell and Hespell, 1981), they are limited in their ability to distinguish
between different bacterial phylogenetic groups, and they greatly underestimate both
microbial diversity and abundance of microorganisms that actually exist in the rumen. It
has been estimated that approximately 95% of ruminal microorganisms have yet to be
cultured as isolates (Creevey et al., 2014), with many currently considered
“unculturable”. Limitations are primarily due to difficulties in mimicking environmental

conditions, such as strict anaerobiosis, lack of information on chemical growth
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requirements and the potential need for direct interactions with other microorganisms or

the host (Zoetendal et al., 2004b).

6.2. Culture-independent methods

Considering the limitations of culture-dependent methods, rapidly developing
molecular techniques have the advantage of providing a more comprehensive view of
microbiota and their diversity. Indeed, molecular techniques allow the identification of a
greater number of microorganisms (Pace, 1997; Zoetendal et al., 2004a). Because these
methods focus on the analysis of nucleic acids, they can identify microorganisms without
the need to cultivate or isolate them. Data generated from culture-independent approaches
provide information on the richness (number of species) and regularity (relative
abundance of each species) of different microorganisms in an environmental sample,
which represent microbial diversity (Gerritsen et al., 2011). The emergence of next-
generation technologies has provided greater resolution for this strategy. This approach
has led to greater insights, allowing researchers to determine effects of and interactions
among diet, age, species (genetic background) and environmental conditions with

different bacterial communities.

6.2.1. The 16S rRNA gene

One of the most widely used culture-independent methods is based on the analysis
of the 16S rRNA gene sequence (Clarridge, 2004). This gene is frequently used as a
taxonomic marker because it possesses characteristics that make it a good tool for the
identification of bacteria in the rumen: a highly conserved sequence that combines

conserved and variable regions (Kataoka et al., 1997; Clarridge, 2004), and its essential
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role in the synthesis of proteins (Dahlberg, 1989; Janda and Abbott, 2007; Wang et al.,
2015). A number of 16S rRNA sequences have been targeted by universal primers for
PCR amplification (McCabe et al., 1999; Baker et al., 2003), which is now combined
with DNA sequencing, allowing the characterization of an increased number of bacterial

species, including strains that are resistant to cultivation.

There are currently two types of binning or DNA sequence analysis methods:
taxonomic dependent methods and OTU-based methods (Liu et al., 2008; Cai and Sun,
2011). Taxonomic dependent binning compares the DNA sequences of interest against a
reference database to determine which taxon a sequence may belong to (Sedlar et al.,
2017). Publicly available programs used to identify closely related organisms or
taxonomic groups include RDP Classifier (Lan et al., 2012) and NCBI BLAST (Altschul
etal., 1990). In contrast, OTU-based methods are intended to represent a taxonomic unit
of a microbial species or genus depending on a sequence similarity threshold (Kim and
Isaacson, 2015). 16S rRNA-based methods have limitations as they only allow taxonomic

assignment but do not accurately evaluate functionality (Langille, 2018).

6.2.2. ‘Shotgun’ Metagenomics

To overcome the limitations of targeting single-gene markers, shotgun
metagenomics can be used to identify microorganisms and reveal their biological
functions through genome analysis. Shotgun metagenomics involves the extraction of
microbial genomic DNA, but instead of amplification of a specific gene, it is directly
used as a template for sequencing. The sequence reads that are randomly generated can

then be assembled into contigs (longer contiguous sequences) or analyzed individually
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(Sharpton, 2014). Using either contigs or individual reads, the functional diversity of a
community can be determined by annotating coding sequences to known functions, such
as enzymes and metabolic pathways. (Sharpton, 2014). The function of a coding
sequence can be predicted based on its similarity to sequences in a database, and it can
also be assigned to a specific taxon. The resulting information can then be used for
diverse applications, including the identification and comparison of genomes of
communities that are metabolically similar (Gevers et al., 2012), determination of how
various treatments can influence the functional composition of a community (Looft and
Allen, 2012), or revealing functions associated with specific environmental or host-
physiological variables (i.e., biomarkers). Metagenomic sequences may also reveal the
presence of novel genes (Nacke et al., 2012) or provide insight on the ecological
conditions associated with those genes for which the function may be unknown

(Buttigieg et al., 2013).

7. RESEARCH OBJECTIVE

Bison, as wild ruminants, have features or characteristics that set them apart from
domesticated ruminants. Of these, their ability to maintain better on forage of poor
quality than domestic grazers (Peden et al., 1974; Feldhamer et al., 2003) is of great
interest for the bison industry, as it speaks to the environmental and economic
sustainability of bison production. While pasture-based bison production is attractive to
customers, as it favors leaner and healthier meat products with a lower overall impact on
the environment, it poses significant challenges, including a longer time to finish animals.

To overcome this challenge, many producers finish bison by feeding diets of
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predominately grain or concentrate, as these are more easily digestible and have a higher
energy content. However, finishing bison with starch-rich diets presents a dilemma, as it

is inconsistent with the idea of ‘natural’ bison production.

Since ruminal microbial symbionts are directly responsible for providing nutrients
to their host by digesting feed, their metabolic efficiency consequently impacts the
efficiency with which bison can transform feed into animal products. In order to design
effective strategies to modulate bison ruminal function to increase productivity and
sustainability, there is a critical need for a deeper understanding of the metabolic
capabilities of ruminal microorganisms. Indeed, our current knowledge gap about bison
ruminal microbial communities is even more pronounced than for domesticated
ruminants, with a comparatively very limited number of published reports on bison gut
microbial communities (Towne et al., 1988; Rico et al., 2021). Most reported studies
have so far been performed by sampling a limited number of animals, relying in some
cases on opportunistic sampling from slaughter facilities rather than designed trials. Also,
community composition analyses have focused on diversity metrics and/or have been
based on higher-level taxonomic affiliations, which can only provide very limited

insights on candidate bacterial species from the bison rumen.

In this context, the main objective of the research presented in this thesis was to
characterize the rumen bacterial communities from grass-fed and grain-fed bison heifers
using a DNA-based sequencing approach. Characterization of these bacteria will allow
comparing bison ruminal bacterial communities under two different dietary treatments to
better understand the impact of diet on bison rumen bacterial composition, potentially

leading to new insights into bison feed efficiency strategies.
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CHARACTERIZATION OF THE RUMEN BACTERIAL COMMUNITIES OF BISON

HEIFERS FED A GRASS-BASED DIET VS A GRAIN-BASED FREE-CHOICE DIET
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1. Department of Animal Science, South Dakota State University, Brookings, SD, 57007, USA.
2. Turner Institute of Ecoagriculture

ABSTRACT

The ruminal bacterial communities of the North American bison have so far been
largely unexplored. The current study aimed to determine and compare the diversity and
composition of ruminal bacteria between bison heifers on two different diets at two
different ranches. Stomach tubing was used to collect rumen fluid from lifetime grass-fed
heifers between 25 and 30 months of age distributed between 2 ranches located in
Standing-Butte (SBR; n=17), SD, and Blue-Creek (BCR; n=17), NE, respectively. A
second set of samples was collected after the same individuals had been transitioned to a
grain-based free-choice diet for 100 days. Bacterial composition was determined by
[llumina MiSeq (2x300) sequencing of PCR amplicons generated from the V1-V3 region
of the 16S rRNA gene. Next-Generation Sequence data was analyzed using a
combination of custom Perl scripts, and publicly available software (Mothur v.1.40, RDP
classifier and NCBI Blast). Taxonomic analysis identified Bacteroidetes and Firmicutes
as the dominant phyla across all samples analyzed. A total of 57,132 and 59,133 species-
level Operational Taxonomic Units (OTUs) were identified in SBR and BCR grass-fed
heifers, respectively, in contrast to 13,240 and 22,516 OTUs that were found in the same

animals on a grain-based diet. A comparative analysis using the most abundant OTUs
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from each group was conducted using the Kruskal-Wallis sum-rank test. In the Standing
Butte heifers, 28 abundant OTUs were found to be different between diets (P < 0.05),
including Bb-00031 (¥grass = 0.04% VS Xgrain = 1.45%) and Bb-00018 (¥grass = 0.58% Vs
Xgrain = 0.06%). In the Blue Creek heifers, 17 of the most abundant OTUs were found to
be different between diets (P < 0.05), including Bb-00046 (Xgrass = 1.24% VS Xgrain =
0.45%) and Bb-00058 (xgrass = 0.03% VS Xgrain = 1.22%). Together, these results indicate
that the rumen of the North American bison harbors highly diverse bacterial communities

that undergo dramatic changes in response to changes in diet.

