South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Electronic Theses and Dissertations

1984

Genetic Variation in Chickpea (Cicer arietinum L.) : Enzyme Marker Loci and Quantitative Traits

Solomon Tuwafe

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Recommended Citation

Tuwafe, Solomon, "Genetic Variation in Chickpea (Cicer arietinum L.) : Enzyme Marker Loci and Quantitative Traits" (1984). *Electronic Theses and Dissertations*. 5756. https://openprairie.sdstate.edu/etd/5756

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

GENETIC VARIATION IN CHICKPEA (CICER ARIETINUM L.):

Enzyme Marker Loci and Quantitative Traits

By

Solomon Tuwafe

A thesis submitted

in partial fulfillment of the requirement for the degree Doctor of Philosophy, Major in Agronomy,

South Dakota State University

1984

SOUTH DAKOTA STATE UNIVERSITY LIBRARY

Contract was highly and the Contraction of the second second

Dedicated to my wife

Mulumabet Fesseha

and my conderf 1 chi dren

.

egus Sciomon ad Merbebe Solomon

τ.

GENETIC VARIATION IN CHICKPEA (CICER ARIETINUM L.): Enzyme Marker Loci and Quantitative Traits

This thesis is approved as a creditable and independent investigation by a candidate for the degree, Doctor of Philosophy, and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.

Arvid Boe	Thesis	Advisor	Date
-----------	--------	---------	------

Alex	L.	Kahler,	Major	Date
		Á	dvisor	

.laurice L. Horton Head Date Plant Science Department

ACKNOWLEGMENT

I express my humble thanks to Dr. M. Horton Chairman, staff, and the office faculty of the Plant Science Department, for encouragement and assistance during the entire course of this investigation.

It gives me an immense pleasure in expressing my thanks to Dr. Alex. L. Kahler, my major advisor, for his unlimited advice, constructive criticisms and generous help in the preparation of the manuscript. Without his help it would have been more difficult to complete this thssis.

I am highly greatful to Dr. Arvid Boe, my thesis advisor, for providing the necessary facilities, support, encouragement and professional critisism during the period of this study.

My great appreciation and thanks are due to Dr. Michael Ferguson for sharing his knowledge of electrophoretic techniques and for providing laboratory and green house space. I extend my special thanks to Mrs. Joanne Matthees for her valuable advice and endless effort in teaching me the electrophoretic techniques.

I am greatful to Mr. Richard Wynia, Mr.Lon Hall, the grass crew, and especially to Mr. Lakew Desta for their endless help in nearly all aspects of this investigation.

I appriciate the effort and encouragement of the committee members, Dr. H. Baily, Dr. M. Horton, Dr. A. L. Kahler, Dr. A. Boe, Dr. J. Myers, and Dr. Dean Dybing for going through the manuscript and providing constructive critisisms. I am most thankfull to my wife Mulumabet Fesseha, and sons Negus and Merbebe for their help, patience, and encouragement throughout my school years. My wife also must be credited for typing the manuscript. Further I appreciate the Sahlu's family for their friendship and for encouraging me to intiate my studies at SDSU. I thank the Gustin's family for their personal concern for my family and me.

The cooperation and assistance in providing germplasm and breeding materials by Dr. K. B. Singh of ICARDA, Aleppo, Syria and Mrs. D. Bondioli of the W-6 Reginal Plant Introduction station, Pullman, Washington are greatly appreciated.

Finally, the assistantship granted by the plant science department for my studies is greatfully acknowleged.

TABLE OF CONTENTS

Page

Introduction	1
Litrature Review	4
Electrophoresis	4
Isozyme and Genetic Analyses	5
Agronomic Field Studies	13
Materials and Methods	19
Genetic Variation Analyses	19
Inheritance and Linkage	22
Genetic Variation Within and Among Pouplations	24
Field Studies	29
Results and Discussion	35
Monomorphic Enzymes	35
Polymorphic Enzymes	40
Inheritance Studies	40
Linkage Studies	48
Genetic Variability	55
Genetic Identity and Distance Analyses	70
Field Trials	79
Conclusion	116
Bibliography	119

LIST OF TABLES

Table

Page

1	Buffers, stains and fixing solutions used in the	
	chickpea electrophoretic study at Brookings, South	
	Dakota, during 1982 to 1984.	20
2	Pedigree of four chickpea crosses and one heterozygote	
	used to study the inheritance patterns of ADH, PGD and	
	PRX enzyme systems at Brookings, South Dakota, during	
	1982 to 1984	23
3	Population number, origin, source, number of	
	accessions per population and sample size per	
	population used to study distribution of allozyme	
	variation in cultivated chickpeas at Brookings, South	
	Dakota, during 1982 to 1984.	25
4	List of chickpea entries in CAT, CF3YT and CLYT trials	
	used in the agronomic studies at Brookings, Highmore	
	and Rapid City, South Dakota, during 1982 to 1983	30
5	Climatological observations during 1982 and 1983 crop	
	growing seasons.	31
6	F2 segregation ratio for three genotypes at the Adhl	
	locus in chickpea (Cicer arietinum L.)	43
7	F2 segregation ratio for three genotypes at Pgd1 locus	
	in chickpea (Cicer arietinum L.)	47

8	F2 segregation ratio for three genotypes at the Pgd2	
	locus in chickpea (Cicer arietinum L.)	47
9	F2 segregation ration for two genotypes and/or	
	phenotypes at the Prxl locus in chickpea (Cicer	
	arietinum L.)	54
10	F2 segregation ratio 1:2:1:2:4:2:1:2:1 for two locus	
	genotypes in chickpea (Cicer arietinum L.)	54
11	Genotype frequencies at loci Adhl, Pgdl, Prxl and Pgd2	
	in 27 populations of chickpea	57
12	Alleles and their migrational ranges for the four	
	polymorphic loci in chickpea	61
13	Allelic frequencies at loci Adhl, Pgdl, Prxl and Pgd2	
	in 27 populations of chickpea	62
14	Summary of polymorphic (P) verses monomorphic (M) loci	
	in 27 populations of chickpea.	65
15	Mean number of alleles per locus, percentage of loci	
	polymorphic and mean heterozygosity in 27 populations	
	of chickpea.	67
16	Theoretical Inbreeding Coefficients (Fn) and Observed	
	Fixation Indicies (F) at loci Adh1, Pgd1 and Pgd2 in	
	27 populations of chickpea	69
17	Matrix of four-locus genetic distance (below) and	
	Identify (above) coefficients	71
18	Matrix of distance coefficients averaged by continent.	76

19	Matrix of distance coefficients averaged by hemi-	
	sphere.	77
20	Means, ranges and coefficients of variation for plant	
	height, plant spread, plant stand, 100-seed weight,	
	and number of seeds/pod in F3YT at Brookings and	
	Highmore, South Dakota in 1983.	80
21	Seed yield for 16 F3 entries of chickpea (F3YT) grown	
	at Brookings and Highmore, South Dakota in 1983.	81
22	Analysis of variance of four agronomic traits in 16 F3	
	populations grown at Highmore and Brookings, South	
	Dakota in 1983	83
23	Phenotypic correlations among four agronomic traits in	
	16 F3 populations grown at Brookings and Highmore,	
	South Dakota, in 1983.	84
24	Path coefficients analysis of influences plant height,	
	plant spread, 100-seed weight and numbner of seeds/pod	
	upon seed yield in the chickpea F3 Yield Trial.	85
25	Means for seed yield, plant height, plant spread,	
	plant stand, and 100-seed weight of 19 entries of	
	chickpea grown at Rapid City and Highmore, South	
	Dakota in 1983	87
26	Variety mean squares, location mean and coefficients	
	of variation of five agronomic traits in 19 large-	
	seeded chickpea lines grown at Highmore and Rapid	
	City, South Dakota in 1983.	88

27	Analysis of variance for five agronomic traits in the	
	large-seeded trial grown at Highmore and Rapid City,	
	South Dakota in 1983	90
28	Estimate of variety (V) variety x location (V x L)	
	interaction, error (e) variances and broad sense	
	heritability for four traits in the chickpea	
	large-seeded trial.	91
29	Phenotypic correlations of four agronomic traits in	
	the large-seeded trial grwon at Highmore and Rapid	
	City, South Dakota in 1983.	92
30	Path coefficient analysis of the direct and indirect	
	influencies of plant height, plant spread, 100-seed	
	weight and seeds/pod upon seed yield in the Large-	
	seeded Chickpea Trial.	94
31	Mean, ranges and coefficient of variation for yield,	
	plant height, plant spread, plant stand, and 100-seed	
	weight in the chickpea adaptation trial at Brookings,	
	Highmore, and Rapid City, South Dakota during 1982 and	
	1983.	96
32	Means and ranks for yield for 16 entries in the	
	Chickpea Adaptation Trial (CAT) grown at four	
	locations, South Dakota, during 1982 and 1983	97
33	Means for seed yield, plant height, plant spread,	
	plant stand, and 100-seed weight for 16 entries in the	
	Chickpea Adaptation Trial grown at four locations,	
	South Dakota, during 1982 and 1983	98

34	Variety mean squares for five agronomic traits in CAT	
	grown at four different locations, South Dakota,	
	during 1982 and 1983	100
35	Analysis of variance over all locations of five	
	agronomic traits in 16 entries of CAT grown in South	
	Dakota during 1982 and 1983	100
36	Estimates of genotypic, genotye x location, error	
	variances, broad senses hertiability, means and	
	expected genetic advances under 5% and 10% selection	
	intensities for various traits	101
37	Phenotypic correlations for five agronomic traits in	
	CAT grown at Brookings, Highmore and Rapid City, South	
	Dakota during 1982 and 1983.	102
38	Path coefficient analysis of the direct and indirect	
	influences of plant height, plant spread, 100-seed	
	weight and number of seeds/pod upon seed yield in the	
	Chickpea Adaptation Trial (CAT)	104
39	Means (x), regression coefficients (bi), variances	
	accounted for by regression (R2), and deviation mean	
	squares (S2di) for yield and 100-seed weight in 15	
	entries of CAT at four location	105
40	Summary of data from F3YT, LYT, and CAT trials	115

LIST OF FIGURES

Figure

Page

1	Photographic representation of ACP zymogram in	
	chickpea	36
2	Phtographic representation of anodal EST zymogram in	
	chickpea.	37
3	Photographic representation of cathodal EST zymogram	
	in chickpea.	38
4	Photographic representation of 1DH zymogram in	
	chickpea.	39
5	A schematic represntation of ADH isozyme genotypes of	
	parent ILC 480 (11), parent ICC 76 (22) and F1 hybrid	
	(12) in chickpea at <u>Adh1</u> locus.	41
6	Starch gel zymogram of <u>Adh1</u> segregating for allozymes	
	<u>Adh1-1</u> and <u>Adh1-2</u> in F2 progeny of cross ICC 76 x ILC	
	480	42
7	A schematic representation of <u>Pgd1</u> isozyme genotypes	
	of parent FLIP 8272 (11), parent ILC 72 (22) and F1	
	hybrid (12) in chickpea.	45
8	Starch gel zymogram of locus Pgd1 segregating for	
	allozymes <u>Pgd1-1</u> and <u>Pgd1-2</u> in F2 progeny of the cross	
	ILC 72 x ILC 8272.	46

9	A schematic representation of Pgd2 genotypes (11 and	
	22 parental types and 12 a heterozygote) obtained from	
	PI 359295	49
10	Starch gel zymogram of locus Pgd1 segregating for	
	allozymes Pgd1-1 and Pgd1-2 and locus Pgd2 segregating	
	for allozymes Pgd2-1 and Pgd2-2 in progeny of selfed	
	heterozygote, PI 359295	50
11	A schematic representation of Prx1 genotypes of parent	
	ILC 72 (00), parent FLIP 7264 (11) and F1 hybrid (10)	
	in chickpea.	52
12	Starch gel zymogram of locus <u>Prx1</u> segregating for	
	Prx1-0 (null) and Prx1-1 in F2 progeny of the cross	
	ILC 72 x FLIP 8264.	53
13	A schematic representation of verified Adh1, Pgd1,	
	Pgd2 and Prx1 allozymes observed in cultivated	
	chickpeas.	56
14	Dendrogram showing genetic similarity relationships	
	among 27 populations based on allele frequency	
	distributions of four enzyme loci (Adh1, Pgd1, Pgd2	
	and <u>Prx1).</u>	72
15	Dendrogram showing genetic distance relationships	
	among the 27 populations based on allele frequency	
	distributions of four enzyme loci (Adh1, Pgd1, Pgd2	
	and <u>Prx1).</u>	74

The relationship of variety adaptation (regression 16 coefficient) and variety mean yield for 15 chickpea varieties. 113

GENETIC VARIATION IN CHICKPEA (CICER ARIETINUM L.): Enzyme Marker Loci and Quantitative Traits

Abstract

Solomon Tuwafe

Under the supervision of Dr. Alex L. Kahler and Dr. A. Boe

Chickpea (<u>Cicer arietinum</u> <u>L</u>), due to its nutritive quality, is one of the most important grain legume crop of the temperate and subtropical regions. Average productivity world-wide is about 710 kg/ha. In Central South Dakota, seed production was as high as 2500 kg/ha which is approximately twice the production rate obtained from areas where chickpea is commonly grown.

To improve productivity of chickpea at the international level, the crop has been included in the research mandates of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; and International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.

The objectives of this study were to determine inheritance relationships of isozyme polymorphisms, to compare and contrast allozyme diversity within and among germplasm collections, and to evaluate adaptability of chickpea introductions in South Dakota.

Starch gel electrohporetic methods were used to assay chickpea germplasm and breeding lines. Three enzyme systems, acid phosphatase (ACP), esterase(EST) and malate dehydrogenase (MDH), were monomorphic overall collections, and 3 enzyme systems alcohol dehydrogenase (ADH), 6-phosphogluconate dehydrogenase (PGD) and peroxidase (PRX) were polymorphic among the chickpea collections assayed.

Inheritance studies of polymorphic enzymes showed simple Mendelian segregation for 4 diallelic enzyme loci including <u>Adhl, Pgdl</u>, <u>Pgd2</u>, and <u>Prx1</u>. A total of 12 genotypes were observed among the four loci including <u>Adhl</u> (4 genotypes), <u>Pgd1</u> (3 genotypes), <u>Pgd2</u> (3 genotypes) and Prx1 (2 genotypes).

Estimation of fixation indicies and theoretical inbreeding coefficients supported the notion that chickpea is a highly selfpollinated crop with less than 1% of outcrossing. This result suggested that the mating system and selection are important factors maintaining genetic variability in chickpea.

Genotypic and allelic frequencies demonstrated the presence of appreciable genetic variation in chickpeas. Most of the genetic variability was observed in Middle Eastern (Palestine, Iraq, Lebanon, Syria, Jordan); Asian (Indian, Afghanistan, Pakistan, USSR) and East African (Ethiopia) germplasm. The observation of large amounts of genetic variability within closely situated regions suggests that genetic conservation strategies should stress collection of large numbers of populations in each agroecological zone.

Field trials demonstrated significant differences within and among five quantitative traits. Correlation and path coefficient estimates showed that seed size is an important character to consider when selecting for increased seed yield. Regression studies indicated that chickpea varieties respond to environmental variation. The results suggested that selection for yield and seed size should be carried out in favorable environments, because of genotype x environment interactions. This work provides information useful for planning efficient sampling strategies, for planning optimum methods of germplasm preservation, and for utilization of existing genetic variability in plant breeding programs.