Key words: Bison, Rumen, Bacteria, 16S rRNA gene sequencing
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1. INTRODUCTION

Over time, bison has evolved to efficiently extract nutrients from a wide variety of
grasses native to North American prairie ecosystems. Due to this and other unique
characteristics of the species, bison production started to be perceived as a sustainable
economic activity. Bison ranching dates back to the early 1900s, but it wasn't until the
1970s that production began to increase, reliably producing bison on a commercial scale
by the mid-1980s (Hawley, 1989). Although bison producers in general aim to maintain
the animal’s wild and natural heritage, the use of grain-based ingredients to finish bison
in a confined setting, similar to what is used for beef cattle, is a common practice.
Feeding grains and concentrate to bison has helped producers to mitigate reduced winter
intake and other seasonal effects, increasing overall efficiency and get bison to market
weight throughout the year. However, decades of research on cattle and other ruminant
livestock have shown that a diet rich in fermentable carbohydrates can change the
composition of rumen microorganisms, negatively impacting the rumen environment,

affecting the physiology of the rumen as well as the health of the host animal.

In this context, one of the key issues faced by bison producers is how grain or
concentrate diets can change the bison rumen microbiota and create potential adverse
effects on animal health and efficiency. To gain further insight, the current study
characterized and compared the rumen bacterial communities of bison heifers fed a grass-

based versus a grain-based free-choice diet at two separate ranches.
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2. MATERIALS AND METHODS

2.1. Animals and rumen fluid collection

The bison used in this study were sampled at two different ranches: the Standing
Butte Ranch in central South Dakota and the Blue Creek Ranch on the southwestern edge
of the Nebraska Sandhills. At each ranch, 20 bison heifers were selected for collection of
rumen fluids. Sampling was carried out in two phases. The first phase consisted of
collecting rumen fluid from grass-fed (diet composed only of grasses and forbs) bison
heifers at 25-26 months of age immediately prior to placement on a higher energy diet.
These animals had spent their entire life to this point on a pasture and forage-based diet.
The second series of rumen fluid samples was collected from the same individual animals
after exposure to a grain-based free-choice diet, which consisted of ad libitum access to
corn, alfalfa hay and grass hay for 97 to 101 days prior to collection of rumen fluid. The
bison were maintained in loose confinement (74.3-92.9 m? per animal) and consumed on
average approximately 6.8 kg of corn, 4.5 kg of alfalfa hay and 1.8 kg of grass hay per
day, but individual intake was not measure. Oral stomach tubing, previously described as
a simpler, faster, and less invasive method of collecting rumen fluids (Geishauser, 1993;
Duffield et al., 2004), was used for this study. In order to avoid saliva contamination,
between 25 and 50 ml of the initial rumen fluid sample was discarded, then
approximately 200 ml was collected. Samples were immediately frozen and sent to South

Dakota State University facilities for further analysis.

Due to unexpected challenges during sample collection, we were unable to obtain

rumen fluid from all heifers for both diets. Bacterial composition analysis was performed
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using samples from heifers from which rumen fluid was successfully collected from both

diets (n=17 / group).

2.2. Microbial DNA extraction and PCR amplification

Total microbial DNA was extracted from each rumen sample (n=68) using a bead
beating and column approach as previously described (Yu and Morrison, 2004), which
included the QlAamp DNA Mini Kit (Qiagen, Hilden, Germany). Polymerase chain
reaction (PCR) was performed after extraction, where the bacterial V1-V3 regions of the
16S rRNA gene were amplified using the universal primers 27F-
5AGAGTTTGATCMTGCTCAG (Forward) and 519R-5"GWATTACCGCGCGCGCTG
(Reverse). PCR was performed using a thermal cycling system, under the following
conditions: an initial denaturing step at 98°C (4 minutes), followed by 35 cycles of
denaturation at 98°C (10 seconds), annealing at 50°C (30 seconds), extension at 72 °C (30
seconds). Amplification ended with an extension period at 72 °C (10 minutes). Agarose
gel electrophoresis was then performed to check and confirm the quality (minimum 400
ng) and molecular weight (~500 bp) of the generated DNA fragments, which were
recovered using a QiaexIl Gel extraction kit (Qiagen, Hilden, Germany). Purified PCR
samples were submitted to Molecular Research DNA (MRDNA, Shallowater, TX, USA)
for sequencing with the Illumina MiSeq 2X300 platform to generate overlapping paired

end reads.

2.3. Microbial Composition Analyses

Sequencing data were processed using a set of custom-written Perl scripts. Raw

sequences of the 16S rRNA bacterial gene (V1-V3) were first screened on a full-length



28

basis and a quality score. Full-length sequences were first selected based on the existence
of their respective forward (27F) and reverse (519R) primer sequences, while quality
screening was carried out using a minimum quality threshold of no more than five
nucleotides with a Phred quality score of less than 15. Following quality screens,
sequence reads were aligned and clustered into Operational Taxonomic Units (OTUs) at a
genetic distance cutoff of 4% sequence dissimilarity, which is more suitable than 3% for
this region (Kim et al., 2011). Following OTU clustering, three independent strategies
were used to detect potential artifacts. First, OTUs were screened for chimeric sequences
using the “chimera.slayer” (Haas et al., 2011) and “chimera.uchime” (Edgar et al., 2011)
commands from the MOTHUR open source software package (Schloss et al., 2009).
Secondly, the 5” and 3’ ends were evaluated using a database alignment search-based
approach; when compared to their closest match of equal or longer sequence length from
the NCBI “nt” database, as determined by BLAST (Altschul et al., 1997), OTUs with
more than five nucleotides missing from the 5’ or 3" end of their respective alignments
were designated as artifacts. Finally, single-read OTUs (singletons) were subjected to an
additional screen, where only sequences with a perfect or near-perfect match (maximum
1% of dissimilar nucleotides) to a sequence in the NCBI “nt” database were kept for
analysis. After screenings, all flagged OTUs and their corresponding reads were
subsequently removed from further analyses. Curated OTUs were subjected to taxonomic
assignment as follows: two taxonomic level assignments (Phylum and Family) for all
OTUs using RDP Classifier (Wang et al., 2007), and species-level assignments ( >97% of
sequence similarity) for OTUs of interest (relative abundance >1% in at least one sample)

using BLAST (Altschul et al., 1997). Alpha (Observed OTUs, Chao, Shannon and Ace)
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and beta diversity (Bray-Curtis distance) indices were estimated using the
“summary.single” and the “summary.shared” commands from the MOTHUR open
source software package (Schloss et al., 2009), respectively. To account for uneven
sampling, data was rarefied to the minimum sampling depth of 3500 sequences by
subsampling of the original datasets. The Bray-Curtis distance analysis output was used
as input for the MOTHUR command “pcoa” for Principal Coordinate Analysis (PCoA).
Principal components 1 (PCol) and 2 (PCo2), representing the highest level of variation,
as well as alpha diversity indices were plotted using the Tableau Visualization Software

(Version 2020.4, https://www.tableau.com/products/new-features).

2.4. Statistical Analyses

All statistical analyses were performed using the RStudio Statistical Software
(Version 1.3.959 © 2009-2020 RStudio, PBC). First, a Shapiro-wilk test was conducted
to check for normality assumption. Since normality assumption was not met, Kruskal-
Wallis sum-rank tests for non-parametric data were conducted to determine statistical
differences in the abundances of selected OTUs between experimental groups. Alpha
diversity indices were tested using Analysis of variance (ANOVA), with a post-hoc
‘HSD.test’ pair-wise function. The ‘adonis’ function from the vegan package (Oksanen et
al., 2013) was used for permutational multivariate analysis (PERMANOVA, 999
permutations) to detect statistical differences amongst sample sets, followed by the ‘pair-
wise.adonis’ function from the ‘devtools’ package to identify pairs of sample groups that

were different. For all analysis, P < 0.05 was considered significant.
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3. RESULTS
3.1. Taxonomic composition of rumen bacterial communities in grass and grain-
fed bison
Characterization of the bacterial communities in the rumen of bison from two