INTRODUCTION

Chickpea (<u>Cicer arietinum</u> <u>L</u>.) is the fifth most important grain legume crop, after soybeans (<u>Glycine max</u>), ground nuts (<u>Arachis</u> <u>hypogea</u>), dry beans (<u>Phaseolus vulgaris</u>), and dry peas (<u>Pisum</u> <u>sativum</u>) of the temperate and subtropical regions of the world (54). The major production area is the Indian subcontinent which contributes over 80% of the world's total annual production of 6.25 million tons on 10.25 million hectares of land (108).

Two types, Kabuli (large, ram-shaped, and cream-colored) and Desi (small, angular, and dark-colored), of chickpea are grown throughout the world (96). Generally, the large-seeded, cream-colored chickpea (Kabuli) are grown in the Mediterranean region, which includes Southern Europe, Western Asia, and Northern Africa. The small-seeded, dark-colored types (Desi) mainly are grown in Ethiopia and on the Indian subcontinent which includes Bangladesh, Burma, India, and Pakistan.

Popova (86) reported four subspecies, thirteen geographical types, and sixty-four varieties of chickpeas; however, van der Maesen (111) considered Popova's varieties and geographical probes as subraces and races. In 1972, van der Maesen recognized 31 perennial and 8 annual species of Cicer.

Anatolia was considered a possible site of origin for chickpea (111). Vavilov's (112) centers of origin included the Mediterranean central Asian, the Veareastern and Indian centers, and a secondary center in Ethiopia. These centers of origin are now acknowledged as centers of diversity rather than centers of origin for cultivated chickpea.

- 1 -

Chickpeas commonly are raised on residual soil moisture with relatively minimal precipitation during the growing season. These marginal cultivation conditions, combined with natural selection, may have fixed adaptive gene blocks for specific regions, as observed in other crops by Frankel and Bennet (45). As a result, chickpeas exhibit narrow adaptation, which restricts development of lines for cultivation.

Chickpea varieties from geographically diverse regions generally are preferred for hybridization programs, assuming recovery of promising segregations. Two plant breeding approaches are usually used to produce new varieties. The first approach is to develop varieties with a wide genetic base. This allows adaption to a broad spectrum of environments. These varieties would be expected to show relatively low variability across environments and could easily be identified if selection trials represented the environmental population (62). The second is to develop several varieties, each highly adapted to a specific area with a relatively uniform environment.

Selection of parents, based on genetic divergence, has been used in cultivar development for many crop species. Conventionally, methods of identifying cultivars have been based on phenotypic expressions. However, these expressions are strongly influenced by the enviornment in which the plant is grown. Isozymes are useful markers because usually they are not affected by the environment (4,5).

More than 22 crop species have been studied electrophoretically (105). Most of the the electrophoretic work has been done with barley (Hordeum vulgare), corn (Zea mays) sunflower (Helianthus annus)

potato (Soloanum tuberosum L.) broad beans, (Vica faba), and soybeans (Glycine max). Kahler and Allard (66) have noted that enzyme marker loci are useful tools for studies of the extent of genotypic and allelic variability within and between different populations, and the geographical distribution of such variability. To the present time, enzyme marker loci have not been reported in chickpea. Determining the inheritance of isozyme polymorphism in chickpea was one object of this study.

Presently, genetic conservation is highly emphasized in many cultivated crops. Modern agriculture that deals with pure line breeding enhances extensive erosion of existing genetic resources, creating crops with narrow genetic bases that are susceptible to diseases, insects, and adverse environmental conditions (16, 66). Knowledge of the geographical distribution of genetic diversity may provide means for efficient sampling, preservation, and utilization of existing gene pools in breeding programs. The second objective of this study was to compare and contrast allozyme diversity within and among germplasm from different countries and trace the genetic differentiation across the geographical range of cultivated chickpea.

The third objective was to evaluate adaptability of diverse chickpea cultivars at several locations in South Dakota, with the hope of identifying germplasm adapted to cropping systems in the Northern Great Plains.

LITERATURE REVIEW

Electrophoresis

Electrophoresis began with the work of Tiselius in 1937 while analyzing serum protein in solution (106). Later, the method was improved by using stabilized medium, instead of solution, for separating each protein in components into a zone. Many forms of media, including filter paper, agar gel, starch grain, starch gel, cellulose acetate, and acrylamide gel, were used (85).

In 1955, Smithies (103) described zone electrophoresis using starch gel as supporting medium. In 1957 Hunter and Markert(59) demonstrated that enzymes could be visualized directly on starch gels, when treated with a specific histochemical stain. Since then, based on simplicity and clarity, starch gel electrophoresis has become the most popular technique used to study isozymes (18).

The term, isozyme, was first coined by Markert and Moller (75) to describe different molecular forms of enzymes with the same substrate specificity. More than twenty years have lapsed since the first genetic studies of plant isozymes. During this period, the study of isozymes has provided useful data for a broad range of basic and applied disciplines of plant science (46). In some of the more intensively studied taxa, such as maize, wheat, barley, and tomato, the inheritance has been established for many of the assayable enzyme systems. In addition, many loci have been mapped to specific points on chromosomes. Two enzyme loci, <u>Adh1</u> and <u>Adh2</u>, in maize have been cloned and sequenced. Numerical procedures for utilizing data derived from isozyme studies in plant populations also have advanced (105).

Isozyme and Genetic Analyses

There is a paucity of information on cultivar identification and genetic control of isozymes in legume species. However, there is a considerable amount of information on the characterization of individual seed protein in soybeans. In this section, enzymes which were used for chickpea are reviewed with particular attention paid to genetic control of isozymes in legume species.

Acid phosphatase (ACP): Many researchers have studied the activity of ACP in legume crops; among those researchers Broue et.al.(21), and Gorman and Kiang (48), reported that ACP zymograms in soybeans are complex, thus comparisons are difficult. However, Gorman and Kiang reported the presence of four ACP isozyme phenotypes in cultivated and wild soybeans. Malek and Singh (74) reported five ACP isozyme bands in normal soybean seed coats but no bands in a black seed coated mutant. Hilderbrand et. al. (57), and Gorman and et. al. (49), using disc electrophoresis, reported the presence of three codominant alleles at a single locus in soybeans. Heterozygotes showed the two parental phenotypes with no intermediate bands, indicating a monomeric structure.

Bassiri and Adams, (14) studied ACP banding patterns in primary leaves, stems and roots of common bean cultivars. They observed 10, 10 and 8 bands for leaves, stems and roots, respectively. All the bands observed in stems and roots were monomorphic for all cultivars studied. Seven of the ten ACP bands in the primary leaves also were monomorphic. Hence, due to the presence of a large number of monomorphic bands in

stems, roots and leaves, they concluded that the ACP enzyme system was not suitable for isozyme analysis in Phaseolus vulgaris.

Cherry and Ory (29) used starch gel electrophoresis to examine anodal ACP from individual peanut seeds grown in five geographic areas of the United States. They observed inter-varietal anodal isozyme variation for ACP activity from the variety, Virginia 56R, grown in Lousiana. The variation within and between most of the cultivars from the other areas were consistent and limited to three phenotypes.

In 1978, de Vienne (34) resolved ACP isozymes using polyacrylamide gels in alfalfa. Quiros (87) also reported the presence of 11 bands of ACP enzyme in leaf tissue of alfalfa.

<u>Alcohol dehydrogenase (ADH)</u>: Gorman and Kiang (47) examined seeds from 113 commercial soybean varieties with polyacrylamide slab gel electrophoresis. They reported that distinct variety specific isozyme patterns could be produced for the ADH enzyme system. Thus isozymes are stable varietal characteristics and could be used in varietal identification. They also reported that variant isozyme patterns are simply inherited.

Broue et. al.(21) used ADH to examine 20 populations, representing four soybean species (<u>G. canescens</u>, <u>G. clandestina</u>, <u>G</u>. <u>tabacina</u>, and <u>G. tomentella</u>,) by comparing isoenzyme phenotypes revealed by horizontal starch gel electrophoresis. They observed that three of the four species fit the traditional taxonomic grouping, but one of the populations (<u>G. canescens</u>) did not behave as a homogenous group. Some populations tended to group with <u>G</u>. <u>clandestina</u> whereas, others grouped less readily with G. tomentella.

Cherry and Ory (29) showed no ADH variation between several peanut cultivars, and Quieros (87) reported the presence of strong enzyme activity for ADH in alfalfa.

Esterase (EST): Fottrel (44) reported multiple forms of esterase, using starch gel electrophoresis from soybean root nodules. He reported a change in isozyme patterns during growth of the plant. Two groups of esterases (<u>Est1</u> and <u>Est2</u>) were detected by Ferrer-Monge (40). He reported that <u>Est1</u> produces three anodic bands with α and β naphthyl acetate, while <u>Est2</u> acts only on β naphthyl acetate, exhibiting three cathodic bands.

West and Garber (109) demonstrated the use of crude extracts of cotyledons from germinating seedlings of 15 species of <u>Phaseolus</u> to obtain isozymes of the esterase(EST) and leucine amino peptidase (LAP). They reported that species of <u>Phaseolus</u> could be identified by comparing both EST and LAP zymograms. Bassiri and Rouhani (15), using starch gel electrophoresis, studied differences between esterase isozyme patterns of 40 broad bean cultivars. They concluded that esterase is suitable for varietal identification and various genetic studies of broad beans. Bassiri and Adams (14), in their study of evaluation of common bean cultivar relationships, reported that cultivars could be grouped into different classes based on stem EST patterns.

Cherry and Ory (29) studied isozyme patterns of esterase in individual seeds from serveral peanut cultivars using polyacrylamide and starch gel electrophoresis. They reported that cathodal esterase could be used for identifying differences between varieties.

<u>Malate dehydrogenase (MDH)</u>: Reports on MDH activities are limited in legumes. Fottrell (43) observed three cytosol NAD active MDH electrophoretic bands from soybean nodules. Broue et. al.(21) reported the use of MDH zymograms in identification of <u>Glycine</u> species. Later, in 1982, Gorman et al. (49) reported the presence of only one isozyme pattern in the northern soybean cultivar.

Phosphogluconate Dehydrogenase(PGD) : Gorman et al. (49), observed two homozygous PGD isozyme phenotypes in <u>G</u>. max and two additional types in <u>G</u>. <u>soja</u>. They reported that the first phenotype contained two dominant alleles at a single nuclear locus while the third type was the result of recessive null alleles at the same locus.

<u>Peroxidase (PRX)</u> : Buttery and Buzzell (28) observed high and low peroxidase activities in soybean seed coats by polyacrylamide gel electrophoresis. Further, they found from their genetic analysis that high and low peroxidase activities in soybean seed-coats was controlled by a single locus, with a dominant allele producing low activity. In 1969, Brim et. al.(19), reported large differences in peroxidase isozymes among different soybean tissues.

Bassiri and Rouhani (15) studied differences between cathodal peroxidase isozyme patterns in broad beans and concluded that peroxidase is a useful enzyme for studying differences in broad beans.

In alfalfa, Quiros and Morgan (89) identified four loci by using progeny tests and crosses involving plants with different phenotypes. They reported Mendelian segregation for monomeric enzymes and reported linkage relationships between the four loci.

Martin and Jain (76) observed that rose clover populations introduced 30 years ago on the California rangeland showed significant genetic divergence for morphological and allozyme polymorphisms and quantitative traits. They reported that most genetic changes which occurred were shown in allelic frequencies, rather than in the occurence of many unique alleles. They concluded that colonization has produced rapid micro-evolutionary shifts, most likely due to local selective forces.

Broich and Palmer (20), in their studies of allelic frequencies at 10 loci common through out the genus <u>Glycine</u> subgenus <u>Soja</u>, observed that alleles for grey pubescence, low seed coat peroxidase level, and blunt pubescence tip, probably arose as mutations during the domestication of <u>G</u>. <u>max</u>. They reported that the seven loci studied were polymorphic throughout the subgenus, <u>soja</u>. Differences among collections of <u>G</u>. <u>soja</u> seemed to be the result of differing selection pressures. Cluster analysis of their allelic frequencies revealed two distinct groups within the subgenus corresponding to <u>G</u>. <u>soja</u> and <u>G</u>. <u>max</u>. Semi-wild accessions of <u>G</u>. <u>max</u>, while morphologically more similar to cultivated plants, clustered with samples of <u>G</u>. <u>soja</u>. The semi-wild accessions examined are thought to have arisen via hybridization between <u>G</u>. <u>soja</u> and <u>G</u>. <u>max</u>.

The following works on a few cereal crops are reviewed because of electrophoretic inheritance and genetic variability studies in legumes are rather limited and these works are similar to the present study.

Numerous studies involving isozymes in cereals, particularly barley and maize, have been conducted by many researchers. Kahler and Allard (66) and Kahler (64) electrophoretically assayed progeny arrays derived by self-pollinating barley plants which differed in isozyme phenotypes for enzymes EST, PGD, GOT and ACP. Inheritance studies showed that progeny arrays segregated as expected for single loci with codominant alleles. Linkage studies showed that esterase loci <u>Est1</u>, <u>Est2</u>, and <u>Est3</u> are tightly linked and that <u>Est4</u>, <u>Pgd1</u>, <u>Got1</u> and <u>Acp1</u> are inherited independently of each other and of the <u>Est1</u>, <u>Est2</u>, and <u>Est3</u> linkage group on chromosome 3.

Efron (37) reported the presence of three acid phosphatases <u>AP1, AP2</u> and <u>AP3</u> in maize pollen. Later, in 1970, he reported that <u>AP1</u> isozymes were under the control of locus <u>AP1</u>. El-Metainy and Omar (38) reported the inheritance of a second dimeric acid phosphatase locus <u>AP2</u>. They also reported that loci AP1 and <u>AP2</u> were not linked.

Kahler (65), using segregating F2 progeny arrays of five selffertilized single-cross F1 hybrids, reported the inheritance and linkage relationships among 11 enzyme loci of maize. He demonstrated that <u>Acp4</u> is a monomeric enzyme locus with at least six codominant alleles (allozymes). He also determined linkage relations of enzyme loci <u>Idh2</u>, Got1, 1dh2, Acp1, Prx1, Est1, Est4, Glu1 and Pgd1 with locus Acp4.

Kahler and Allard (66) demonstrated that esterase isozymes in the 30 parents of Barley Composite Cross V were governed by seven loci, and that the allelic status of individual seedlings can be determined precisely for each locus by starch gel electrophoresis. They also

reported that esterase isozymes are useful research tools for studies of the extent of allelic variability within different local populations of barley, and the geographical distribution of such variability.

Brown (24) stated that the wild progenitor of cultivated barley (<u>Hordeum spontaneum</u> Koch) is polymorphic for <u>Adhl</u> and <u>Adh2</u> in natural populations in Israel. The polymorphism is markedly differentiated geographically. He also observed that the two loci are tightly linked.

Kahler and Allard (64) studied 1506 accessions of domestic (Hordeum vulgare L.) and wild (<u>H</u>. <u>spontaneum</u> Koch) barley. They reported that, world-wide, the four esterase loci, <u>Est1, Est2, Est3</u> and <u>Est4</u>, have a minimum of 7, 12, 6 and 7 alleles, respectively. They concluded that there was no genetic difference at these four esterase loci between the domestic and the wild barley collections assayed. Substantial genetic polymorphism and heterozygosity occurred within many of the accessions. Patterns of geographical distribution of alleles at these four loci are not at random over both small and large geographical areas, including differences on a continental scale. Four, among 16 four-locus combinations of alleles, were found in excess and all other combinations were in deficiency on a world-wide basis.