different ranches and on two different diets was performed by generating different
datasets for each of the four experimental groups: Standing Butte grass (SBGrass),
Standing Butte grain (SBGrain), Blue Creek grass (BCGrass) and Blue Creek grain
(BCGrain). A total of 657,096 quality-filtered sequences with an average of 164,274
(standard deviation: 13,113) reads per dataset and 9,664 (standard deviation: 771)
sequences per sample were obtained from the 68 samples. Collectively, these sequences
were classified into 20 main phyla and 83 major family level bacterial groups; 0.20-10%
of sequences could not be assigned to any known phylum (unclassified bacteria). Overall,
the proportion of Bacteroidetes and Firmicutes (two dominant bacterial phyla in gut
environments) varied greatly amongst samples (Figures 1-2). In three of the four groups
(SBGrass, SBGrain and BCGrass), Bacteroidetes was the most predominant phylum,
ranging between 50.69-56.29% of total sequences, while Firmicutes was the second most
predominant phylum, accounting for 36.57-42.74% of total sequences (Table 1). On the
other hand, in BCGrain the abundance of Bacteroidetes was lower compared to SBGrass,
SBGrain and BCGrass, whereas Firmicutes had between 1.4 (SBGrass) and 1.7
(BCGrass) - fold increase in response to grain supplementation (Table 1). Together these
two phyla groups represented more than 90% of total sequences across all experimental
groups. Planctomycetes and Proteobacteria were the third and fourth most highly
represented phyla, accounting for 0.37- 1.14% and 0.50-5.21% of total sequences,

respectively. Proteobacteria was most abundant in SBGrain, representing up to 27.16 and



31

40.46% of total sequences in heifer 10 and heifer 16, respectively (Figure 2a).
Prevotellaceae was the most predominant Bacteroidetes family in SBGrass, SBGrain and
BCGrass, with abundances between 32.44-42.71% (Table 1). While a single Firmicutes
family, Ruminococcaceae, was most abundant (SBR: 24.32% ; BCR: 25.68%) in grain-
based diets (Table 1, Figure 2a-2b), a more diverse set of Firmicutes families were
observed in grass-based diets, including Lachnospiraceae, Unclassified Clostridiales,

and other Firmicutes, which ranged from 1.98 to 24.13% (Table 1, Figure 1la-1b).

3.2. OTU Composition analysis of rumen bacterial communities in grass and

grain-fed bison

A total of 139,805 distinct OTUs were identified across all experimental groups,
with 12,216 OTUs occurring in more than one experimental group (Shared OTUSs).
Approximately, 57.26 and 47.95% OTUs were assigned to Bacteroidetes or Firmicutes,
respectively. ANOVA and Tukey’s HSD showed differences in alpha diversity across
groups (Table 2, Figure 3). These results were supported by Principal Coordinate
Analysis (PCoA), PERMANOVA and pairwise adonis tests, which showed four different
clusters, each representing one experimental group (p = 0.001) (Figure 4). Since PCoA
indicated differences in bacterial composition between experimental groups, further
analyses were performed on the most abundant OTUs. Seventy-four OTUs (SBGrass =
18, SBGrain = 20, BCGrass = 16, BCGrain = 20) were each represented by >1% of total
sequences in at least one sample, and considered as most abundant (Tables 3-6). From
these, only five OTUs (SBGrass = Bb-00004, Bb-00013; SBGrain = Bb-00022, Bb-
00025; BCGrain = Bb-00064) showed a high degree of sequence identity (>97%) to

known bacterial species, and were assigned to Fibrobacteres, Bacteroidetes,
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Proteobacteria, and Firmicutes, respectively. For the remaining OTUs, 21 showed
sequence identities between 90-97%, and 48 showed sequence identities lower than 90%
to their respective closest relative; OTUs from these categories were designated as

unknown bacterial species.

3.2.1. OTU analysis for Grass-fed bison heifers

To gain further insight into the ruminal bacterial communities of grass-fed bison,
OTU composition was compared between the two locations (Standing Butte, SD — Blue
Creek, NE). From the 57,132 and 59,133 OTUs identified in SBGrass and BCGrass,
respectively, 34 OTUs were identified as most abundant, as they were found to be present
at a minimum of 1% in at least one sample (Tables 3 and 5). From the most abundant, 18
OTUs were assigned to Bacteroidetes compared to 10 affiliated to Firmicutes.
Furthermore, SBGrass and BCGrass shared 33 of the most abundant OTUs, including
OTUs Bb-00002 and Bb-00003, both found to be abundant in both locations; while one
OTU (Bb-00039) whose closest relative was Prevotella brevis (89.96%), was only found
in BCGrass (Figure 5a). From the 33 shared OTUSs, 21 were found to be statistically
different between locations (Table 7). Only two OTUs (Bb-00004 and Bb-00013), both
from Standing Butte, were predicted to be strains of known bacterial species, with
98.41% and 98.95% sequence identity to Fibrobacter succinogenes and Ruminococcus

flavefaciens, respectively.

3.2.2. OTU analysis for Grain-fed bison heifers

The number of OTUs identified during the grain-based free-choice phase was

22,516 in SBGrain and 13,240 in BCGrain, from which 40 OTUs were selected as the



33

most abundant (Tables 4 and 6). Twenty OTUs were assigned to Bacteroidetes,
compared to 17 for Firmicutes. From the 40 most abundant OTUs, 32 were shared
between SBGrain and BCGrain, including 5 OTUs (Bb-00020, Bb-00029, Bb-00056, Bb-
00058, and Bb-00068) that were found in high abundance in both locations. Five OTUs
(Bb-00027, Bb-00028, Bb-00033, Bb-00036, Bb-00037) were identified only in Standing
Butte, while three (Bb-00071, Bb-00059, Bb-00073) were found only in Blue Creek
(Figure 5b). From the 32 shared OTUs, 18 were statistically different (p<0.05) between
ranches (Table 8), of which 3 were predicted to be strains of known bacterial species: Bb-
00022 (Prevotella ruminicola, 97.90%), Bb-00025 (Succinivibrio dextrinosolvens,

97.11%) and Bb-00064 (Streptococcus lutetiensis, 100%).

3.2.3. OTU comparison: Effect of diet change on the diversity and composition
of ruminal bacteria in bison heifers
One of the main objectives of this study was to compare the microbial
communities in the rumen of bison fed two different diets. Results showed that the
transition from a grass to a grain-based diet significantly changed the composition of
bison ruminal bacterial groups. The change was observed in both: the type of bacterial
OTUs, and their respective abundances. The number of OTUs decreased by 2.5x [57,132
to 22,516] in Standing Butte and by 4.47x [59,133 to 13,240] in Blue Creek, following
the change in diet. When comparing the number of shared and unique OTUs, SBGrass
and SBGrain were found to have the highest number of OTUs in common, while
BCGrain had the most unique OTUs (11) when compared to the same individuals under a
grass-based diet (Figure 6). In the Standing Butte heifers, the abundance of 28 well-

represented OTUs significantly varied between diets (P<0.05), including Bb-00022, Bb-
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00013, and Bb-00004, which were predicted to be strains of known bacterial species
(Table 9). Two OTUs were not affected by diet change, while the abundance of eight
OTUs either decreased to a not detectable level or were not present (Figure 7a), which
included OTU Bb-00025, closely related to Succinivibrio dextrinosolvens. In Blue Creek,
17 of the most abundant OTUs were different between diets (p<0.05), including OTU
Bb-00064, predicted as Streptococcus lutetiensis (Table 10), while eighteen OTUs were
either not present or below detection and only one abundant OTU was not affected by the
transition to grain (Figure 7b). At both locations, the most abundant OTUs tended to
exhibit significantly higher levels in grain-based diets, with OTUs Bb-00022, Bb-00031,
Bb-00029 and Bb-00024 from Standing Butte (Figure 8a), and Bb-00055, Bb-00066,
Bb-00070, Bb-00063 and Bb-00058 from Blue Creek (Figure 8b) showing the highest

abundance difference between grass and grain-based diets (P<0.001-P<0.02).