Allard et. al. (9), in study of the relationship between the degree of environmental heterogeneity, and genetic polymorphism, observed monomorphism for different electrophoretically detectable variants in extreme xeric and mesic habitats. This indicated that genetic uniformity is one of the adaptive strategies that has been adopted by A. barbata.

Kahler et. al. (67), assayed 31 populations of <u>A</u>. <u>barbata</u> from Israel for seven enzyme systems, including ACP, EST, GOT, MDH, PGD, PGI and PRX. They concluded that isozyme variability was distributed in mosaic patterns and not related to geographical distances. Further, the mosaic patterns of isozyme variation were found to correspond closely to mosaic patterns of the habitat. This structuring of the genetic variability into multilocus combinations was attributed to the combined effects of directional and diversifying selection.

Brown and Munday (26) assayed allozyme variation at 25 genetic loci in 12 indigenous cultivars (land races) of barley from Iran. The data from an isozyme survey of 12 original samples from barley fields was compared directly with information on natural populations of the wild species, and with two composite crosses or breeders populations. The total allozyme diversity in this collection of land races was intermediate between the moderate levels in composite crosses and the high levels in <u>Hordeum spontaneum</u> from Israel. They concluded that land races are valuable genetic resources for plant breeding.

Agronomic Field Studies

Quantitative Variability

Singh and Tuwafe (97), in a study of variability for seed size and seed number per pod observed a range of 8.2 to 65.5 g for 100-seed weight and 0.9 to 3.0 for number of seed per pod, in over 3000 Kabuli chickpea germplasm accessions. They reported the importance of these two characters in chickpea improvement research. Large-seeded types bring higher prices both in domestic and foreign markets.

Singh and Tuwafe (98), in a study of collection, evaluation and maintenance of 3400 Kabuli accessions from 29 countries, reported wide variation for 25 characters. For example, they reported a range of 15 to 50 cm in plantheight, 15 to 60 cm in plant spread, 0.1 to 3.1 for seeds per pod, and 23 to 921 g grain yield per plot.

Kumar et. al.(71) observed a large coefficient of variation for biological yield, grain yield, and pods per plant, in that order; and a low coefficient of variation for plant height, days to flowering, and seeds per pod in 205 Desi and 125 Kabuli chickpea collections. They reported that there is appreciable variability for biological yield, grain yield, and pods per plant.

Pandey and Tiwari (82) estimated narrow sense heritability and expected genetic gains for ten characters from selections made in the parents, F1 , F2, BCl and BC2 generations, of five chickpea crosses. They observed varying results, due to seasonal variation and parental differences, and reported up to 66.8%, 96.0% 98.1% and 90.5% narrow

SOUTH DAKOTA STATE UNIVERSITY LIBRARY

sense hertitability estimates for plant height, plant spread, 100-seed weight and seed yield, respectively. Their results indicated that these traits are highly heritable and, perhaps, are controled by few genes.

Jain, et. al. (60) reported that the grouping of chickpea genotypes from different ecogeographical areas in the same cluster, confirmed a lack of parallelism between genetic diversity and geographical distribution. They stated that the pattern of clustering was highly influenced by environment. The cluster patterns of Desi and Kabuli types were different from each other, so crosses made between these two types may provide desirable segregants.

Gowda (52), using simple leaf character as a marker, obtained an estimate of 1.92% outcrossing.

Correlations

Josh (63) determined correlations between yield and yield components. He observed that number of pods, number of seeds, and branch numbers showed a high positive correlation with yield; which suggested that the number of pods per plant was a good selection criterion for yield in chickpea.

Gowda (52) observed that seed yield in chickpea was significantly and positively correlated with number of pods per plant, number of branches, and days to flowering. The correlation with 100- seed weight was low, but positive.

Singh et. al. (96) observed that yield in chickpea was positively correlated with pod number but was negatively correlated with 100-seed weight.

Pandey and Torrie (83) studied seed yield components in seven soybean cultivars, grown at three different seeding rates for three years. They used both correlation and path coefficient analysis to relate the direct and indirect effects of seed components on seed yield. Pods per unit area and seeds per pod had the greatest effect on seed yield in five and four of the nine set treatment combinations, respectively.

Jatasra et. al. (61) stated that yield was positively correlated with pods per plant, number of secondary branches per plant, number of primary branches per plant and seeds per pod in progeny arrays of fifty F2 populations of chickpea. Pods per plant showed positive association with seeds per plant.

Gowda and Pandya (53), in a study involving 49 pure strains of chickpea, found that number of pods per plant and 100-grain weight had larger effects on grain yield than any other component.

Asawa and Tiwari (12) computed correlation path coefficient, multiple regression, and multiple correlations in 10 cultivars and F3 segregating populations of chickpeas. They observed that yield was correlated with plant spread and number of seeds per plant in an F3 bulk population, at both phenotypic and genotypic levels.

As a whole, these studies suggested that factors such as seed weight, pods per plant, flowering period, harvest index, plant height, and plant spread should be taken into account in chickpea improvement programs.

Genotype x Environment Interaction

Although studies of genotype x environment interactions on chickpea have been conducted in the Indian subcontinent literature on these subjects is limited. For this reason, classical examples of self-pollinated crops, such as barley, wheat, and oats, are reviewed for this topic.

Finlay and Wilkinson (42) studied adaptation of 277 barley varieties from the world collection. The varieties were grown in replicated trials for several seasons at three sites. A linear regression of yield on the mean yield for each variety, site, and season, was computed as a measure of variety adaptation. They observed that variation in sensitivity was proportionately less among varieties with higher mean yield. Varieties with highest mean yield exhibited, within very narrow limits, a similar degree of adaptation to all environments over the wide range. They also found that varieties belonging to a given geographical region of the world showed similar adaptation. Their results provide a useful basis for plant introduction.

Frey (41) concluded that non-stress conditions resulted in retention of oat strains with wide adaptation whereas the stress conditions did not.

Krull et. al.(70) obtained yield data from 25 spring wheat cultivars grown in experiments at 16 locations in the Year East (two in Mexico, and one in Colombia). The cultivars highest for yield were identical in the four highest and in the four lowest productivity experiments. Therefore, they concluded that testing wheat lines for grain yield should be done on the test sites with high fertility and optimum management since the highest yielding cultivars were selected in such an environment.

Roy and Murty (90) compared selections in wheat made under different environmental conditions. They concluded that those made in high yielding environments performed well, even under rainfed conditions, because in the stress environment the high genotype x environment interaction prevented the identification of superior genotypes.

Vela-Cardenas and Frey(113) considered optimum environmental conditions for maximizing heritability and genetic gain from selection. They observed that, with the exception of 100-seed weight, all environments were about equally effective for genetic gain. There was perfect coincidence of heritability and genetic gain in the optimum environments. They also suggested that selection for traits, such as yield in one environment, may have little or no usefulness if the selected genotypes are used in different environments.

Allen et. al. (11), in yield tests under opitimal environments for oats, barley, wheat, soybean, and flax, observed that productivity in yield trial environments differed among unfavorable, intermediate, and favorable environments. Mean yields in the unfavorable environements were less than one half.

Tomar et. al. (107) studied phenotypic stability of chickpea yield and observed that large-seeded types had poor phenotypic stability. They suggested that large-seeded varieties should be grown under optimum environmental conditions, such as adequate moisture, warm temperature, and heavy soil, to maintain their large seed size. Under adverse environmental conditions, seed size was reduced.
MATERIALS AND METHODS

Genetic Variation Analyses:

This analyses was based on electrophoretic studies conducted during the period 1982 through 1984.

Electrophoresis Methods: The electrophoretic procedures used were based on those used in the laboratory of Dr. A.L. Kahler at the Northern Grain Insects Research Laboratory, Brookings. Starch gel electrophoretic assays were conducted on young seedlings grown in the greenhouse. The seedlings were excised for analysis when they attained 10 to 12 centimeters height between seven to eleven days after germination. Crude enzyme extracts were obtained by crushing stem tissues of seedlings in small petri dishes using plexiglass rods. The extracted juice was absorbed into filter paper wicks (10 x 3 mm, Beckman 319329). The wicks were inserted into gels with dimensions 0.9 cm x 16 cm x 18.5 cm. Gel and tray buffers (Table 1) were prepared in bulk. Materials for two starch gels were first prepared by suspending 80 g of hydrolyzed potato starch in 175 ml of cold buffer which was then mixed with 485 ml boiled buffer. This mixture was shaken vigorously to prevent formation of lumps. The gel mixture was vacuumed, for about 2 minutes, to remove air bubbles. The hot gel was poured into 0.9 x 16 x 18.5 cm molds and covered with plastic plates. Gels were prepared 12 hours prior to use and cooled to 4 degrees centigrade before wicks were inserted in a slot 4 cm from the Cathodal end. By using sponge cloth to provide the bridge between the gel and the tray buffer, electrophoresis was conducted at 4 C with constant current (DC) of 25 MA. After 15

Buffer		2 C 14 E 14 E 14 E
System I Gel buffer (g/l) 1.82 g Tris .43 g Citric acid	ph 8.2	3 - Est (-) (Esterase-Cathodal) .2 g Fast Blue RR salt 2 ml 1% α naphthyl acetate 3 ml 1% β naphthyl acetate
Tray buffer (g/l) 18.2 g Tris 3.8 g Citric acid	ph 8.5	10 ml 1M phosphate pH 5.5 buffer 84 ml Distilled water
System II Gel buffer (g/l) 1.01 g L. Histidine .38 g Citric acid	ph 5.5	4 - PRX (Peroxidase - Cathodal) 20 ml Oidianisidine 80 ml Distilled water 1 ml 3% hydrogen peroxide
Tray buffer (g/l)	ph 5.8	
10.09 g L. Histidine 3.8 g Citric acid		5 - MDH (Malate Dehydrogenase) .03 g - DPN 50 ml pH 7.0 MDH buffer 46 ml Distilled water
Stains		3 ml MTT 1 ml PMS
1 - ADH (Alcohol Dehydrogenase)		
.01 g DPN (NAD) 8 ml 1M Tris-HCL ph 7.4 l 3 ml 95% Ethanol	buffer	6 - PGD (Phosphogluconate dehydrognase) .025 g 6. phosphogluconic acid .01 g TPN (NADP)
1 m1 KCN (.005 g/m1) 3 m1 MTT (10 mg/m1 1 m1 PMS (5 mg/m1)		5 ml - 1M Tris-HCl pH 8.0 buffer 1.5 ml MTT 0.5 ml PMS
84 ml Distilled water		93.0 ml Distilled water
2 - Est(+) Esterase - Anodal		7 - ACP (Acid Phosphatase)
.2 g Fast blue RR salt		0.1 g Fast garnet GBC salt
5 ml l% α Naphthyl Aceta	te	1 ml 1% Mg Cl ₂
2 ml 1% β Napthyl Acetato	e	2 ml sodium acetate (NaAc) pH 4.7
10 ml 1M Tris-HCL pH 6.0	buffer	92 ml Distilled water
83 ml Distilled water		5 ml 1% Naphthyl acid phosphate
		Fixing Solution
		40% Ethanol

TABLE - 1: Buffers, stains and fixing solutions used in the chickpea electrophoretic study
at Brookings, South Dakota during 1982 to 1984

20

.

minutes, electrophoresis was discontinued and wicks were removed from the gel. Electrophoresis was then continued for another 6 hours, for buffer systems I and III. Upon completion of electrophoresis, gels were removed from the trays. Each gel was sliced horizontally into three or four portions and each portion was stained (for one or two hours depending on resolution and intensity of the bands) for a specific enzyme system. Staining recipes also are presented in Table 1. The stained gels were fixed in 40% ethanol.

Enzyme systems which were assayed included: esterase (EST-EC 3.1.1.1), peroxidase (PRX-EC 1.11.1.7), alcohol dehydrogenase (ADH-EC 1.1.1.1), acid phosphatase(ACP-EC 3.1.3.2), 6-phosphogluconate dehydrogenase (PGD-EC 1.1.1.44) and malate dehydrogenase (MDH-EC 1.1.1.37). Enzymes systems EST, PRX, and ADH were examined, using the tris-citric acid gel buffer system. The histidine buffer system was used for ACP, PGD, and MDH. Two zones of activity for PGD and a single zone of activity for ADH and PRX were used to identify genotypes at enzyme loci.

The system of nomenclature followed for enzyme loci, alleles, and genotypes, was identical to that used for maize (65). The first locus to be verified by segregation tests for any enzyme system was designated locus 1, the second locus 2, and so on. Alleles (allozymes) were designated by migration distances of their products (in cm from the origin) on zymograms and ere assigned laboratory numbers for computer analyses. For example, the gene symbols. <u>Adhl-11</u>, <u>Adhl-12</u>, and <u>Adhl-22</u> were assigned to the slow homozygote, intermediate heterozygote, and fast homozygote genotypes, respectively.

Inheritance and linkage:

Parental and F1 seeds of different chickpea lines were supplied by Dr. K.B. Singh, ICARDA (The International Center for Agricultural Research in the Dry Areas), Aleppo, Syria. Crosses between ILC 2678 and ILC 2653 were made at SDSU (South Dakota State University), Brookings, South Dakota. A double hetrozygote for <u>Adh1</u> and <u>Pgd2</u> was obtained from populations provided by W-6 Regional Plant Introduction, Pullman, Washington.

The inheritance of isozyme patterns of <u>Adh1</u> was studied in F1 hybrids and F2 progenies, in matings between ICC 76 (pink flowered) fast banded <u>Adh1-22</u> and ILC 480 (white flowered), slow-banded <u>Adh1-11</u> homozygotes. The inheritance pattern of <u>Pgd1</u> was studied in F1 hybrids and F2 progenies, in matings between FLIP 8272, slow banded <u>Pgd1-11</u> and ILC 72, fast banded <u>Pgd1-22</u> homozygotes. The inhertance of <u>Prx1</u> was studied in F1 hybrids and F2 progenies, in matings between ILC 72, null Prx1-00 and FLIP 7264, banded Prx1-11 homozygotes.

The genetic relationship between <u>Adhl</u> and <u>Pgd1</u> was studied in F1 hybrids and F2 progenies, in matings between ILC 2653, slow banded for <u>Adhl</u> and <u>Pgd1</u>, and ILC 2678, fast banded for both <u>Adhl</u> and <u>Pgd1</u>. The genetic relationship between <u>Adhl</u> and <u>Pgd2</u> was studied on an individual (PI 359259) heterozygoous for <u>Adhl-12</u> and <u>Pgd2-12</u>. Materials for the inheritance study are presented in Table 2.