4. DISCUSSION

A number of studies on the roles played by rumen bacteria in animal production
and health has led to important insights, such as a functional link between the rumen
microbiome and feed efficiency (Li, 2017b), as well as defining a “core rumen
microbiota” in beef (Petri et al., 2013), dairy cows (Jami and Mizrahi, 2012; Lettat and
Benchaar, 2013) and for other ruminants (Henderson et al., 2015). Research has also
shown that diet composition has a great impact on the type and abundance of bacteria
present in the rumen. Knowledge regarding the rumen microbiome in bison, especially
during a diet transition is limited, thus the motivation for this study. Elucidating the
bacterial composition and diversity in the rumen of bison under different conditions will

begin to provide insights into the effects of different feeding protocols and feed
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transitions in the rumen microbiota that benefits both the animal and the producer. We
compared the bacterial composition in the rumen of bison heifers fed two different diets
(grass and free-choice grain-based) at two separate locations (Standing Butte, SD — Blue
Creek, NE). General taxonomic findings from this research showed that Bacteroidetes
and Firmicutes were predominant irrespective of the diet. However, similar to previous
reports (Kala et al., 2017), the respective proportions of Proteobacteria and
Fibrobacteres were found to be dependent on the diet consumed. At the family level,
Prevotellaceae, a family that includes some of the common rumen bacteria such as
Prevotella ruminicola, Prevotella brevis, and Prevotella albensis, was the most abundant
in the rumen of bison fed either diet, consistent with previous reports (Bergmann, 2017).
As members of this family are known to have different metabolic capabilities, including
the ability to use a wide variety of substrates such as xylans (Miyazaki et al., 1997),
proteins and peptides (Wallace et al., 1997) or other complex carbohydrates (Flint et al.,
2012), changes in diet composition may not have a major impact on this group as a
whole. Surprisingly Ruminococcaceae, typically recognized as active plant fiber utilizers,
were more abundant in animals fed grain-based diets, which is in contrast to other
findings (Henderson et al., 2015). However, since the free-choice diet included grass and
alfalfa hay during the grain-based phase, consumption of these feedstocks may have
maintained the abundance of members of the Ruminococcaceae family in the rumen of

grain-fed bison heifers.

An evaluation of the OTU composition as a function of diet and location was also
performed. The high number of low abundance OTUs observed in the rumen of grass-fed

bison at both locations suggests a highly diverse microbial ecosystem that offers the
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possibility of identifying rare and previously unknown microbial species that could
explain bison’s ability to perform better than cattle, when consuming low-quality grasses.
Indeed, only OTUs Bb-00004 and Bb-00013 were found to be closely related to
Fibrobacter succinogenes and Ruminococcus flavefaciens, respectively. Since bison are
primarily grazers, the presence of these bacterial species in the rumen would be expected
because their ability to digest cellulose has been reported to be greater than that of other
cellulolytic bacteria (Koike and Kobayashi, 2009). Indeed, F. succinogenes is able to
efficiently adhere to and breakdown plant cell walls due to the production of a variety of
fibrolytic enzymes (Béra-Maillet et al., 2004), generating succinate a main end product,
followed by acetate and formate. R. flavefaciens is also a predominant ruminal
cellulolytic bacterial species, however its attachment mode and site to plant fiber is
different from F. succinogenes (Cheng et al., 1984; Gaudet and Gaillard, 1987),
suggesting that a reciprocal rather than a competitive relationship between both species
may allow an accelerated rate of digestion. Indeed, past reports have demonstrated that
both bacterial species coexist in equal proportions and that there is not apparent growth
inhibition of either species when the substrate is available in sufficient amounts (Shi and

Weimer, 1997).

The rumen of bison fed a free choice grain-based diet showed lower diversity as a
lower number of OTUs were identified, however their relative abundances were higher.
Bb-00022 was closely related to Prevotella ruminicola, which is capable of using pectin
as an energy source to generate acetate (Marounek and Kalachnyuk, 1995; Duskové and
Marounek, 2001), an essential product of rumen metabolism. The presence of this

bacterial species represents a beneficial feature for these animals, as pectin is commonly
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added to ruminant feeds through incorporation of different agricultural by products- to
avoid the use of highly fermentable grains and the proliferation of ruminal acidosis-
associated bacteria (Santos et al., 2014). The second most abundant OTU (Bb-00025)
identified in the concentrate diet was closely related to Succinivibrio dextrinosolvens.
Members of the Succinivibrio genus are beneficial for performance in cattle, through the
formation of propionate, a SCFA that can be readily absorbed through the rumen wall
and used by the liver to generate glucose. (Hernandez-Sanabria et al., 2012). These
bacteria have been found in greater numbers when ruminants are fed grain-based diets
(Bryant, 1959), suggesting a role in the rumen as utilizers of starch fermentation products
such as succinate (Leaver et al., 1956). The presence of these bacteria in the rumen could
help decreasing the acetate: propionate ratio, which could potentially be more favorable

for the animal’s performance.

Among Streptococci, Streptococcus bovis is the most studied species in the rumen
of cattle and sheep. Because of its high capacity for lactic acid production (Hungate,
2013), this bacteria has been associated with rumen metabolic diseases such as rumen
acidosis (Russell and Hino, 1985; Asanuma and Hino, 2002). In this study, OTU Bb-
00064 was found to be 100% identical to Streptococcus lutetiensis, a bacterial species
identified in humans but with an undefined function in the rumen. Certain physical and
biochemical characteristics previously described for this species include the presence of
Beta-glucosidase, an enzyme that catalyzes cellulose hydrolysis, and esculin, a sugar
molecule that releases glucose from its hydrolysis (Schlegel et al., 2000; Poyart et al.,

2002). Unlike other members of the Streptococcus group, this bacterial species does not
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appear to be associated with starch fermentation, but it is listed as a potential pathogen as

it was associated with sudden death in calves (Clarke et al., 2016).

Because we observed a significant decrease in the number of OTUs after animals
had transitioned from grass to grain, diet appears to be a primary determinant of
microbial composition in the rumen of bison. Grass-fed animals displayed more diverse
bacterial compositions, and a reduction was observed with the inclusion of starch in the
diet. From the most abundant OTUs identified, a low percentage (3-5%) were not
affected by the change in diet, suggesting that their preferred substrate was still available
(Grass/alfalfa hay) or that their function was required in the rumen regarding of the
substrate present. In contrast, 47-74% of OTUs in grass-fed animals were significantly
reduced after the diet transition, which included 21-50% of OTUs that were reduced to

non-detectable levels.

The majority of OTUs identified in this study were phylogenetically too distant
from their closest relatives to reliably infer their function based on 16S rRNA gene
sequence comparisons alone. OTU Bb-00019, for instance, was observed in high
abundance in grain-fed bison heifers, and it was only 83.58%, similar to its closest
relative. These types of scenarios indicate that much additional research is needed to
determine the metabolic capabilities of these bacteria and their potential functions in the
rumen of bison. Shotgun metagenomics is a tool that could provide further insight into
taxonomic affiliation and functional profiles. This information could, in turn, contribute
to practical applications for bison producers, which may benefit bison health and

performance in the future.
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5. CONCLUSION

Microbial communities of bison rumen were found to undergo substantial changes
in composition in response to a change in diet. Similar community compositions were, in
contrast, observed for animals on the same diet for a given location, confirming once
again the impact of diet on rumen bacterial communities. Although more research is
required to establish the genetic and metabolic capabilities of the identified bacteria, as
well as their contribution to host efficiency and health, this study contributes to a better
understanding of the impact of grain as a substrate to a rumen ecosystem that has evolved

to metabolize native grasses over the course of millennia.
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Figure 1. Phylum and Family level taxonomic composition of rumen bacterial
communities in grass-fed bison. (A) Standing Butte grass (B) Blue Creek grass. Families
belonging to the same phylum are represented by different shades of the same color:
Bacteroidetes (green) and Firmicutes (blue).
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Figure 2. Phylum and Family level taxonomic composition of rumen bacterial
communities in grain-fed bison. (A) Standing Butte grain (B) Blue Creek grain. Families
belonging to the same phylum are represented by different shades of the same color:
Bacteroidetes (green) and Firmicutes (blue).
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A.Grass-fed bison B. Grain-fed bison
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Figure 5. Venn diagrams showing the number of most abundant shared and distinct OTUs
between locations. (A) OTUs shared between Standing Butte Grass and Blue Creek Grass
(B) OTUs shared between Standing Butte Grain and Blue Creek grain
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Figure 6. Venn diagrams showing the number of most abundant shared and distinct OTUs
between experimental groups. SBGrass: Standing Butte grass, SBGrain: Standing Butte
grain, BCGrass: Blue Creek grass, BCGrain: Blue Creek grain.
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Figure 7. Diagram showing the percent and number of OTUs whose relative abundance
was statistically different during the transition from grass-based to grain-based free-choice
diets. *Kruskal-Wallis sum-rank test (P<0.05).
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Figure 8. Impact of diet in the abundance of selected OTUs. The relative abundance
differences were determined using Kruskal-Wallis sum rank tests (P<0.05). All OTUs (A-
Z) were statistically different between diets. (A) Abundant OTUs from Standing Butte
heifers (B) Abundant OTUs from Blue Creek heifers. *Strain of known bacterial species.