Zones of enzyme activity (isozyme bands) are defined in terms of distance migrated (in cm) from the gel origin, which was the point at which the wick was originally inserted. Loci are identified within

TABLE 2:	Pedigree of	four	chick	pea c	rosse	s and	d one	e heter	ozygote	used	to	study	the
	inheritance	patte	rns of	ADH,	PGD a	and H	PRX e	enzyme	systems	at E	rool	kings,	South
	Dakota durin	ng 198	2 to 1	984									

	Flower	Seed		Loc	1 ⁺	
Generations	color	color	Adh1	Pgdl	Pgd2	Prxl
P, ICC 76	Pink	Black	22	11	11	11
F ICC 76 x ILC 480	Pink	Black	12	11	11	11
P ₂ ILC 480	White	Cream	11	11	11	11
P FLIP 8272	White	Cream	11	11	11	11
F, FLIP 8272 x ILC 72	White	Cream	11	12	11	11
P ₂ ILC 72	White	Cream	11	22	11	00
P ₁ ILC 2653	White	Cream	11	11	11	11
F ₁ ILC 2653 x ILC 2678	White	Cream	12	12	11	11
P ₂ ILC 2678	White	Cream	22	22	11	11
P ₁ ILC 72	White	Cream	11	22	11	00
F ₁ ILC 72 x FLIP 7264	White	Cream	11	12	11	11
P ₂ FLIP 7264	White	Cream	11	11	11	11
P[359 259 (double						
Heterozygote)	Pink	Brown	12	11	12	11

+ The 22,12, and 11 designation for Adhl signifies an Adhl-22 homozygote, Adhl-12 heterozygote and Adhl-11 homozygote, respectively, which normally would be written Adhl-2/Adhl-2, Adhl-1/Adhl-2 and Adhl-2/Adhl-2, respectively. The symbol 00 for Prxl designate a null (no band) genotype.

zones and alleles (allozymes) are designated by the migration distances of their products from the gel origin (65)

Genetic variation within and among populations:

This study was based on a large number of chickpea germplasm accessions which originated in 25 different coutries (Table 3). Six hundred fifty five accessions, representing 24 countries were received from ICARDA in 1982. During the same year, another 32 entries were obtained from Davis, California and 1500 USDA accessions from Pullman, Washington. Accessions received from Pullman were originally from India and Iran and were designated India-2 and Iran-2 to distinguish them from accessions of similar origin received from ICARDA. A total of 27 populations were established on the basis of origin. In each population, a maximum of 150 seedlings (3 seedlings per accession) were grown in the greenhouse.

Amounts of genetic variability within and between populations were determined using standard gene and genotypic frequency models. Genotype and allele frequencies at each locus were calculated after the number of individuals observed with each genotype had been determined. The models to estimated genotype frequencies (Hedrick) were as follows:

$$\hat{P} = \frac{N}{N}$$
, $\hat{H} = \frac{N_{12}}{N}$, $\hat{Q} = \frac{N_{22}}{N}$

TABLE - 3: Population number, origin, source, number of accessions per population and sample size per population used to study distribution of allozyme variation in cultivated chickpeas at Brookings, South Dakota, during 1982 - 1984

Population No.	Origin	Population Source	No. of Acc./ Population	Sample Size/pop.
1	Afghanistan	ICARDA	50	150
2	Algeria	ICARDA	14	42
3	Chile	ICARDA	12	36
4	Cyprus	ICARDA	6	18
5	Egypt	ICARDA	40	119
6	Ethiopia	ICARDA	26	78
7	Greece	ICARDA	9	27
8	India	ICARDA	50	150
9	Iran	ICARDA	49	147
10	Irao	ICARDA	22	66
11	Jordan	ICARDA	31	94
12	Lebanon	ICARDA	20	60
13	Mexico	ICARDA	9	28
14	Morocco	ICARDA	16	48
15	Pakistan	ICARDA	20	60
16	Palestine	ICARDA	31	93
17	Portugal	ICARDA	1	3
18	Spain	ICARDA	50	150
19	Sudan	ICARDA	6	20
20	Syria	ICARDA	50	150
21	Tunisia	ICARDA	32	96
22	Turkey	ICARDA	50	150
23	USA	ICARDA	22	66
24	USSR	ICARDA	39	117
25	Davis	U.C. Davis	32	96
26	India-2	Pullman	361	361
27	Iran-2	Pullman	341	341

Total

1389

P = frequency of 11 genotypes = frequency of 12 genotypes = frequency of 22 genotypes N = total number of individuals in the population $N_{11} = \text{number of 11 genotypes in the population}$ $N_{12} = \text{number of 12 genotypes in the population}$ $N_{22} = \text{number of 22 genotypes in the population}$

The estimated allelic frequency was calculated from the sample as:

When null genotypes were observed in a population, allele frequencies were estimated following Hedrick's (56) formula for two codominant alleles and one recessive null allele:

$$P_{1} = 1 - \left(\left(\frac{N_{22} + N_{23} + N_{33}}{N}\right)^{\frac{1}{2}}\right)$$

$$F_{2} = 1 - \left(\frac{N_{11} + N_{13} + N_{33}}{N}\right)^{\frac{1}{2}}$$

N)*

P3 =(-

where

 $\hat{p}_1, \hat{p}_2, \hat{p}_3$ are frequencies of the slow(1) fast(2) and null

alleles, respectively,

N₂₂, N₁₁, and N₃₃ are the number of 22, 11 and null genotypes, respectively,

N is total number of individuals in the population, and

N₂₃ and N₁₃ are the number of heterozygotes with fast/null(23) and slow/null(13) genotypes

When the sum of the allele frequencies did not equal unity, adjusted estimates were calculated by letting the deviation from unity be:

$$d = 1 - (\hat{p}_1 + \hat{p}_2 + \hat{p}_3)$$

this value was then used to obtain new estimates of allele frequencies as:

$$p_{1} = (1 + 1/2d) p_{1}$$

$$\hat{p}_{2}' = (1 + 1/2d) p_{2}$$

$$\hat{p}_{3}' = (1 + 1/2d) (\hat{p}_{3} + 1/2d)$$

Intrapopulational variation was measured by the average frequency of heterozygotes per locus and by the proportion of polymorphic loci in the population. Average frequency of the heterozygotes per locus is the expected frequency of heterozygotes that would exist under Hardy-Weinberg equilibrium, and an average of all loci sampled (78). The proportion of polymorphic loci was used as a measure of heterogeneity in a given population. The proportion of polymorphic loci was calculated using the no criterion limits of Selander et. al. (91); thus, all individuals within the population were considered to determine polymorphism.

To measure genetic differences between populations, Nei's (78) indices of 'genetic identity' (I) and 'genetic distance' (D) were used. Both statistics were calculated for all possible pair-wise comparisons between populations. The genetic identity of Nei's is:

$$I_N = \frac{Jxy}{(J_x J_y)^{\frac{1}{2}}}$$

where

$$J_{xy} = \sum_{i=1}^{n} P_{i.x}P_{i.y}$$
$$J_{x} = \sum_{i=1}^{n} P_{i.x}^{2}$$
$$J_{y} = \sum_{i=1}^{n} P_{i.y}^{2}$$

and Pi.x and Pi.y are the frequencies of the ith allele in population x and population y. The genetic distance between two populations is then defined as

$$D_{N} = -\ln(I_{N})$$
$$= \ln J_{xy} - \frac{1}{2}\ln J_{y} - \frac{1}{2}\ln J_{x}$$

The 27 populations were clustered using dendrograms on genetic distance (Fig.14). The observed genotypic comparisons, as defined by the four loci, <u>Adhl, Prx1, Pgd1</u>, and <u>Pgd2</u>, were determined and distance matrixes were generated from allelic frequencies, using Nei's distance and identity measures. Dendrograms based on allelic frequencies, are compared and contrasted.

Field studies:

Agronomic characters were studied in replicated field plantings. Materials for the study were supplied by ICARDA. Three trials, CAT (Chickpea Adaptation Trial), CF3YT (Chickpea F3 Yield Trial), and CLYT (Chickpea Large Seeded Yield Trial), consisting of both inbred and segregating populations, were evaluated for yield and other agronomic characters at Brookings, Highmore, and Rapid City, in South Dakota in 1982 and 1983.

CAT included 16 entries of chickpeas which originated from eight different countries, representing a wide range of environments (Table 4). These entries are provided to many countries by ICARDA and ICRISAT (International Crop Research Institute in the Semi-Arid Tropics) for testing widely adapted genotypes over a range of environments. This trial was conducted at Brookings and Highmore in 1982, and at Highmore and Rapid City in 1983.

CF3YT consisted of 14 F3 populations and two varieties in the 1983 trial. The populations included crosses of Aschocyta resistant lines to widely adapted, tall, and high-yielding genotypes. They were screened with the aim of providing early segregating populations to supplement national and regional programs.

	САТ		CF3	YT	CLYT	
Entry	Origin	Seed Type	Ent ry Cross #	Pedigree	Entry	Origin
ICC 4918	India India	Desi	x TH 53	ILC 1929 x ILC 256	ILC 35	Syria Spain
ICC 5003	India	Desi	x TH 84	ILC 191 x ILC 262	ILC 83	Spain
ICC 5810	India	Desi	x TH 85	ILC 191 x ILC 237	ILC 112	Spain
ICC 10136	ICRISAT	Desi	x TH 101	ILC 72 x ILC 191	ILC 116	Spain
ICC 11524	1CRISAT	Desi	x TH 104	ILC 72 x ILC 482	ILC 132	Spain
ICC 11529	ICRISAT	Desi	x TH 105	ILC 72 x ILC 484	ILC 134	Spain
			x TH 111	ILC 191 x ILC 202	ILC 135	Spain
ILC 482	Turkey	Kabuli	x TH 112	ILC 191 x ILC 482	ILC 136	Spain
LC 519	Egypt	Kabuli	x TH 123	ILC 191 x ILC 484	ILC 165	Tunisia
LC 1919	India	Kabuli	x TH 120	ILC 200 x ILC 484	ILC 171	Tunisia
LC 1922	Morocco	Kabuli	x TH 125	ILC 202 x ILC 482	ILC 254	Turkey
LC 1929	Syria	Kabuli	x TH 126	ILC 202 x ILC 484	ILC 451	Turkey
LC 1931	Turkey	Kabuli	x TH 146	ILC 72 x ILC 73	ILC 464	Turkey
ILC 1932	Jordan	Kabuli			ILC 496	Turkey
LC 1934	Iran	Kabuli	ILC -482	Acc.No.26780-68	ILC 613	Tunisia
LC 3256	Cyprus	Kabuli	Loc. Check	SD selection	ILC 620	Moroco
_	1				ILC 629	Tunisia
AT - Chic	knea Adant	ation Tri	91		ILC 2587	Turkey
$2F_YT = Ch$	icknea F-	Yield Tri	al		Loc.chekck	SD selection
3						
CLYT = Chi	ckpea Large	e Seeded	Yield Trial			

TABLE - 4: List of chickpea entries in CAT, CF_3YT and CLYT trials used in the agronomic studies at Brookings, Highmore and Rapid City, South Dakota, during 1982 to 1983

		Brool	kings			Highma	ore		Rapid C:	ity
	1982		1983	1	1982	2	198	983 1983		
Month	Av. Temp (^O F)	Prec (In)	Av. Temp (^o F)	Prec (In)	Av. Temp (^O F)	Prec (In)	Av.Temp (°F)	Prec. (In)	Av. Temp. (^o F)	Prec (In)
April	40.5	1.43	39.1	1.28	43.9	0.88	41.5	1.13	40.3	0.90
May	47.8	4.31	52.4	1.14	58.1	5.67	53.0	3.08	51.4	3.02
June	60.8	2.25	64.0	4.45	64.0	1.55	65.1	5.75	63.6	0.70
July	71.0	5.55	74.2	3.03	74.8	4.20	76.0	2.13	75.2	1.86
August	67.9	1.92	74.9	4.29	73.0	2.30	80.1	1.60	76.8	2.67
September	57.8	2.74	59.2	2.35	60.8	1.40	63.8	1.60	60.1	0.25
Total		18.19		16.54		16.0		15.0		9.40
Mean	59.3		60.63		62.4		63.26		61.23	

TABLE 5 Climatological observations during 1982 and 1983 crop growing seasons

Ninteen large-seeded entries, originating from four different countries (Table 4) and one 1982 South Dakota selection, were included in the CLYT (1983) trial conducted at Brookings and Highmore. This trial was designed to evaluate quality and hence marketability of crop.

All experiments were planted with a 4-row cone planter at a depth of 5 to 8 cm. Entries were planted in a randomized complete block design with four replications for CAT and CLYT and three replications for CF3YT. Plots were 3 m long, with four rows, and inter and intra row spacings of 30 and 10 cm, respectively. Only central rows of each plot were harvested for yield measurements.

In 1982, the CAT trial was planted on May 4 and 22, at Brookings and Highmore, respectively; and was harvested on August 30 at Brookings, and September 15 at Highmore. CAT was again planted in 1983 at Highmore and Rapid City, on April 22 and 31, respectively. The crop was harvested on August 15 at Highmore and on August 22 at Rapid City.

In 1983, the CLYT trial was planted at Highmore on April 22 and at Rapid City, on April 31. Harvesting was done at Highmore and Rapid City on August 15, and 22, respectively.

The CF3YT trial was planted at Brookings on May 10 and at Highmore on April 22, in 1983. The crop was harvested at Highmore on August 16, and at Brookings on September 20.

Data on plant height, spread, stand, seeds per pod, 100-seed weight, and grain yield were recorded. Procedures used to evaluate plant characters were as follows: a) plant height - average distance from soil surface to the top of the canopy at maximum growth; b) plant

spread - horizontal measurement of the canopy at maximum growth; c)
plant stand - % of plant population at maturity; d) seeds/pod - the
total seeds in 10 randomly chosen pods divided by the number of pods; e)
100-seed weight - weight of 100 randomly chosen seeds in grams.

<u>Statistical Analysis:</u> Means, ranges, and coefficients of variation were calculated for characteristics in each trial. Methods described by Steel and Torrie (104) were utilized for analysis of variance. Estimates of variance components were used to obtain broad sense heritabilities and expected genetic advance (2).

Heritability =
$$\frac{\sigma_{G}^{2}}{\sigma_{P}^{2}}$$

 $\sigma_{P}^{2} = \sigma_{V}^{2} + \frac{\sigma_{VL}^{2}}{L} + \frac{\sigma_{e}^{2}}{RVL}$

where

 σ_v^2 = Genetic variance due to variety σ_p^2 = Phenotypic variance σ_{vL}^2 = Variance due to genetic x location interactions. σ_v^2 = Error variance R = Replication L = Location

Y = Year

Genetic advance (GS) = $\frac{\sigma_G^2}{2} \times K\sigma p$,

where Kop is the selection differential in phenotypic standard deviations. K was given values of 2.06 and 1.76, which are expectations 5% and 1% selection differentials, respectively.

34

Simple correlation coefficients were obtained between all possible combinations of traits related to seed yield. These correlations were analyzed further, using Wright's (110) and Dewey and Lu's (33) methods to obtain direct and indirect path coefficients. Stability indices, linear regression, and deviations from regression(42) on yield and 100-seed weight were estimated for CAT. Estimates of b and s2d values were used as measures of general adaptation and stability, respectively. An entry with b=1.0 is considered to be adapted to all environments, whereas one with b>1.0 is better adapted to high yield environments. A stable variety has an s2d that is not significantly different from zero. An ideal variety is one with b=1.0, s2d=0, and is high yielding (81).

RESULTS AND DISCUSSION

MONOMORPHIC ENZYMES

Three enzyme systems, acid phosphatase (ACP), esterase (EST) and malate dehydrogenase (MDH) were monomorphic in all populations studied.

ACP: This enzyme was monomorphic and homogeneous among the populations assayed. At least eight bands were present in each individual. Band number 4 was very strong in intensity, whereas band number 8 was very faint (Figure 1).

EST: Both anodal and cathodal esterases were monomorphic in all cultivars studied. At least six bands could be observed in the anodal esterase. Band number 6 was the strongest in intensity (Figure 2). Cathodal esterase exhibited three bands. Band number 2 was the strongest in intensity (Figure 3).

MDH: MDH exhibited four anodal bands. The second band of the four was the lightest in staining intensity. The remaining three bands (Number one, three, and four) were all very strong in intensity (Figure 4). MDH also was monomorphic in all cultivars studied.