Table 1. Major Taxonomic groups identified in the rumen of bison heifers

Relative Abundance (%)

Taxon SBGrass SBGrain BCGrass BCGrain
Bacteroidetes 55.22 56.29 50.69 26.22
Prevotellaceae 35.02 42.71 32.44 9.53
Unclassified Bacteroidales 13.81 0.88 11.40 11.30
Unclassified Bacteroidetes 5.35 2.60 6.18 2.52
Other Bacteroidetes 1.03 1.10 0.67 2.88
Firmicutes 36.57 36.57 42.74 63.58
Ruminococcaceae 9.85 24.32 10.25 25.68
Unclassified Clostridiales 9.82 4.34 24.13 18.34
Lachnospiraceae 13.89 3.76 6.38 12.07
Other Firmicutes 3.01 4.15 1.98 7.49
Planctomycetes 1.13 0.37 1.02 1.14
Proteobacteria 0.76 5.21 0.50 0.71
Other Phyla 1.94 0.45 2.09 3.06

Taxonomic affiliation greater than 80%. SBGrass: Standing Butte Grass;
SBGrain: Standing Butte Grain; BCGrass: Blue Creek Grass; BCGrain:

Blue Creek Grain

48
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Table 2. Estimation of observed OTUs and alpha-diversity indices of bison rumen

microbiome
Experimental Group
Index SBGras SBGrain BCGrass BCGrain P-value
Observed 22412 925P° 2505¢ 772° <0.001
OTUs
Chao 114022 3565° 16525¢ 1348¢ <0.001
Ace 267802 72520 41155° 1989° <0.001
Shannon 7.262 4.78P 7.432 5.13° <0.001

Note: Values are presented as mean of 68 rarefied samples containing 3500 sequences. Pair-wise
differences of alpha diversity indices were calculated using an HSD.test. Significance level was

set to
p < 0.05.
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Table 3. Most abundant OTUs identified in the rumen of Standing Butte heifers fed a grass-
based diet (SBGrass)

OTU Median (%) Range (%) Closest Valid Taxon (% ldentity)

Bb-00001 0.04 0.01-8.63  B; Prevotella brevis (89.16)
Bb-00002 0.03 0.00-5.41  B; Prevotella ruminicola (90.32)
Bb-00005 0.04 0.00-2.22  B; Prevotella ruminicola (90.38)
Bb-00006 0.02 0.00-1.92  B; Prevotella ruminicola (91.87)
Bb-00008 0.19 0.00-1.56  B; Prevotella brevis (90.32)
Bb-00010 0.24 0.02-1.49  B; Prevotella shahii (89.94)
Bb-00011 0.22 0.04-1.33  B; Prevotella ruminicola (89.87)
Bb-00012 0.02 0.00-1.30  B; Alistipes finegoldii (84 )

Bb-00014 0.31 0.08-1.26  B; Prevotella ruminicola (91.84)
Bb-00018 0.58 0.08-1.10 B; Prevotella brevis (91.86)
Bb-00007 0.19 0.01-1.69 F; Pseudobutyrivibrio ruminis (96.5)
Bb-00009 0.14 0.00-1.49 F; Clostridium bolteae (91.92)
Bb-00013 0.06 0.02-1.29 F; Ruminococcus flavefaciens (98.95)
Bb-00015 0.09 0.01-1.16  F; lleibacterium massiliense (89.16)
Bb-00016 0.46 0.13-1.13 F; Saccharofermentans acetigenes (89.02)
Bb-00003 0.26 0.01-4.26  PI; Thermostilla marina (82.05)
Bb-00004 0.02 0.00-2.93  Fb; Fibrobacter succinogenes (98.41)
Bb-00017 0.24 0.09-1.12 C; Flexilinea flocculi (91.3)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, PI: Planctomycetes, Fb:
Fibrobacteres, C: Chloroflexi
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Table 4. Most abundant OTUs identified in the rumen of Standing Butte heifers fed a grain-
based free-choice diet (SBGrain)

OoTuU M(eoi:)an Range (%) Closest Valid Taxon (% ldentity)
Bb-00022 0.77 0.12 - 24.45  B; Prevotella ruminicola (97.90)
Bb-00024 0.93 0.13-24.12 B; Prevotella brevis (89.96)
Bb-00020 0.20 0.02 - 28.69 B; Mediterranea massiliensis (84.28)
Bb-00027 0.07 0.00-19.01 B; Alistipes finegoldii (84)
Bb-00023 0.18 0.03-24.22 B; Prevotella ruminicola (92.63)
Bb-00028 0.10 0.00-17.73 B; Prevotella copri DSM 18205 (88.16)
Bb-00021 0.11 0.01-25.62 B; Prevotella buccalis (88.78)
Bb-00033 0.26 0.00 - 11.77  B; Alistipes finegoldii (85.01)
Bb-00032 0.02 0.00-12.46 B; Prevotella copri DSM 18205 (89.47)
Bb-00034 0.04 0.00-7.63  B; Prevotella veroralis (91.15)
Bb-00038 0.07 0.00-2.27  B; Alistipes finegoldii (84.79)
Bb-00035 0.03 0.00-7.17  B; Alistipes finegoldii (84.66)
Bb-00037 0.00 0.00-5.69  B; Bacteroides coprophilus (84.77)
Bb-00058* 1.45 0.11-13.40 F; Negativibacillus massiliensis (87.55)
Bb-00068* 0.22 0.02-19.54 F; Anaeromasilibacillus senegalensis (88.97)
Bb-00056* 0.41 0.03-14.05 F; Ruminococcus bromii (91.24)
Bb-00029 0.99 0.06 - 15.17  F; Anaeromasilibacillus senegalensis (85.10)
Bb-00036 0.14 0.00-6.18 F; Ruthenibacterium lactatiformans (85.66)
Bb-00025 0.17 0.00 - 20.67 P; Succinivibrio dextrinosolvens (97.11)
Bb-00019 0.06 0.01 - 39.49 P; Ruminobacter amylophilus (83.58)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, P: Proteobacteria. * OTUs
that were found to be present in high abundance in grain-fed Blue Creek heifers
(Shared OTUs)
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Table 5. Most abundant OTUs identified in the rumen of Blue Creek heifers fed a grass-
based diet (BCGrass)

OTuU Median Closest Valid Taxon (% ldentity)

(%) Range (%)
Bb-00002* 0.15 0.00 - 3.47  B; Prevotella ruminicola (90.32)
Bb-00040 0.17 0.00-5.42  B; Prevotella ruminicola (90.46)
Bb-00039 0.03 0.00-6.46  B; Prevotella brevis (89.96)
Bb-00043 0.03 0.00-2.64  B; Prevotella shahii (88.32)
Bb-00053 0.15 0.02-1.05 B; Prevotella ruminicola (92.79)
Bb-00042 0.02 0.00-2.75  B; Prevotella brevis (88.85)
Bb-00052 0.04 0.00-1.11  B; Prevotella paludivivens (90.49)
Bb-00050 0.01 0.00-1.36  B; Prevotella shahii (90.13)
Bb-00044 1.25 0.81-2.37 F; Hungateiclostridium thermocellum (84.88)
Bb-00046 1.24 0.00-1.36  F; Christensenella massiliensis (85.53)
Bb-00049 0.72 0.29-1.39 F; Hungateiclostridium thermocellum (84.56)
Bb-00054 0.48 0.21-1.03 F; Neglecta timonensis (84.94)
Bb-00045 0.23 0.00-2.19 F; Clostridium amylolyticum (80.84)
Bb-00003* 0.32 0.02-1.43  PI; Thermostilla marina (82.05)
Bb-00047 0.10 0.00-1.46  PI; Rhodopirellula lusitana (82.91)
Bb-00051 0.16 0.04-1.22 S; Thermodesulfobium narugense (77.82)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, P: Proteobacteria.
*OTUs that were found to be present in high abundance in grass-fed Standing Butte

heifers (Shared OTUs)
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Table 6. Most abundant OTUs identified in the rumen of Blue Creek heifers fed a grain-
based free-choice diet (BCGrain)

OoTuU

Median

Closest Valid Taxon (% ldentity)

(%) Range (%0)
Bb-00020* 0.48 0.00 - 33.59 B; Mediterranea massiliensis (84.28)
Bb-00057 0.12 0.02-16.46 B; Prevotella ruminicola (91.12)
Bb-00059 0.07 0.00-13.31 B; Barnesiella viscericola (85.74)
Bb-00062 0.14 0.00-9.47  B; Prevotella loescheii (87.95)
Bb-00067 0.11 0.00-6.65  B; Coprobacter fastidiosus (83.55)
Bb-00071 0.27 0.00-5.09  B; Parabacteroides chongii (83.58)
Bb-00072 0.00 0.00 -4.93  B; Prevotella brevis (89.75)
Bb-00056 3.77 0.26 - 23.93 F; Ruminococcus bromii (91.24)
Bb-00058 1.22 0.57-13.80 F; Negativibacillus massiliensis (87.55)
Bb-00060 0.66 0.19-12.40 F; Anaerocolumna xylanovorans (89.73)
Bb-00061 0.61 0.00-10.18 F; Colidextribacter massiliensis (89.73)
Bb-00063 0.67 0.12-8.95 F; Oscillibacter valericigenes (87.93)
Bb-00064 0.56 0.11-8.31  F; Streptococcus lutetiensis (100)
Bb-00029* 1.56 0.13-6.91 F; Anaeromasilibacillus senegalensis (85.10)
Bb-00068 0.35 0.01-6.37 F; Anaeromasilibacillus senegalensis (88.97)
Bb-00069 0.56 0.22-6.18 F; Anaeromasilibacillus senegalensis (86.30)
Bb-00070 0.84 0.05-5.96 F; Anaerocolumna xylanovorans (90.11)
Bb-00073 0.23 0.01-4.74  F; Anaeromasilibacillus senegalensis (89.72)
Bb-00074 0.00 0.00-4.58 F; Eisenbergiella massiliensis (92.44)
Bb-00065 0.17 0.00-6.95 PI; Rhodopirellula baltica SH 1 16S (80.36)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, Pl: Planctomycetes. *
OTUs that were found to be present in high abundance in grain-fed Standing butte

heifers (Shared OTUs)
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Table 7. Relative abundance of main OTUs shared between Standing Butte and Blue Creek
heifers fed a grass-based diet

Relative Abundance

OTU Median (%) vzflije Closest Valid Taxon (%ldentity)
SBGrass BCGrass

Bb-00018*  0.58 0.38 0.0036 B; Prevotella brevis (91.86)
Bb-00001*  0.04 0.00 <0.001 B; Prevotella brevis (89.16)
Bb-00014 0.31 0.24 0.0760 B; Prevotella ruminicola (91.84)
Bb-00011 0.22 0.40 0.0819 B; Prevotella ruminicola (89.87)
Bb-00002*  0.03 0.15 0.0004 B; Prevotella ruminicola (89.18)
Bb-00010* 0.24 0.01 <0.001 B; Prevotella shahii (89.94)
Bb-00008*  0.19 0.00 <0.001 B; Prevotella brevis (90.32)
Bb-00005 0.04 0.08 0.8094 B; Prevotella ruminicola (90.38)
Bb-00006*  0.02 0.01 0.0354 B; Prevotella ruminicola (91.87)
Bb-00012* 0.02 0.00 0.0001 B; Alistipes finegoldii (84)
Bb-00040*  0.00 0.17 <0.001 B; Prevotella ruminicola (90.46)
Bb-00042% 0.00 0.02 0.0006 B; Prevotella brevis (88.85)
Bb-00043*  0.00 0.03 0.0037 B; Prevotella shahii (88.32)
Bb-00050 0.00 0.01 0.2442 B; Prevotella shahii (90.13)
Bb-00052 0.04 0.04 0.7958 B; Prevotella paludivivens (90.49)
Bb-00053 0.13 0.15 0.4589 B; Prevotella ruminicola (92.79)
Bb-00039 0.00* 0.03 - B; Prevotella brevis (89.96)
Bb-00016* 0.46 0.16 0.0010 F; Saccharofermentans acetigenes (89.02)
Bb-00007# 0.19 0.04 0.0151 F; Pseudobutyrivibrio ruminis (96.5)
Bb-00009* 0.14 0.08 0.0219 F; Clostridium bolteae (91.92)
Bb-00015* 0.09 0.03 0.0040 F; lleibacterium massiliense (89.16)
Bb-00013* 0.06 0.01 <0.001 F; Ruminococcus flavefaciens (98.95)
Bb-00044* 0.27 1.25 <0.001 F; Hungateiclostridium thermocellum (84.88)
Bb-00045 0.19 0.23 0.5581 F; Clostridium amylolyticum (80.84)
Bb-00046" 0.35 1.24 <0.001 F; Christensenella massiliensis (85.53)
Bb-00049% 0.19 0.72 <0.001 F; Hungateiclostridium thermocellum (84.56)
Bb-00054*  0.19 0.48 0.0040 F; Neglecta timonensis (84.94)
Bb-00003 0.26 0.32 0.5239 PI; Thermostilla marina (82.05)
Bb-00047 0.08 0.10 0.5465 PI; Rhodopirellula lusitana (82.91)
Bb-00004* 0.02 0.00 0.0051 Fb; Fibrobacter succinogenes (98.41)
Bb-00017% 0.24 0.57 0.0011 C; Flexilinea flocculi (91.3)
Bb-00051 0.09 0.16 0.2213 S; Thermodesulfobium narugense (77.82)

SBGrass: Standing Butte Grass; BCGrass: Blue Creek Grass; Taxonomic Affiliations:
B: Bacteroidetes, F: Firmicutes, PIl: Planctomycetes, Fb: Fibrobacteres, C: Chloroflexi,

S: SR1.

* Below Detection
# Taxa showing a statistically significant difference by the Kruskal-Wallis sum rank test (p < 0.05)
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Table 8. Relative abundance of main OTUs shared between Standing Butte and Blue Creek
heifers fed a grain-based free-choice diet

Relative Abundance

P-

OTuU Median (%) value Closest Valid Taxon (% ldentity)
SBGrain BCGrain

Bb-00020 0.20 0.48 0.5931 B; Mediterranea massiliensis (84.28)
Bb-00021 0.11 0.40 0.1964 B; Prevotella buccalis (88.78)
Bb-00022*  0.77 0.05 <0.001 B; Prevotella ruminicola (97.90)
Bb-00023* 0.18 0.00 <0.001 B; Prevotella ruminicola (92.63)
Bb-00024*  0.93 0.00 <0.001 B; Prevotella brevis (89.96)
Bb-00038* 0.07 0.00 0.0001 B; Alistipes finegoldii (84.79)
Bb-00032* 0.02 0.00 0.0116 B; Prevotella copri (89.47)
Bb-00035 0.03 0.02 0.3165 B; Alistipes finegoldii (84.66)
Bb-00034" 0.04 0.00 <0.001 B; Prevotella veroralis (91.15)
Bb-00027 0.07 0.00* - B; Alistipes finegoldii (84)
Bb-00028 0.10 0.00* - B; Prevotella copri (88.16)
Bb-00033 0.26 0.00* - B; Alistipes finegoldii (85.01)
Bb-00037 0.00 0.00* - B; Bacteroides coprophilous (84.77)
Bb-00057% 0.06 0.12 0.0200 B; Prevotella ruminicola (91.12)
Bb-00062 0.04 0.14 0.3261 B; Prevotella loescheii (87.95)
Bb-00067% 0.02 0.11 0.0051 B; Coprobacter fastidiosus (83.55)
Bb-00072 0.03 0.00 0.0561 B; Prevotella brevis (89.75)
Bb-00071 0.00* 0.27 - B; Parabacteroides chongii (83.58)
Bb-00059 0.00* 0.07 - B; Barnesiella viscericola (85.74)
Bb-00029 0.99 1.56 0.2485 F; Anaeromasilibacillus senegalensis (85.10)
Bb-00036 0.14 0.00* - F; Ruthenibacterium lactatiformans (85.66)
Bb-00056" 0.44 3.77 0.0044 F; Ruminococcus bromii (91.24)
Bb-00058 1.50 1.22 0.9040 F; Negativibacillus massiliensis (87.55)
Bb-00060* 0.13 0.66 <0.001 F; Anaerocolumna xylanovorans (89.73)
Bb-00061" 0.00 0.61 <0.001 F; Colidextribacter massiliensis (89.73)
Bb-00063* 0.26 0.67 0.0102 F; Oscillibacter valericigenes (87.93)
Bb-00064*  0.05 0.56 <0.001 F; Streptococcus lutetiensis (100)
Bb-00068 0.34 0.35 0.9862 F; Anaeromasilibacillus senegalensis (88.97)
Bb-00069" 0.22 0.56 0.0055 F; Anaeromasilibacillus senegalensis (86.30)
Bb-00070* 0.14 0.84 0.0007 F; Anaeromasilibacillus senegalensis (90.11)
Bb-00074 0.01 0.00 0.2049 F; Eisenbergiella massiliensis (92.44)
Bb-00073 0.00* 0.23 - F; Anaeromasilibacillus senegalensis (89.72)
Bb-00019*  0.06 0.00 <0.001 P; Ruminobacter amylophilus (83.58)
Bb-00025% 0.17 0.00 <0.001 P; Succinivibrio dextrinosolvens (97.11)
Bb-00065*  0.02 0.17 0.0166 S; Rhodopirellula baltica (80.36)

SBGrain: Standing Butte Grain; BCGrain: Blue Creek Grain. Taxonomic Affiliations:
B: Bacteroidetes, F: Firmicutes, P: Proteobacteria, S: SR1.