Dobzhansky (35) noted that adaptedness represents the ability of a population, organism, or genotype to survive and reproduce in a particular environment. If adaptedness is defined as the ability of a population to live and reproduce in a wide spectrum of environments then the observed fixed enzyme systems in chickpea could be considered to be a genetic mechanism for the existance and reproduction of the crop over a wide range of environments. Because the material for the present

Origin 0

FIGURE 2: Photographic representation of anodal EST zymogram in chickpea

hendin were from diller eres and ender the best of the line of the second desite in the first of the second reaction. They reacted the first first in the second desite in the first of the second reaction of the second second desite in the second second second second second second the second between the second second with the second term back second second second second between the second second second with the second second second second

Boutestiments Indiana

FIGURE 4: Photographic representation of MDH zymogram in chickpea

study was from different ecogeographical regions, the nature of selective forces operating under one ecogeographical region seems to be similar to the other regions. This suggests that these fixed enzymes perhaps are associated with certain morphological and physiological factors common to all varieties.

POLYMORPHIC ENZYMES

Alcohol dehydrogenase (ADH), 6-phosphogluconate dehydrogenase (PGD) and peroxidase (PRX) were found to be polymorphic. Inheritance and other genetic variability studies based on these enzymes are presented below.

INHERITANCE STUDIES

ADH: Table 6 gives observed genotype number and chi-square values for goodness of fit a 1:2:1 ratio for Adh1.

Parents and heterozygotes used were ICC 76, FLC 480, ILC 2653, ILC 2678, ICC 5810, and PI 359295. For gel runnning times of 6 hours, ILC 480 and ILC 2653 parental material exhibited bands at approximately 2.9 cm from the origin, whereas ICC 76 and ILC 2678 exhibited bands at approximately 3.9 cm. Bands observed at approximately 2.9 cm were considered "slow bands" and bands obtained at 3.9 cm were "fast bands". The slow and fast bands were assigned laboratory numbers 1 and 2, respectively.

Hybrids of 11 and 22 homozygotes sho ed both parental bands and an additional band at intermediate position (3.4 cm) to the parental bands (Figure 5). This 3-banded phenotype was designated 12 (the hybrid

Fig.5 A schematic representation of Alcohol dehydrogenase isoenzyme genotypes of parent ILC 480 (11), parent ICC 76 (22) and F₁ hybrid (12) in chickpea at Adhl locus

41

					G	enoty	pe				
Cross	s/Heter	οz	ygote	S	11	12	22	df	(Ch [·]	e < P ⁺ <	
ILC	2653	х	ILC	2678	14	16	10	2	40	2.40	0.30-0.50
ICC	76	x	ILC	480	10	19	11	2	40	0.15	0.90-0.95
ICC	5810				7	25	16	2	et b	3.45	0.10-0.20
ΡI	35929	5			8	14	9	2	4	0.36	0.70-0.90
Т	otal				39	74	46	2		1.38	0.50-0.70
Tet	otal erogen	e i	ty 3	$c_{[6]}^2 = -$	<u>39</u> 4.98	74	46 <p<0.< td=""><td>2 70)</td><td>-</td><td>1.38</td><td>0.50-0.7</td></p<0.<>	2 70)	-	1.38	0.50-0.7

<u>TABLE - 6</u>: F_2 segregation ratio for three genotypes at the <u>Adhl</u> locus in chickpea (Cicer arietinum <u>L</u>.)

P = probability of obtaining a large x^2 value

phenotype). F2 populations, obtained from selfed hybrids and progenies of selfed heterozygotes (ICC 5810 and PI 359295), segregated in the 1:2:1 ratio expected for a monogenic model (Table 6). These data demonstrated that ADH isozymes in the gel zone 2.9 to 3.9 cm from the gel origin are governed by a single locus with at least 2 codominant alleles. Figure 5 represents segregating individuals of the ICC 76 x ILC 480 hybrid. All parental lines showed single bands and heterozygotes triple bands. This indicates that ADH has dimeric subunit structure in chickpea. The gene symbol <u>Adh1</u> was assigned to this locus, with alleles <u>Adh1-1</u> assigned to the slow positioned at 2.9 cm; and Adh1-2 assigned to the fast band, positioned at 3.9 cm.

PGD: Parents, ILC 2653, ILC 2678, ILC 72, and FLIP 8264, were used to study the heritance of PGD isozymes. ILC 2653 and FLIP 8272 displayed bands at approximately 3 cm while ILC 72 and ILC 2678 exhibited bands at 3.6 cm from the origin for gel running times of 6 hours. Hybrids between parents with slow and fast bands produced both parental bands and a hybrid band with intermediate mobility (Figure 7). The heterozygote with a triple-banded phenotype was denoted 12. Eighty progeny from two selfed hybrids were assayed to determine whether PGD isozymes marked alleles at a single locus. The two families segregated according to the expected 1:2:1 monogenic ratio (Table 7). These data indicated that PGD isozymes, 3.0 to 3.6 cm from the origin, were controlled by a single dimeric locus with codominant alleles. The gene symbol, <u>Pgd1</u>, was assigned to this locus and alleles were designated Pgd1-1 and Pgd1-2, for slow and fast mobilities, respectively.

Fig.7: A schematic representation of <u>Pqd1</u> isoenzyme genotypes of parent FLIP 8272 (11), parent ILC 72(22) and F₁ hybrid (12) in chickpea

	Ge	noty	pe		Chi-Square		
Cross	11	12	22	df	1:2:1	< P <	
ILC 2653 x ILC 2678	10	24	6	2	2.40	0.30-0.50	
ILC 72 x FLIP 8264	9	18	13	2	1.20	0.50-0.70	
Total	19	42	19	2	0.20	0.90-0.95	

<u>TABLE 7:</u> F_2 segregation ratio for three genotypes at the <u>Pgdl</u> locus in chickpea (<u>Cicer arietinum L</u>.)

	Ge	noty	ре		Chi-square	
Heterozygote	11	12	22	df	1:2:1	< P <

<u>TABLE 8:</u> F_2 segregation ratio for three genotypes at the <u>Pgd2</u> locus in chickpea (Cicer arietinum <u>L</u>.) When accession PI 359295 was selfed, the progeny segregated according to the expected 1:2:1 monogenic ratio (Table 8). The band displayed at 4.2 cm was denoted 1, and the band displayed at 5.0 cm was denoted 2. Heterozygous individuals were triple-banded like the original heterozygote. This triple-banded phenotype was designated 12 (Figure 9). In segregation tests, parental types showed single bands and heterozygotes triple bands, which indicated dimeric subunit structure. The symbol, <u>Pgd2</u>, was assigned to this locus with alleles, Pgd2-1, (4.2 cm band) Pgd2-2 (5.0 cm band).

PRX: Parent FLIP 8264 was banded at position 2.0 cm from the origin and parent ILC 72 was null(no band) at the cathodal region of the gel. In crosses between these banded and bandless parents, the F1 hybrid was banded at 2.0 cm from the origin. Progenies from this F1 hybrid segregated in a 3:1 ratio (Table 9) indicating that the banding for this zone is governed by a single locus with at least one dominant allele (desginated 1), and one recessive (designated 0) null allele (Figure 11). The gene symbol, <u>Prx1</u>, was assigned to this locus. One parental line and heterozygotes exhibited a single band. Hence, progeny testing was necessary to identify homozygotes from the heterozygotes.

LINKAGE STUDIES

Linkage between <u>Adh1</u> and <u>Pgd1</u> was determined in an F2 family, deri ed from a selfed F1 hybrid obtained by crossing variety ILC 2653 and ILC 2678. Linkage between <u>Adh1</u> and <u>Pgd2</u> was determined from progenies obtained from selfing a double heterozygote PI 359295. Genotypes of the to parents ILC 2653 and ILC 2678 were Adh1-11 and

Fig.9 A schematic representation of Pgd2 genotypes (11 and 22 parental types and 12 a heterozygote), obtained from PI 359295

FIGURE 10: Starch gel zymogram of locus Pgdl segregating for allozymes Pgdl-1 and Pgdl-2; and locus Pgd2 segregating for allozymes Pgd2-1 and Pgd2-2 in progeny of selfed heterozygote, PI 359295. At Pgd2 locus, individuals c and e are 22 homozygotes; individuals g,h,i,j,k and 1 are 11 homozygotes; and a,b,d,and f are 12 heterozygotes

<u>Adh1-22</u>, respectively. The genotype of the double heterozygote, PI 359295, was <u>Adh1-12</u> and <u>Pgd2-12</u>. Linkage relationships of <u>Pgd1</u> and <u>Pgd2</u>, with <u>Adh1</u>, were determined by chi-square test of goodness-of-fit to a 1:2:1:2:4:2:1:2:1 ratio. Table 10 presents observed numbers of two locus genotypes for locus-pairs and Chi-square values for each family assayed. The Chi-square value for locus pair <u>Adh1, Pgd1</u> was 5.6 (0.60 < P < 0.70) and <u>Adh1, Pgd2</u> was 4.4 (0.90 < P < 0.95). Chi-square values calculated from the locus segregation patterns were non-significant; so locus <u>Adh1</u> is inherited independantly of the two PGD loci. Linkage relationships were not determined for locus pair Pgd1, Pgd2.

The results of inheritance and linkage studies demonstrated that the chickpea varieties assayed, and their crosses, differed in electrophoretic mobilities for at least three enzyme systems. ADH and PGD each are governed by codominant alleles at a single locus; whereas PRX is a monomeric enzyme with recessive null and single-banded dominant alleles present at a single locus. Individual seedlings can be evaluated for all three enzyme systems simultaneously, so that each individual can be assigned to a specific genotype at each locus. The electrophoretic methods used for this study provide a rapid and inexpensive method of screening a large number of individuals in a limited space with few personnel.

Table 9	F ₂ segreg	ation	ratio	for	two	genotypes	and/or	phenotypes	at	the	Prxl	locus	in
	chickpea	(Cicer	- ariet	tinur	n L.))							

	Genotype or	Phenotype		Chi-square			
Cross	00	11	df	(3:1)	< P <		
ILC 72 x FLIP 7264	4	16	1	.067	0.70-0.90		

<u>Table 10</u> F_2 segregation ratio 1:2:1:2:4:2:1:2:1 for two locus genotypes in chickpea (Cicer arietinum L.)

Cross hetro- Locus pair zygote	Cross hetro-	Genotype ⁺										
	zygote	IIII	1112	1122	1211	1212	1222	2211	2212	2222	x ²	<u>< P <</u>
Adh1, Pgd1	ILC 2653xILC 2678	4	8	2	3	10	3	3	6	1	5.6	0.60-0.70
Adh1, Pgd2	PI 359295	3	2	3	4	8	2	1	5	3	4.4	0.90-0.95

⁺Genotype 1111,1112 and 1122 represents the two locus genotype Adh1-11/Pgd1-11, Adh1-11/Pgd1-12 and Adh1-11/Adh1-22, respectively and so on for the rest of the genotypes
Genetic Variability

<u>Genotypic Frequencies:</u> Figure 13 gives a schematic representation of genotypes observed at each locus for each of the four polymorpic enzyme systems. A total of 11 genotypes were observed for the four polymorphic loci. Locus <u>Adh1</u> had four, <u>Pgd1</u> and <u>Pgd2</u> each had three, and <u>Prx1</u> had two genotypes. Genotypic frequencies for each locus are presented in Table 11.

Adh1: Overall frequencies of 0.888, 0.006, 0.103, and 0.004 were observed for genotypes Adh1-11, Adh1-12, Adh1-22, and Adh1-00 (null), respectively (Table 11). Genotype Adh1-11 was observed at very high frequencies in all populations studied. The lowest frequency (0.58) for Adh1-11 was exhibited by a population from Iraq. Populations from Cyprus, Greece, Mexico, Morocco, Portugal, Sudan, and Tunisia were all monomorphic for this genotype. Individuals with Adh1-12 genotypes were very rare among populations. The highest frequency (0.03) was obtained in populations from Ethiopia and India-2; the lowest frequency was 0.01 in the USSR population. As a whole, heterozygotes were very rare within populations and were observed in only 30% of the populations studied. The third genotype, Adh1-22 was found in relatively high frequencies (0.42, 0.32 and 0.37) in populations from Iraq, Afghanistan, and Ethiopia, respectively. This homozygous genotype was not present in populations from Cyprus, Greece, Mexico, Portugal, Sudan, and Tunisia; and the remaining populations had relatively low frequencies. The fourth genotype was a recessive null (no band). Only three populations, Ethiopia, India and Palestine, exhibited frequencies of 0.04, 0.03 and

Fig.13 A schematic representation of verified <u>Adh1</u>, <u>Pgd1</u>, <u>Pgd2</u> and <u>Prx1</u> allozymes observed in cultivated ch ckpeas

				- 01	_	1	loci						
Population			1	Adh 1	- 25		Pgd	1	P1	x1		P <u>g</u> d2	
ropulation	<u>N</u> *	11	12	22	00	11	12	22	11	00	11	12	22
Afghanistan	150	.67	.01	. 32	.00	.94	.01	.05	.85	.15	1.00	.00	.00
Algeria	42	.86	.00	.14	.00	.00	.00	.00	1.00	.00	1.00	.00	.00
Chile	36	.83	.00	.17	.00	.92	.00	.08	1.00	.00	1.00	.00	.00
Cyprus	18	1.00	.00	.00	.00	.83	.00	.17	1.00	.00	1.00	.00	.00
Egypt	119	.98	.00	.02	.00	.93	.00	.07	.95	.05	1.00	.00	.00
Ethiopia	78	. 66	.03	.27	.04	. 59	.01	. 40	1.00	.05	1.00	.00	.00
Greece	27	1.00	.00	.00	.00	1.00	.00	.00	1.00	.00	1.00	.00	.00
India	150	.83	.01	.13	.03	.93	.01	.06	.97	.03	1.00	.00	.00
Iran	147	.91	.02	.07	.00	.94	.00	.06	.98	.02	1.00	.00	.00
Iraq	66	.58	.00	.42	.00	. 44	.05	.51	.91	.09	1.00	.00	.00
Jordan	94	.82	.02	.16	.00	.55	.00	.45	1.00	.00	1.00	.00	.00
Lebanon	60	.85	.00	.15	.00	.28	.02	.70	1.00	.00	1.00	.00	.00
Mexico	28	1.00	.00	.00	.00	.89	.00	.11	1.00	.00	1.00	.00	.00
Morocco	48	1.00	.00	.00	.00	.88	.00	.12	.75	.25	1.00	.00	.00
Pakistan	60	.98	.00	.02	.00	1.00	.00	.00	.78	.22	1.00	.00	.00
Palestine	93	.98	.00	.09	.03	1.00	.00	.00	.86	.14	1.00	.00	.00
Portugal	3	1.00	.00	.00	.00	1.00	.00	.00	1.00	.00	1.00	.00	.00
Spain	150	.93	.00	.97	.00	.98	.00	.02	.98	.02	1.00	.00	.00
Sudan	20	1.00	.00	.00	.00	1.00	.00	.00	1.00	.00	1.00	.00	.00
Syria	150	.80	.00	.20	.00	. 38	.00	.62	1.00	.00	1.00	.00	.00
Tunisia	96	1.00	.00	.00	.00	.97	.00	.03	1.00	.00	1.00	.00	.00
Turkey	150	.94	.00	.06	.00	.95	.00	.05	.98	.02	1.00	.00	.00
USA	66	.94	.00	.06	.00	.80	.00	.20	1.00	.00	1.00	.00	.00
USSR	117	.94	.01	.05	.00	.89	.02	.09	80	.20	1.00	.00	.00
Davis, Ca.USA	96	. 89	.00	.11	.00	.94	.00	.06	.97	.03	1.00	.00	.00
India-2	361	.83	.03	.14	.00	.98	.01	.01	.87	.13	.97	.01	.02
Iran-2	341	.86	.02	.12	.00	.87	.01	.12	.97	.03	1.00	.00	.00
Overall	2766	.888	.006	.103	.004	.847	.005	.147	.949	.051	.99	.004	.003

TABLE 11: Genotype frequencies at loci Adhl, Pgdl, Prxl and Pgd2 in 27 populations of chickpea

+ = total number of plants assayed per population

0.03 respectively. Therefore, null alleles were very rare at this locus.

<u>Pgd1:</u> Overall frequencies of 0.847, 0.005 and 0.147 were observed for <u>Pgd1-11, Pgd1-12</u> and <u>Pgd1-22</u> genotypes (Table 11). Homozygote <u>Pgd1-11</u> was the most frequent genotype observed. Algeria, Greece, Pakistan, Palestine, Portugal, and Sudan were fixed monomorphic for this genotype. Populations from Lebanon, Iraq, Jordan and Ethiopia had frequencies of 0.28, 0.44, 0.55 and 0.59, respectively. All remaining populations exhibited much higher frequencies of the <u>Pgd1-11</u> genotype. The <u>Pgd1-12</u> heterozygote was rare (0.01-0.02) in populations from Afghanistan, Ethiopia, India, India-2, and Iran-2, Lebanon, and USSR. The highest frequency of this genotype was 0.05 and was observed in the population from Iraq.

<u>Pgd2:</u> Only India-2 was polymorphic for this locus (Table 11). Frequencies of 0.97, 0.01 and 0.02 were observed for <u>Pgd2-11, Pgd2-12</u> and <u>Pgd2-22</u> genotypes, respectively, in the India-2 population. All other populations were monomorphic for the <u>Pgd2-11</u> genotype.

<u>Prx1</u>: Locus <u>Prx1</u> had two phenotypes a dominant banded type, desginated <u>Prx1-11</u>, and a recessive null (no band) (Table 11). Overall frequencies for <u>Prx1-11</u> and null were 0.949 and 0.051, respectively. Thirteen populations were monomorphic for <u>Prx1-11</u> and the remaining populations showed very high frequencies of the <u>Prx1-11</u> phenotype. Heterozygotes could not be detected because banded types were dominant to the null types. Recessive null genotypes were observed at relatively high frequencies, 0.25 and 0.22, in populations from Morocco and Pakistan, respectively. Populations from Afghanistan, Palestine and India-2 showed null genotypes with frequencies of 0.15, 0.14 and 0.13, respectively. <u>Allelic Variability and Distribution Patterns</u>: Alleles and their migrational ranges for the four polymorpic loci are presented in Table 12. A schematic representation (Figure 13) exhibited three alleles (2.9 cm, 3.9 cm and null) at locus <u>Adhl</u>, two alleles (3.0 cm and 3.6 cm) at locus <u>Pgd1</u>, two alleles (2.0 cm and null) at locus <u>Prx1</u>, and two alleles (4.2 cm and 5.0 cm) at locus <u>Pgd2</u>. Allele frequencies at each of the four variable loci are presented in Table 13. A total of nine alleles were found at <u>Adhl</u>, <u>Pgd1</u>, <u>Pgd2</u> and <u>Prx1</u> loci in the 27 chickpea populations. Six codominant and two recessive null alleles were observed. The null alleles were exhibited only by <u>Adh1</u> and <u>Prx1</u> loci.

Table 13 shows that allele <u>Adh1-1</u>, at locus <u>Adh1</u>, was found in all populations studied. The other two alleles (<u>Adh1-0</u> and <u>Adh1-2</u>) at locus <u>Adh1</u> were rare. The overall frequency of allele <u>Adh1-1</u> was 0.85, while the frequency of allele <u>Adh1-2</u> was 0.10. Allele <u>Adh1-0</u> was rare, with a frequency of 0.05. The null allele (<u>Adh1-0</u>) was observed in only three populations, Ethiopia, 0.55; India, 0.48; and Palestine, 0.48.

At locus Pgd1, allele Pgd1-1 was the most frequent, 0.85, overall populations. Populations Syria, Iraq, and Jordan (22%) were fixed for this allele.

Thirteen (48%) populations were fixed for allele Prx1-1 at locus Prx1. The overall frequency of the allele was 0.85. No population was fixed for the null allele.

Allele <u>Pgd2-1</u> was fixed monomorphic in all populations, except India-2. In this population the frequency of allele Pgd2-2 was 0.02.

Locus	Allele number	Isczyme position(cm)	Migration range (cm)
Adhl	0	0.0	null
	1	2.9	2.7-3.1
	2	3.9	3.7-4.1
Pgd1	1	3.0	2.8-3.2
	2	3.6	3.4-3.8
Pgd2	1	4.2	4.0-4.4
	2	5.0	4.8-5.2
Prxl	0	0.0	null
	1	2.0	1.8-2.2

Table-12: Alleles and their migrational ranges for the four polymorphic loci in Chickpea

Isozyme position measurements were taken on unfixed gels

			_	_		Loci				
	+		Adh 1		Pgd	11	Pr	xl	Pg	d2
Populatio	on N	1	2	0	1	2	1	0	1	
Afghanis	tan 150	. 68	. 32	.00	.94	.06	. 62	. 38	.00	. 00
Algeria	42	. 86	. 14	.00	1.00	.00	1.00	.00	1.00	.00
Chile	36	.83	.17	.00	.92	.08	1.00	.00	1.00	.00
Cyprus	18	1.00	.00	.00	.83	.17	1.00	.00	1.00	.00
Egypt	119	.98	. 02	.00	.93	.97	. 78	.22	1.00	.00
Ethiopia	78	. 33	. 12	. 55	.61	. 39	1.00	.00	1.00	.00
Greece	27	1.00	.00	.00	1.00	.00	1.00	.00	1.00	.00
India	150	. 46	.06	.48	.93	.07	. 83	.17	1.00	.00
Iran	147	.92	.08	.00	.94	.06	. 86	.14	1.00	.00
Iraq	66	.58	. 42	.00	. 46	.54	. 70	. 30	1.00	.00
Jordan	94	. 83	.17	.00	. 55	. 45	1.00	.00	1.00	.00
Lebanon	.60	. 89	.11	.00	. 29	. 71	1.00	.00	1.00	.00
Mexico	28	1.00	.00	.00	. 89	.11	1.00	.00	1.00	.00
Morocco	48	1.00	.00	.00	. 88	.12	. 50	. 50	1.00	.00
Pakistan	60	.98	.02	.00	1.00	. 00	. 53	. 47	1.00	.00
Palestin	e 93	. 52	.00	. 48	1.00	.00	.63	.37	1.00	.00
Portugal	3	1.00	.00	.00	1.00	.00	1.00	.00	1.00	.00
Spain	150	.93	.07	.00	.98	.02	. 86	.14	1.00	.00
Sudan	20	1.00	.00	.00	1.00	.00	1.00	.00	1.00	.00
Syria	150	. 80	. 20	.00	. 38	. 62	1.00	.00	1.00	.00
Tunisia	96	1.00	. 00	.00	.97	.03	1.00	.00	1.00	.00
Turkey	150	.94	.06	.00	.95	.05	. 86	.14	1.00	.00
USA	66	.94	.06	.00	. 80	. 20	1.00	.00	1.00	.00
USSR	117	. 94	.06	.00	.90	.10	. 55	. 45	1.00	.00
Davis	96	. 89	.11	.00	.94	.06	. 83	.17	1.00	.00
India-2	361	. 84	.16	.00	.98	.02	.64	. 36	0.98	.02
Iran-2	341	. 87	.13	.00	. 88	.12	. 82	.18	1.00	.00
Overall	2766	0.85	0.10	0.05	0.85	0.15	0.85	0.15	1.00	0.00

TABLE - 13: Allelic frequencies at loci Adhl, Pgdl, Prxl and Pgd2 in 27 populations of chickpea

+ = total number of plants assayed per population

Among the 9 alleles observed at the four loci, the most frequent alleles, over all countries, were <u>Adhl-1, Pgdl-1, Prxl-1</u> and <u>Pgd2-1</u>. The pattern of distribution of alleles indicated that populations from Middle Eastern countries had a high frequency of allele <u>Pgdl-1</u>. Asian countries had a high frequency of allele <u>Prxl-1</u>. The mean number of alleles per locus (Table 15) ranged from 1.0, in populations from Greece, Portugal, and Sudan, to 2.0, in India and India-2.

The identification of populations rich in alleles would be useful for conserving germplasm resources and for certain selection programs (17). It would facilitate selection for high levels of recombination and thus, the ability to generate new and more highly adapted genotypes. The information on the number of alleles also is important for choosing genetically contrasting populations, in order to study the physiological and ecological consequences of different degrees of genetic variability. Regions with large numbers of alleles are of interest because they indicate high genetic diverisity. Regions with unique or rare alleles also are of interest from the point of view of genetic conservation (17). Observed differences in allelic composition between close geographically situated regions suggests that genetic conservation strategies should stress sampling large numbers of populations from each agroecological zone.

Genetic Polymorphism: Table 14 shows which loci were polymorphic versus monomorphic in each of the 27 populations assayed. For example, populations from Greece, Portugal and Sudan were monomorphic over all loci assayed. All populations except India-2, were monomorphic for locus <u>Pgd2</u>. Hence, India-2 exhibited the maximum polymorphism, based on the four loci studied. Populations from Afghanistan, Egypt, India, Iran, Iraq, Spain, Turkey, USSR, Davis and Iran-2 were polymorphic for three loci. Single locus polymorphism (minimum polymorphism) was exhibited by populations from Algeria, Cyprus, Mexico and Tunisia; while the remaining populations were polymorphic for at least two loci. Over all loci, eighty nine per cent of the populations were polymorphic.

Polymorphism seemed to be highest in Asian and Middle Eastern countries. This is not surprising because these areas are considered centers of origin and diversity. Thus, nearly all countries which are considered to be in the centers of origin or diversity, such as India, Turkey, USSR, and Afghanistan, showed high percentages of loci polymorphic. Those centers which were monomorphic (Greece, Portugal, Sudan and Tunisia) are far from these centers. The introduction of a genotype to a new environment usually involves natural selection favoring the introduced genotype. Founder effects of this type might be one reason for low levels of polymorphism with in and among populations.

	*		Lo	cus		
Population	N	Adhl	Pgai	Pgaz	Prx	Overall
Afghanistan	150	Р	Р	М	Р	Р
Algeria	42	Р	М	М	М	Р
Chile	36	Р	Р	М	М	Р
Cyprus	1.8	М	Р	М	М	Р
Egypt	119	Р	Р	М	Р	Р
Ethiopia	78	Р	Р	М	М	Р
Greece	27	М	М	М	М	М
India	150	Р	Р	М	Р	Р
Iran	147	Р	Р	М	Р	Р
Iraq	66	Р	Р	М	Р	Р
Jordan	94	Р	Р	М	М	Р
Lebanon	60	Р	Р	М	М	Р
Mexico	28	М	Р	М	М	Р
Morocco	48	М	Р	М	Р	Р
Pakistan	60	Р	М	М	Р	Р
Palestine	93	Р	м	М	Р	Р
Portugal	3	м	М	М	М	М
Spain	150	Р	Р	М	Р	Р
Sudan	20	м	М	М	м	М
Syria	150	Р	Р	М	М	Р
Tunisia	96	М	Р	М	М	Р
Turkey	150	Р	Р	М	Р	Р
USA	66	Р	Р	М	М	Р
USSR	117	Р	Р	М	Р	Р
Davis	96	Р	Р	М	Р	Р
India-2	361	Р	Р	Р	Р	Р
Iran-2	341	Р	Р	М	Р	Р
of populations polymorphic		74	78	4	48	89

TABLE - 14: Summary of polymorphic(P) verses monomorphic(M) loci in 27 populations of chickpea

here and

1

* number of plants sampled per population

<u>Heterozygosity</u>: Estimates of the proportion of heterozygotes obtained in this study are presented in Table 11. In general, proportions of heterozygotes were very low. The overall frequency of heterozygotes at the <u>Adh1</u> locus was only 0.006. Populations from Ethiopia and India showed maximum heterozygote frequencies of 0.03 each. Iran and Iran-2 populations had heterozygote frequencies of 0.02; whereas Afghanistan, India, and USSR exhibited frequencies of 0.01.

The overall frequency of heterozygotes for <u>Pgd1</u> was 0.005. The highest frequency (0.05) was obtained in the Iraq population. Populations from Lebanon and USSR had heterozygote frequencies of 0.02; Whereas heterozygote frequencies in populations from Ethiopia, India, India-2 and Iran-2 were 0.01 at this locus.

Population India-2 had a heterozygote frequency of 0.01 at locus Pgd2, and all other populations were devoid of heterozygotes at this locus. Ten populations (37%) had mean heterozygosity levels greater than zero. For example, mean heterozygosity levels over all loci were 0.012, 0.011 and 0.010, in populations from India-2, Iraq and Ethiopia, respectively (Table 15). USSR and Iran-2 populations each had a mean heterozygosity of 0.006, whereas Afghanistan and India populations showed 0.005 heterozygosity. To determine whether heterozygotes are in excess or deficient, the theoretical single-locus inbreeding coefficients (Fn) must be computed. This assumes that only the mating system affects the relationship between gene and genotypic frequencies. Fn values are then compared with fixation indices (F), which are computed from observed genotypic frequencies (5). In order to compute

Population	Sample size	Mean Number of Alleles per Locus(SE)	Percentage of Loci Polymorphic	Mean Hetrogyzosity (Direct count)
Afghanistan	150	1.8(0.3)	75	.005
Alegeria	42	1.3(0.3)	25	.000
Chile	36	1.5(0.3)	50	.000
Cyprus	18	1.3(0.3)	25	.000
Egypt	119	1.8(0.3)	50	.000
Ethiopia	79	1.8(0.5)	50	.010
Greece	27	1.0(0.0)	0	. 000
India	150	2.0(0.4)	75	.005
Iran	147	1.8(0.3)	75	. 00 3
Iraq	66	1.8(0.3)	75	.011
Jordan	94	1.5(0.3)	50	.005
Lebanon	60	1.5(0.3)	50	.004
Mexico	28	1.3(0.3)	25	.000
Morocco	48	1.5(0.3)	50	.000
Pakistan	60	1.5(0.3)	25	.000
Palestine	93	1.5(0.3)	50	.000
Portugal	3	1.0(0.0)	0	.000
Spain	150	1.8(0.3)	50	.000
Sudan	20	1.0(0.0)	0	.000
Syria	150	1.5(0.3)	50	.000
Tunisia	96	1.3(0.3)	0	.000
Turkey	150	1.8(0.3)	75	.000
USA	66	1.5(0.3)	50	.000
USSR	117	1.8(0.3)	75	.006
Davis	96	1.8(0.3)	75	.000
India-2	361	2.0(0.0)	50	.012
Iran-2	341	1.8(0.3)	75	.006

TABLE 15: Mean number of alleles per locus, percentage of loci polymorphic and mean heterozygosity in 27 populations of chickpea

theoretical inbreeding coefficients, precise estimates of the proportion of selfing versus out crossing are required. In chickpea, such estimates are limited. However, Gowda (51) reported a 1.92% outcrossing rate based on morphological studies. Generally it is expected that chickpea is a highly self-pollintated crop; perhaps over 99 percent self-fertilized. Assuming 2% or less outcrossing rates, a range of theoretical inbreeding coefficients (Fn) and estimated fixation indices (F)for.Adh1, Pgd1 and Pgd2 were calculated (Table 16). The overall fixation indicies for Adh1 (0.976) and Pgd1 (0.980) were similar to the theoretical inbreeding coefficient of 0.980 expected for 1% outcrossing. These results generally support the notion that chickpea populations are predominantly self fertilizing. More precise estimates of a mating system are needed before estimates of selection can be obtained. It is likely that the mating system and selection are important factors involved in the maintenance of variability in chickpea.