* Below Detection
# Taxa showing a statistically significant difference by the Kruskal-Wallis sum rank test (p < 0.05)
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Table 9. Relative abundance of main OTUs shared between grass and grain-fed Standing

Butte heifers

Relative Abundance

OoTU Median (%) p-value Closest Valid Taxon (%ldentity)
Grass Grain

Bb-00018* 0.58 0.06 <0.001 B; Prevotella brevis (91.86)
Bb-00014 0.31 0.38 0.5934 B; Prevotella ruminicola (91.84)
Bb-00011# 0.22 0.00 <0.001 B; Prevotella ruminicola (89.87)
Bb-00002# 0.03 0.00 0.0074 B; Prevotella ruminicola (89.18)
Bb-00010* 0.24 0.06  0.0200 B; Prevotella shahii (89.94)
Bb-00008* 0.19 0.02  0.0494 B; Prevotella brevis (90.32)
Bb-00005* 0.04 0.01 0.0073 B; Prevotella ruminicola (90.38)
Bb-00006* 0.02 0.00 <0.001 B; Prevotella ruminicola (91.87)
Bb-00020* 0.03 0.20 <0.001 B; Mediterranea massiliensis (84.28)
Bb-00021# 0.00 0.11 <0.001 B; Prevotella buccalis (88.78)
Bb-00022% 0.24 0.77 0.0032 B; Prevotella ruminicola (97.90)
Bb-00023 0.15 0.18  0.3435 B; Prevotella ruminicola (92.63)
Bb-00024* 0.23 0.93  0.0036 B; Prevotella brevis (89.96)
Bb-00027% 0.02 0.07  0.0022 B; Alistipes finegoldii (84%)
Bb-00038* 0.02 0.07  0.0037 B; Alistipes finegoldii (84.79)
Bb-00033* 0.00 0.26 <0.001 B; Alistipes finegoldii (85.01)
Bb-00034* 0.00 0.04 <0.001 B; Prevotella veroralis (91.15)
Bb-00035* 0.01 0.03  0.0041 B; Alistipes finegoldii (84.66)
Bb-00037# 0.16 0.00 <0.001 B; Bacteroides coprophilus (84.77)
Bb-00001 0.04 0.00* - B; Prevotella brevis (89.16)
Bb-00012 0.02 0.00* - B; Alistipes finegoldii (84)
Bb-00028 0.00* 0.10 - B; Prevotella copri (88.16)
Bb-00032 0.00* 0.02 - B; Prevotella copri (89.47)
Bb-00016* 0.46 0.06  <0.001 F; Saccharofermentans acetigenes (89.02)
Bb-00007# 0.19 0.02 <0.001 F; Pseudobutyrivibrio ruminis (96.5)
Bb-00009% 0.14 0.00 <0.001 F; Clostridium bolteae (91.92)
Bb-00015* 0.09 0.00 <0.001 F; lleibacterium massiliense (89.16)
Bb-00013* 0.06 0.01 0.0011 F; Ruminococcus flavefaciens (98.95)
Bb-00026* 0.00 0.22 <0.001 F; Anaeromasilibacillus senegalensis (88.14)
Bb-00029% 0.25 0.99 0.0084 F; Anaeromasilibacillus senegalensis (85.10)
Bb-00031* 0.04 145  <0.001 F; Negativibacillus massiliensis (86.92)
Bb-00030 0.00* 0.41 - F; Colidextribacter massiliensis (87.50)
Bb-00036 0.00* 0.14 - F; Ruthenibacterium lactatiformans (85.66)
Bb-00019* 0.00 0.06 <0.001 P; Ruminobacter amylophilus (83.58)
Bb-00025 0.00* 0.17 - P; Succinivibrio dextrinosolvens (97.11)
Bb-00004# 0.02 0.00 <0.001 Fb; Fibrobacter succinogenes (98.41)
Bb-00003* 0.26 0.00 <0.001 PI; Thermostilla marina (82.05)
Bb-00017 0.24 0.00* - C; Flexilinea flocculi (91.3)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, P: Proteobacteria Fb: Fibrobacteres, Pl:
Planctomycetes, C: Chloroflexi.
* Below Detection
# Taxa showing a statistically significant difference by the Kruskal-Wallis sum rank test (p < 0.05)
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Table 10. Relative abundance of main OTUs shared between grass and grain-fed Blue

Creek heifers

Relative
OTU I\Aﬂl;ginaorlla(r:)ze) vrzlje Closest Valid Taxon (%ldentity)
Grass  Grain

Bb-00041*  0.13 0.00 <0.001 B; Prevotella ruminicola (90.3)
Bb-00052* 0.04 0.00 <0.001 B; Prevotella paludivivens (90.49)
Bb-00053*  0.15 0.00 <0.001 B; Prevotella ruminicola (92.79)
Bb-00039 0.03 0.00* - B; Prevotella brevis (89.96)
Bb-00040 0.17 0.00* - B; Prevotella ruminicola (90.46)
Bb-00042 0.02 0.00* - B; Prevotella brevis (88.85)
Bb-00043 0.03 0.00* - B; Prevotella shahii (88.32)
Bb-00050 0.01 0.00* - B; Prevotella shahii (90.13)
Bb-00055% 0.08 0.48 0.0236 B; Mediterranea massiliensis (83.71)
Bb-00072 0.00 0.00  0.5317 B; Prevotella brevis (89.75)
Bb-00057 0.00* 0.12 - B; Prevotella ruminicola (91.12)
Bb-00059 0.00* 0.07 - B; Barnesiella viscericola (85.74)
Bb-00062 0.00* 0.14 - B; Prevotella loescheii (87.95)
Bb-00067 0.00* 0.11 - B; Coprobacter fastidiosus (83.55)
Bb-00071 0.00* 0.27 - B; Parabacteroides chongii (83.58)
Bb-00045* 0.23 0.00 <0.001 F; Clostridium amylolyticum (80.8)
Bb-000467 1.24 0.45 0.0003 F; Christensenella massiliensis (85.53)
Bb-00049" 0.72 0.45 0.0313 F; Hungateiclostridium thermocellum (84.56)
Bb-00044% 1.25 0.23  <0.001 F; Hungateiclostridium thermocellum (84.8)
Bb-00054" 0.48 0.79 0.0263 F; Neglecta timonensis (84.94)
Bb-00058% 0.03 1.22 <0.001 F; Negativibacillus massiliensis (87.55)
Bb-00063* 0.05 0.67  <0.001 F; Oscillibacter valericigenes (87.93)
Bb-00064* 0.00 0.56 <0.001 F; Streptococcus lutetiensis (100)
Bb-00066" 0.16 156 <0.001 F; Saccharofermentans acetigenes (87.08)
Bb-00069% 0.27 0.56  0.0002 F; Anaeromasilibacillus senegalensis (86.30)
Bb-00070" 0.02 0.84 <0.001 F; Anaerocolumna xylanovorans (90.11)
Bb-00056 0.00* 3.77 - F; Ruminococcus bromii (91.24)
Bb-00060 0.00* 0.66 - F; Anaerocolumna xylanovorans (89.73)
Bb-00061 0.00* 0.61 - F; Colidextribacter massiliensis (89.73)
Bb-00068 0.00* 0.35 - F; Anaeromasilibacillus senegalensis (88.97)
Bb-00073 0.00* 0.23 - F; Anaeromasilibacillus senegalensis (89.72)
Bb-00074 0.00* 0.00 - F; Eisenbergiella massiliensis (92.44)
Bb-00047 0.10 0.00* - PI; Rhodopirellula lusitana (82.91)
Bb-00051 0.16 0.00* - Pl; Thermodesulfobium narugense (77.82)
Bb-00048* 0.32 0.02  <0.001 PI; Pirellula staleyi (82.26)
Bb-00065" 0.01 0.17 <0.001 S; Rhodopirellula baltica (80.36)

Taxonomic Affiliations: B: Bacteroidetes, F: Firmicutes, Pl: Planctomycetes, S: SR1.
* Below Detection
# Taxa showing a statistically significant difference by the Kruskal-Wallis sum rank test (p < 0.05)
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CHAPTER 3

Future Directions and Impact of Research

1. Introduction

The bison industry is contributing to the return of the bison on the Great Plains.
As bison producers build the herds to meet growing consumer demands, efforts are also
made to protect the integrity of the species and to gain a deeper understanding of their
biological, ecological, physiological, and behavioral characteristics. Decades of research
on cattle and other ruminant livestock species have shown that the gut microbiome plays
a very important role in the ruminant’s health by digesting plant biomass and benefiting
their immune system. An imbalance between beneficial and harmful microorganisms in
the gut can lead to disease and gastrointestinal disorders. Due to their complexity and
major roles in the fermentation of feeds, the microbial communities inhabiting the rumen
have remained a point of great interest. Research efforts have revealed several
connections between rumen microorganisms and host physiological functions, revealing
important insights on the central role of the rumen for ruminants’ productivity. However,
as far as the bison rumen microbiome is concerned, the rate of applicable research
information has not grown at the same pace as the growth of the industry. In the absence
of bison rumen microbiome research, many commercial bison producers have been
implementing practices without knowing potential effects that may be harmful to bison,
relying on studies that have been done in cattle to infer physiological responses in bison.
In an effort to offer more reliable information to the bison industry, the current study

aimed to compare the bacterial communities residing in the rumen of the North American



bison under two distinct diets: grass and free-choice grain-based. These results have

contributed to the budding research performed on the bison gut microbiome.

2. Experimental findings and future outlook

The results described in this thesis showed an important change in the diversity
and composition of bison rumen bacteria with the incorporation of grains into the diet.
While these easily fermentable ingredients and their by-products can improve
productivity, maximize host genetic potential, and enhance cost-efficiency in the short
term, they may have undesirable consequences for animal health. We showed that the
rumen microbiome of bison has more diverse bacterial communities when bison are fed
grass compared to grain rations. These microbial communities were replaced during the
grain diet phase by a less complex microbiota, including increased representation of
members of the Proteobacteria phylum. While the potential health impact of this loss in

diversity is still unclear, increases in the relative abundance of Proteobacteria may
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increase the risk of host disease, as this phylum includes bacterial species associated with

antimicrobial resistance genes and pathogenicity (Durso et al., 2012), imbalances in the

gut microbial community (dysbiosis), and inflammation (Winter and Baumler, 2014),.

As expected, a change in diet was an important factor associated with observed
rumen microbiota alterations. However, it was also observed that distinct bacterial
compositions were found in subpopulations of animals belonging to the same
experimental group. Effects associated with management, such as the feeding system
used (free choice), could be a potential factor, however, varying selectivity of ingredien

amongst animals of the same group and even a wide variety of chemical compounds

ts
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present in the grasses consumed may explain the differences in microbial communities
observed within the same experimental group. Distinct bacterial communities amongst
and within groups would indicate differences in metabolic potential, likely in response to
differences in substrate composition amongst different dietary ingredients. Since all bison
in this study were under free-choice regimens, investigating bison microbial communities
under a more strict grain-finishing system, such as daily feeding of a totally-mixed ration
(TRM), would be needed to compare and evaluate the effects of high-inclusion of grain

on gut microbial communities.

In bison production, research priorities may vary among segments of the industry,
but in order to generate more practical research, a basic understanding of the bacterial
communities responsible for rumen fermentation is needed. The use of a 16S rRNA gene
diversity approach combined with the availability of a high number of 16S rRNA
reference sequences only allowed us to infer metabolic function from taxonomy data
generated in OTUs closely related to a valid taxon. While this approach allowed to
identify a broad spectrum of bacterial species from a wide range of sample sources,
further investigations are needed to increase the accuracy of functional profiling for

OTUs that were phylogenetically too distant from a given known bacterial species.

3. Future directions and potential applications

Culturing microbial isolates is a technique that has so far proven very challenging
for rumen microorganisms. Thus, shotgun metagenomic sequencing may provide a more
comprehensive understanding with increased genome coverage that would offer greater

insight about microbiome functional potential. This approach, for instance, could assist in
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the understanding of mechanisms responsible for the higher efficiency of bison on low-
quality feed, including potential microbial metabolic functions such as
cellulose/hemicellulose hydrolysis, lignin breakdown, and de novo amino acid synthesis.
In addition to revealing the presence or absence of these functions in bison ruminal
bacteria, metagenomics can also uncover other metabolic capabilities, such as the
potential to utilize other substrates provided in feed or show the absence of specific
metabolic pathways that could indicate a requirement for certain nutrients. It would also
provide crucial insights into other findings; for instance, higher production of medium-
chain fatty acids (MCFASs) by bison rumen bacteria using cellulose was recently reported
(Rico et al., 2021). MCFAs with an odd number of carbons could be used by the host as
precursors for propionate, an important substrate for gluconeogenesis, and thus very
beneficial for ruminant performance. Overall, this knowledge would then allow the
identification of desirable ruminal bacterial species, permitting the development of
applications that would benefit pasture-based bison production. Potential innovations
could include the selection of bison with higher levels of desirable symbionts as a marker
of efficiency or the development of natural pre- or probiotics that would increase the
abundance or activity of desirable symbionts in the rumen of bison in a herd. While it
would require a longer timeline to implement, a prebiotic or probiotic approach could be
developed based on the results from the metagenomic analyses, aiming to increase the
abundance of beneficial bacteria in bison on pasture without needing selection. This
strategy would have the benefit of being flexible in optimizing herd performance.
Ultimately, ‘probiotic cocktails’ could be developed for inoculating calves at weaning in

conjunction with vaccination and other prevention treatments during processing.
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Meat products from grass-fed ruminants have been shown to provide additional
nutritional benefits. Since rumen microorganisms can metabolize a vast array of plant-
based substrates, including fatty acids and tannins, further improvements to the nutritive
quality of bison products could be achieved by selection of particular rumen bacteria that
could potentially produce various metabolic processes correlated with carcass

characteristics.

The effective contribution of bison ruminal bacteria identified as beneficial or
favorable based on their metabolic potential could be assessed by correlating their
abundance with animal performance and other physiological parameters. Since such
future studies would require a much larger scale, optimization of gPCR-based assays
would greatly facilitate screening high numbers of animals. If successful, this strategy

could allow the use of bacteria as indicators or markers of higher performance.

4. Impact of Research

In bison production, one major ranch management decision to be made is the
proportion of grass and grain that should be used when it comes to finishing rations. So
far, such decisions have been made based on consumer demand for healthier meat of
better quality and operation maintenance costs. The principles of feeding bison are
similar to feeding other ruminants, but the social structure, seasonal change effects, and
other factors have a greater impact on bison management compared to domesticated
ruminants (Carter et al., 2010). While bison producers understand that gradual
incorporation of grain in rations is critical for maintaining a healthy microbial ecosystem,

they may be less familiar with how much these populations are susceptible to changes in
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diet and to what extent this could potentially create unintended challenges to their
operations. This study represents a starting point towards a better understanding of the
rumen microbiome in bison. Future possible directions could include investigating the
potential effects of the bacterial diversity loss observed during the grain-feeding phase or
the changes in rumen metabolites and metabolic pathways through exploring the

genomes of the candidate bacterial species identified in this study.

As demonstrated in this thesis, nutritional changes can cause major alterations in
the diversity and abundance of rumen bacterial communities. Although no major negative
effects on animal health and productivity have been reported, bison producers may need
to take into consideration the impact that grain-based diets have on the diversity of rumen
bacterial species. To this end, identifying the genetic potential of these species, as
discussed earlier in this chapter, would provide greater insight into their metabolic
potential. Further research would provide necessary insights and potentially lead to the
development of improved strategies for higher feed efficiency and improved

management.
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