	Observ	ed Fixation Ind	ices (F)	Theoretical Inbreed-
Population	AdhI	PgdI	PgdZ	ing Coefficients (Fn)
Afghanistan	0.977	0.911	1.000	
Algeria	1.000	1.000	1.000	
Chile	1.000	1.000	1.000	
Cyprus	1.000	1.000	1.000	
Egypt	1.000	1.000	1.000	.01 = 0.980
Ethiopia	0.932	0.979	1.000	.02 = 0.961
Greece	1.000	1.000	1.000	0.03 = 0.942
India	0.980	0.923	1.000	.04 = 0.923
Iran	0.864	1.000	1.000	.05 = 0.905
Iraq	1.000	0.889	1.000	.06 = 0.887
Jordan	0.929	1.000	1.000	07 = 0.869
Lebanon	1.000	0.951	1.000	08 = 0.852
Mexico	1.000	1.000	1.000	.09 - 0.835
Morocco	1.000	1.000	1.000	10 = 0.820
Pakistan	1.000	1.000	1.000	.11 = 0.802
Palestine	1.000	1.000	1.000	12 = 0.786
Port ugal	1.000	1.000	1.000	13 = 0.770
Spain	1.000	1.000	1.000	.14 = 0.754
Sudan	1.000	1.000	1.000	.15 = 0.739
Syria	1.000	1.000	1.000	.16 = 0.724
Tunisia	1.000	1.000	1.000	.17 = 0.709
Turkey	1.000	1.000	1.000	.18 = 0.695
USA	1.000	1.000	1.000	.19 = 0.681
USSR	0.911	0.889	1.000	.20 = 0.667
Davis	1.000	1.000	1.000	
India-2	0.889	0.745	0.745	2 · · · · · · · · · · · · · · · · · · ·
Iran-2	0.912	0.953	1.000	.95 = 0.026
Overall	0.976	0.980	0.276	

TABLE 16:Theoretical Inbreeding Coefficients (F_n) and Observed Fixation Indices (\hat{F})
at loci Adhl, Pgdl and Pgd2 in 27 populations of chickpea

Fn

where F_n = theoretical imbreeding coefficient

 $\frac{1-t}{1+t} = 1 - \frac{\text{Hij}}{2\mu_j q_j}$

 \hat{F} = observed fixation indices, H = observed heterozygotes

2pq = Hardy-Weinberg heterozygotes, t=outcrossing rate

Genetic Identity and Distance Analyses

Table 17 gives a matrix of four locus genetic identity (78) and genetic distance measures for the 27 populations studied. Mean Genetic Distance (D) values ranged from 0.034 (Iran-2) to 0.151 (Ethiopia). The highest absolute value of (0.296) was observed between Lebanon and Palestine populations. Genetic distance values were near zero for country pairs such as Greece and Portugal, Iran and Spain, Portugal and Sudan, and Spain and Turkey.

Overall, the results showed that D was not related to geographical distances. Thus, two populations which were geographically separated, like Greece and Sudan, were genetically similar. On the other hand, populations which were not separated geographically, like Palestine and Lebanon, were gentically different from each other. Kahler et. al. (67) in their studies of associations between isozyme phenotypes and environment, observed that isozyme variability in the slender wild oats was distributed in mosaic pattern and was not related to geographical distances. The same pattern also was observed by Bekele (17) in his study of genotypic composition and genetic distance between Ethiopian barley land races.

A dendrogram, Figure 14, based on the unweighted pair group method was applied to genetic distance and genetic similarity measures given in Table 17. The 27 populations were assigned to four major groups (clusters), based on their overall mean D value. Ethiopia, India and Palestine populations were clustered into one group. Lebanon, Iraq, Jordan and Syria were assigned to a second group; and Afghanistan, TABLE 17: Matrix of four - locus genetic distance(below) and Identity (above) coefficients

Ira-2	.976	066.	166.	. 989	.996	.872	886.	.936	666.	516.	.956	188.	.989	.965	696.	.921	.988	166.	.988	.912	.989	866.	. 989	116.	1.00	186.	
Ind.2	.992	.966	.960	.953	.989	.822	.963	.927	.984	. 890	.902	.118.	.958	.984	566.	.944	.963	186.	.963	.847	.962	.984	. 156.	666.	. 989		•10.
Dav	.976	. 992	066.	. 988	. 998	.862	166.	.931	1.00	.898	.946	.870	066.	.965	512	166.	166.	1.00	166.	.896	266.	1.00	186.	116.		.012	100
USS	876	941	616	944	382	961	196	902	6/6	890	896	827	946	00.	866	931	947	216	947	847	947	9/3	940		024	800	024
10	100	909	966	8	206	690	166	126	066	305	086	926	8	126	928	600	166	906	166	944	666	989	-1	3	014	150	210
1	966	593	066	166	966	858	566	116	.00	605	945	010	994	198	898	925	- 566	8	. 566	894	566	1	012	028	100	(10	(00)
5	916	566	166	166	606	860	8	924	395	990	948	075	666	. ((6	543	<u>.</u>	8	566	.00	. /68	-	\$00	100	055	600	600	012
-	849	. 269	532	. [[[Hon .	868	808	836	969	856	266	. (66	918	836	110	611	800	500	808	-	601	-	059	191	E E	167	C 60
Ping	- 6[6	. 996	. 066	995	900	956	8	925	- 566		941	865	966		945	305	8	995	•	119	. 8	500	010	055	600	. 900	. [10
-	968	. 166	. 606	. 686	. (66	855	566	516	8	. 6/8	. 606		566	960	. 0/6	928	<u> 1</u> 395 1	• 	500	122	005	8	014	029	100	015	. [[00]
2	. 606	. 996	. 066	566	900	956	8.	925	995		941	965	. 866	. ((6	945	305	•	500	. 00	. 611	00.	200	010	055	600	- WEO	. [10
Pat	941	912	. 106	. 068	927	. 360	905	985	926	828	. 926	745		920	. ((6	i	101	0/6	101 0	252	103	. 6 0	6	0/2	. (10	059	. 110
-	912	166	928	. 169	982	. 200	945	. 68	996	<u>854</u>	868	. 68/	. 666	166	• i	110	8	. 200	- B20	210	059	032	0/6	100	029	. 600	. [[[
1	964	922	921	216	116	116	. [[6		960	- 6/0		821	. [[6		ŝ		170	042	0/1	100	0/0	041	0/0	002	100	810	. / (10
	935	592	666	8	990	870	966	921	994	11	962	668	-1	0/0	100	III	100	800		100	100	(00	1 100	057	110	944	110
-	12	19	05	1 1			65	10	. 11	. 6[10		8	66			46	52 -	46		139	40		- 16			21
1	98	45 .6	12 .9	2 . 5	9	-	-	85	10 .	5. 15		12		26	2. 2	10		1	19	60	54 .1	1.	22 .(-	13	M	1. 1
=		2 5	11 9	60	8	5. 10	5.1 9	54 .0	192	1	151	. 99	0.		3	. 16		10.	19	He	52 .0	24 .0	05 .0	61	0	1.	0. 16
1	66	9. 16	26	9. 160	96	5. [90	9 560	3. 20	-	11	054 .0	9. 90	1. 100	142		. 8/0	1	8				8	. 110	1. 620	8	016	02 .0
N	5- 626	5.	5.	116	925	. [[925		990	160	123	. 223	00	. 126	110	910	. 6/0	0000	. 6/0	100	. 610	0/0		104	066 0	. 110	0000 .0
5	. 686	966	06	566	996	35	-	6/0	300	101	191	146		1/0	1	101	8	8	. 00.	119	8	500	010	055	600	8	1 110
-	100	. 5/6	666		3	-1	151	5	49		. 560		40	256	260	-	51 0	120	151 0		152 0	155		221	150	161	90
10	968	. 689	98	38	-	5/1	210	. 0/0	003	121	280	Ξ	013	120	• • • • • •	0/1	012		012	20	210	- 200	. 610	016		112 -	
100	000	989		-•	015			880	010	120	. 000	· 690	100		010		100		. 100	10	000	8	10			20	1 10
10	952	966		800	021	100	- 10	- 190	010		. 010	101	80		0/6	<u>[]</u>	10	012	. 110	- 210	010	110	002	064	110	042	600
AI9.	954		005	. [10		. 351	500	065	. (00	- <u>861</u>	. 050	150 .	. 800		066	. 600	. 500	. 100		115	. 200	. 800	012	062	. 800	. 500	110
Arg	•	048	050	0/4		180	064	075	033	680	108	210	. 690	038	030	062	064	- 100	064	165	. 590	035	. 690	023	026	800	025
Pop.	Arg	AI9	Ch1	CYP .	E gy	Eth.	Gre	Ind	Ira	Irg	Jor	Leb .	Nex.	Mor .	Pak .	Pal	Por .	Spe .	Sud .	Syr .	Iun .	Tur .	USA .	USS .	Dav	ind2 .	Ira2

India-2, Morocco, USSR and Pakistan were assigned to a third group. All other populations were clustered into a fourth group. Figure 15 gives a dendrogram of the relative genetic distance between populations. The populations were divided into two main branches. Each branch consisted of several secondary and tertiary branches positioned at specific distances from the base of the tree. Populations with low mean D values were located near the base of the tree around 0.00, while those with intermediate D value were located toward the middle of the tree, between 0.13 and 0.19. Those with high D values were located at 0.19 and extend to 0.32 on the distance tree. The distance tree shows that populations from India and Iraq were different from populations from Portugal, Sudan and Greece. The countries appear to be grouped according to centers of origin. For example, Middle Eastern countries, such as Jordan, Syria, Lebanon and Iraq, fell into one cluster. Ethiopia and India, which were considered as two of the centers of origin or diversity for chickpea by Vavilov (112), were in another cluster; and Afghanistan, USSR, Pakistan, India-2, and Morocco occurred in a third cluster. The fact that Morocco occurred in the Asian cluster is unexpected. This result was probably due to the irregularity in allele frequencies in the Moroccoan population. The latter population showed the highest D value (0.230) for locus Prx1, which probably raised the overall D value of this population to a level similar to the Asian population.

Figure 15:

Dendrogram showing genetic distance relationships among the 27 populations based on allele frequency distributions of four enzyme loci (Adhl, Pgdl, Pgd2 and Prxl)

The populations from different countries seemed to fall into five major continental groups (Table 18). Four populations, Davis, USA, Mexico, and Chile represent the American group. Populations from Spain, Portugal, Greece, and Cyprus fall into the European group. The African continent was represented by Moroccan, Algerian, Tunisian, Egyptian, Sudanese and Ethiopian populations; while the Asian group was represented by Afghanistan, Pakistan, India, and India-2. Although the Middle East is geographically not a continent in itself, several countries belong to the general region and so are considered a continental group for the purposes of this study. The latter continental group includes Turkey, Iraq, Syria, Lebanon, Palestine, Jordan, Iran and Iran-2. Based on the average of all four loci, a maximum distance coefficient of 0.090 with the range of 0.0 to 0.295 genetic distance (distance coefficients), was obtained for the Middle Eastern countries. The African group showed the second highest (0.077), while Europe showed the lowest (0.005) distance coefficient values. The highest absolute distance coefficient (0.99) was observed between Middle Eastern and Asian countries. Asian and African countries had the highest distance coefficient (0.070) with a range of 0.00 to 0.258. This suggests that most of the genetic variability for this crop is concentrated mainly in African, Asian and Middle Eastern regions. Table 19 shows that genetic distance coefficients for American and European groups were relatively low (0.007) and for African, Asian and Middle Eastern countries were relatively high (0.083).

Cont in ent	No. of Indi- viduals	No. of Popula- <u>tions</u>	America	Europe	Africa	Asia	Middle East
America	226	4	0.007 (0.002-0.013)				
Europe	198	4	0.007 (0.000-0.014)	0.005 (0.000-0.011)			
Africa	403	6	0.038 (0.001-0.148)	0.039 (0.000-0.157)	0.077 (0.000-0.254)		
Asia	838	5	0.055 (0.011-0.083)	0.054 (0.015-0.087)	0.070 (0.0C -0.258)	0. 044 (0. 002 -0. 109)	
Middle/E	1101	8	0.056 (0.000-0.140)	0.069 (0.000-0.159)	0.086 (0.002-0.197)	0.099 (0.013-0.237)	0.090 (0.000-0.295)

TABLE -18: Matrix of distance coefficients averaged by continent

Ranges of distance coefficients within a particular continent and/or continents are given in brackets.

Hemisphere	No. of Individuals	No. of Populations	American and European	African, Asian and Middle Eastern
America and Europe	424	8	0.007 (0.000-0.014)	
Africa Asia and Middle East	2342	19	0.053 (0.000-0.159)	0.083 (0.000-0.295)

TABLE 19: Matrix of distance coefficients averaged by hemisphere

The data appears to offer evidence for the presence of considerable genetic divergence between populations.

Field Trials

Results

Chickpea International F3 Yield Trial (CIF3YT): Means, ranges, and coefficients of variation for plant height, plant spread, plant stand, 100-seed weight, and number of seeds/pod are presented in Table 20. For all characters except plant stand, means were higher and ranges were greater at Brookings than at Highmore. Plant height means of 65 cm (range of 45-81 cm) and 49 cm (range of 37-57cm) were observed for Brookings, and Highmore, respectively. Mean plant spread was 42 cm at Brookings compared to 34 cm at Highmore. Similar plant stand was observed at both locations; however, the range (28-90%) was greater at Highmore. Means for seed size at Highmore and Brookings were 29 and 27g/100-seed weight, respectively. Mean number of seeds/pod recorded at Brookings was 1.1, with a range of 0.9-1.3 . Overall means of 1831 kg/ha, 57 cm, 38 cm and 28g were obtained for seed yield, plant height, plant spread and 100-seed weight respectively. Coefficients of variation were within generally acceptable limits, revealing 20, 17, 20 and 7 for yield, height, spread, and 100-seed weight, respectively.

Table 21 presents seed yield means for each entry in the F3 Yield Trial. Mean seed yields of 2 41 and 1222 kg/ha were observed for Brookings and Highmore, respectively. The former also showed a range of 305 kg/ha (check) to 3263 kg/ha (x81TH 111), compared to a range of 716 kg/ha (check) to 1460 kg/ha (x81TH 112) at Highmore. The overall highest mean seed yield (averaged across locations) as 2281kg/ha for x81TH 111. This cross ranked 1st and 5th at Brookings and Highmore,

TABLE 20:	Means, ranges, and coefficients of variation for plant height, plant
	spread, plant stand, 100-seed weight, and number of seeds/pod in F ₂ YT
	at Brooking and Highmore, South Dakota in 1983

		Brookings		H	ghmore	
Character	Mean	Range	C.V.	Mean	Range	C.V.
Plant height (cm)	65	45-81	20	49	37.55	11
Plant spread (cm)	42	30-50	21	34	27-40	18
Plant stand (%)	72	40-83	13	72	28-90	16
100-seed weight (g)	29	14-34	7	27	23-33	7
Number of seeds/pod	1.1	0.9-1.3	15			
	- ik	The second			10	

		Brookings	Highmore	Overal:
			kg/ha	
Cross #	Pedigree			
x 81TH 053	ILC 1920 x ILC 2506	2237	1277	1757
x 81TH 056	ILC 1920 x ILC 3279	2831	1332	2082
x 81TH 084	ILC 191 x ILC 262	2547	116	1857
x 81TH 085	ILC 191 x ILC 237	3164	1282	2223
x 81TH 101	ILC 72xx ILC 191	3058	1188	2123
x 81TH 104	ILC 72 x ILC 482	2647	1227	1937
x 81TH 111	ILC 191 x ILC 202	3263	1299	2281
x 81TH 112	ILC 191 x ILC 482	2708	1460	2084
x 81TH 112	ILC 191 x ILC 482	2708	1460	2084
x 81TH 120	ILC 191 x ILC 484	2087	1460	1774
x 81TH 113	ILC 200 x ILC 484	2631	1210	1921
x 81TH 125	ILC 202 x ILC 482	2642	1110	1876
x 81TH 126	ILC 202 x ILC 484	3075	1210	2143
x 81TH 146	ILC 72 x ILC 73	1893	960	1427
ILC-482		1576	1299	1438
Loc. check		305	716	511
LSD(0.05)		707	258	376

<u>TABLE - 21</u>: Seed yield for 16 F_3 entries of chickpea (F_3 YT) grown at Brookings and Highmore, South Dakota in 1983

respectively. The least significant difference (LSD) revealed that 11 out of 14 F3 populations at Brookings exceeded the best check (ILC 482) by a significant margin. Yields at Highmore were low and there was no significant difference between F3 populations and the best check. However, significant differences were observed between entries and the local check.

Analysis of variance of each trait in the F3 segregating entries is presented in Table 22. There was a significant difference between locations for all characters studied . Entries were significantly different for all traits except plant spread. Location x cross interaction were significant for yield and 100-seed weight.

Table 23 presents the correlation matrix for characters studied in the F3 yield trial. In general, all characters except number of seeds/pod, exhibited positive significant correlations with yield. Seeds/pod exhibited nonsignificant negative associations with seed yield and 100-seed weight. Plant height gave the highest correlation (r=0.60) with seed yield. Highly significant positive correlations also were observed between plant spread and yield (r=0.49), and between 100-seed weight and yield (r=0.52).

Path analysis (Table 24) exhibited high coefficient values of 0.51, 0.37, and 0.5. for direct effects for seed yield vs plant height plant spread and 100-seed weight, respectively. All indirect effects were low compared to direct effects.

		Mean squares							
Source	df	Yield	Plant height	Plant spread	100-seed weight				
Location(L)	1	35610971**	6257**	1320**	61**				
Cross(C)	15	1102109**	340**	45	65**				
L x C	15	620395**	62	98	18**				
Replications within L	4	1000187**	882**	43	23*				

TABLE 22: Analysis of variance of four agronomic traits in 16 F₃ populations grown at Highmore and Brookings, South Dakota in 1983.

*,** significant at 0.05 and 0.01 levels, respectively

	and the second second		1 2 2 2 2 2	
Traits	Plant height	Plant spread	100-seed weight	Number of seeds/pod
Yield	0.60**	0.49**	0.52**	-0.04
Height		0.24*	0.38**	0.09
Spread			0.27**	0.04
100-seed weight				-0.21

TABLE 23:Phenotypic correlations among four agronomic traits in 16 F3populationsgrown at Brookings and Highmore, South Dakota, in 1983

*,** significant at the 0.05 and 0.01 level, respectively

TABLE 24: Path coefficient analysis of influences of plant height, plant spread, 100-seed weight and number of seeds/pod upon seed yield in the Chickpea F₃Yield Trial

Type of effect		Coefficients
Seed yield vs plant height Direct effect Indirect effect via plant spread	r= 0.60	0.51 0.09
Seed yield vs plant spread Direct effect Indirect effect via plant height	r= 0.49	0.37 0.13
Seed yield vs 100-seed weight Direct effect Indirect effect via number of seeds/ pod	r= 0.53	0.54
Seed yield vs number of seeds/pod Direct effect Indirect effect via 100-seeds weight	r=-0.04	0.08 -0.11

Chickpea International Large-seeded Trial (CILYT): Means for seed yield, plant height, plant spread, plant stand, and 100-seed weight for varieties in the large-seeded trial are presented in Table 25. Seed yield ranged from 1350 kg/ha for ILC 629 to 2661 kg/ha for ILC 134. Ten entries exhibited higher mean seed yields than the check. Plant height ranged from 32 cm for ILC 35 to 45 cm for ILC 112 and ILC 254. ILC 165 and ILC 464 had the largest plant spread of 46 cm each. The range in plant spread was from 36 to 46 cm, but no significant differences were found among varieties for plant spread. In general, plant stand in the large-seeded trial was poor. The highest stand of 61% was exhibited by ILC 451, while the lowest stand of 24% was observed for ILC 629. Seed size was largest in ILC 112, with a mean of 46g/100-seed weight. The lowest seed size of 20 g /100-seed weight was exhibited by the local check. Twelve varieties exhibited over 40 g/100 seed weight.

Table 26 presents mean squares for varieties, location means and coefficients of variation for seed yield, plant height, plant spread, plant stand, and 100-seed weight in the chickpea large seeded yield trial. All characters studied, except plant spread, exhibited significant differences among entries at both locations. The highest location mean seed yield of 2328 kg/ha was at Rapid City, whereas mean yield at Highmore was 1990 kg/ha. At Rapid City, means of 57° and 41g were obtained for plant stand and 100-seed weight, respectively. Means of 39° and 39g were obtained for stand and 100-seed weight, respectively, at Highmore. Compared to 34 and 36cm at Rapid City, higher means of 47 and 46cm at Highmore were exhibited for plant height and plant spread, respectively.

TABLE 25	5:	Means for seed yield, plant height, plant spread, plant stand, and 100-seed
		weight of 19 entries of chickpeas grown at Rapid City and Highmore,
		South Dakota in 1983

Variety	Origin	Seed Yield kg/ha	Plant height cm	Plant spread cm	Plant stand %	100-seed weight g
ILC 35	Syria	1554	32	38	29	38
ILC 76	Spain	2552	44	45	49	41
ILC 83	Spain	2610	44	36	54	43
ILC 112	Spain	2060	45	44	49	46
ILC 132	Spain	2559	43	41	56	43
ILC 134	Spain	2661	41	38	54	43
ILC 135	Spain	2408	39	36	51	42
ILC 136	Spain	2211	44	39	56	41
ILC 165	Tunisia	1921	41	46	44	40
ILC 171	Tunisia	1775	39	38	42	40
ILC 254	Turkey	2381	45	43	54	42
ILC 451	Turkey	2339	35	36	61	36
ILC 464	Turkey	2407	43	46	48	43
ILC 496	Turkey	2070	40	43	43	42
ILC 613	Tunsia	2205	36	41	53	40
ILC 620	Morocco	2181	39	40	49	42
ILC 629	Tunisia	1350	41	44	24	41
ILC 2587	Turkey	1505	39	41	38	39
Loc. check	SD sel.	2194	41	37	58	20
LSD 0.05		928	7	14	29	3

TABLE 26: Variety mean squares, location mean and coefficients of variation of five agronomic traits in 19 large-seeded chickpea lines grown at Highmore and Rapid City, South Dakota in 1983

	-	Highmore			Ra <u>p</u> id City				Overall	
Traits	df	Mean square	Mean	C.V.	df	Mean square	Mean	C.V.	Mean	C.V.
Yield(kg/ha)	18	34348**	1990	28	19	19390**	2328	18	2255	23
Plant height(cm)	18	61*	47	11	19	66**	34	13	41	12
Plant spread(cm)	18	125*	46	18	19	41	36	17	41	18
Plant stand(%)	18	612*	39	40	19	519**	57	19	48	28
100-seed weight(g)	18	110**	39	6	19	111**	41	6	40	6

*, ** significant at 0.05 and 0.01 levels, respectively

Coefficients of variation of 18, 13, 17, 19 and 6% were observed for yield, plant height, plant spread, plant stand, and 100-seed weight, respectively, at Rapid' City. Coefficients of variation for plant stand (40%) and yield (28%) were relatively high at Highmore.

Overall means of 2255 kg/ha, 41 cm, 41cm, 48%, and 40g were exhibited for seed yield, plant height, plant spread, plant stand, and 100-seed weight, respectively. Overall coefficients of variation for stand, seed yield, plant height, plant spread and 100-seed weight were 28, 23, 12, 18 and 6%, respectively.

Table 27 presents analyses of variance for characters studied in the large-seeded trial. Significant differences were found between locations and among varieties for all characters studied. Location x Variety interactions were significant for all characters except plant height and spread.

Table 28 presents broad sense heritabilities(H) for yield, plant height, plant spread, and 100-seed weight. The highest heritability estimate (97%) was obtained for seed size (100-seed weight). Plant height ranked second with a heritability of 83%. Seed yield and plant spread were third and fourth, showing 80 and 67%, respectively.

Correlations between seed size and other traits studied are given in Table 29. A low (r=0.20), but highly significant positive correlation was observed between seed size and seed yield. All remaining characters, plant spread, plant height, and number of seeds/pod, exhibited nonsignificant negative associations with yield. A relatively high positive correlation (r=0.578) was observed between

			Mea	an Squares	Squares			
Source	df	Yield	Plant height	Plant .s.pread	Plant stand	100-seed <u>weight</u>		
Location (L)	1	4171382**	5936**	4085**	13173**	89**		
Variety (V)	18	1180759**	98*	93**	75**	218**		
LχV	18	503201**	33	76	410**	8*		
Replication within location	6	961402	52*	75	639**	61**		

TABLE 27:Analysis of variance of five agronomic traits in the large-seeded
trial grown at Rapid City and Highmore, South Dakota in 1983

*, ** significant at 0.05 and 0.01 levels, respectively
Traits	σ _V	2 ⁰ (V x L)	σe	Н %	
Yield	1180759	503201	245593.0	80	
Plant height	98	33	23.2	83	
Plant spread	93	73	52.2	67	
100-seed weight	218	8	5.4	97	

<u>TABLE - 28</u>: Estimates of variety (V), variety x location(V x L) interaction, error (e) variances and broad sense heritability for four traits in the cickpea large-seeded trial

Traits	Plant spread	Plant height	Seed yield	No. of seed/ <u>p</u> od
100-seed weight	-0.022	-0.030	0.200**	-0.076
Plant spread		0.578**	-0.183**	0.130
Plant height			-0.068	-0.173
Seed yield				-0.080

TABLE 29:Phenotypic correlations of four agronomic traits in the large-seeded trial
grown at Highmore and Rapid City, South Dakota in 1983

****** significant at 0.01 level

plant height and plant spread. A negative association was exhibited between seed yield and plant height.

Path coefficient analysis of the direct and indirect influences of plant height, plant spread, number of seeds per pod and seed yield upon seed size (100-seed weight) in the large seeded chickpea trial is given in Table 30. Seed size had the largest direct effect on seed yield; followed by plant spread. The observed negative correlation of seed size with plant spread was mainly due to indirect effects through plant height, number of seeds per pod and seed yield.

Type of effect		Coefficients
Seed yield vs plant height Direct effect Indirect effect via plant spread	r=-0.07	0.052 -0.122
Seed yield vs plant spread Direct effect Indirect effect via plant height	r=-0.18	-0.21 0.03
Seed yield vs 100-seed weight Direct effect Indirect effect via seeds/pod	r= 0.2	0.20 0.01
Seed yield vs seeds/pods Direct effect Indirect effect via 100-seed weight	r=-0.08	-0.06 -0.02

TABLE 30: Path coefficients analysis of the direct and indirect influences of plant height, plant spread, 100-seed weight and seeds/pod upon seed yield in the Large-seeded Chickpea Trial

Chickpea Adaptation Trial (CAT): Means, ranges and coefficients of variation for agronomic traits are presented in Table 31.

95

Table 32 presents variety and location means and ranks at Brookings 1982, Highmore 1982, Rapid City 1983, and Highmore 1983. The highest location mean , 3214 kg/ha, was recorded for Highmore 1982, followed by 2588, 1174, and 899 kg/ha for Rapid City 1983, Highmore 1983, and Brookings 1982, respectively.Ranges of 220-2447 kg/ha, 1484-5192 kg/ha, 1822-3376 kg/ha and 615-1938 kg/ha for yield were observed at Brookings 1982, Highmore 1982, Rapid City 1983, and Highmore 1983, respectively.

Variety means for each location and across locations for each character studied are presented in Table 32. ILC 482 was the highest yielder at Brookings and Highmore in 1982 with mean seed yield of 2447 and 5191 kg/ha, respectively. This variety exhibited the third and the seventh high yields of 2901 and 1214 kg/ha at Rapid City and Highmore, respectively. ICC 5003, brown-seeded variety, was the second best yielder ranking second, first and first at Highmore 1982, Rapid City 1983, and Highmore 1983, respectively. ICC 5003 showed relatively low yield at Brookings 1982. Highest individual location means of 2939 kg/ha for seed yield 41cm for plant height 41cm for plant spread 82% for plant stand, and 31g/100-seed weight for seed size were recorded for ILC 82, ILC 1934 ICC 5810, ICC 5003 and ILC 82, respectively. ILC 1934, exhibited 31g/100-seed weight which was similar to ILC _82 (Table 33). ILC 82 was the only variety that significantly exceeded the overall varietal mean yield of 1966 kg/ha. Variety ILC 3256 was the lowest yielder with an overall mean of 1202 kg/ha.

TABLE	31:	Mean, ranges, and coefficients of variation for yield, plant height, plant spread,
		plant stand, and 100-seed weight in the chickpea adaptation trial at Brookings,
		Highmore, and Rapid City, South Dakota during 1982 and 1983

	Brookings, 1982			Highmore, 1982			Rapid City, 1983			Highmore, 1983		
Traits	Mean	Range	C.V.	Mean	Range	C.V.	Mean	Range	C.V.	Mean	Range	C.V.
Yield(kg/ha)	889	220-2447	31	3214	1484-5192	22	2588	1822-3376	16	1175	615-1938	14
Plant height(cm)	35	29-43	13	42	37-49	10	28	23-35	18	40	33-47	14
Plant spread(cm)	39	28-50	16	37	28-53	8	30	20-40	19	38	26-52	20
Plant stand(%)	70	41-89	12	76	40-90	13	69	55-80	11	51	18-84	28
100-seed wt.(g)	17	11-27	14	29	14-43	5	23	13-36	7	24	14-31	6

			Brook 19	ings 82	Highn 19	more 982	Rapid 198	City 3	Highr lo8	nore 33	Varietal	0verall
Varie	/ariety Origin	Mean	Rank	Mean	Rank	Mean	Rank	Mean	Rank	Mean	Rank	
ICC	4918	India	995	5	3914	5	2554	10	1475	3	2234	5
ICC	4948	India	1139	4	4095	4	2672	7	1185	8	2273	4
Icc	5003	India	743	9	4565	2	3376	1	1938	1	2657	2
ICC	5810	India	587	11	2713	9	1822	16	817	14	1485	13
ICC	10136	ICRISAT	778	8	3313	7	2489	11	1453	4	2008	7
ICC	11524	ICRISAT	1516	2	3491	6	2720	6	973	12	2175	6
ICC	11529	ICRISAT	992	6	4242	3	2803	4	1544	2	2395	3
ILC	482	Turkey	2447	1	5192	1	2901	3	1214	7	2939	1
ILC	519	Egypt	915	7	2861	8	2946	2	916	13	1910	8
ILC	1919	India	1413	3	2596	11	1970	15	1253	5	1808	9
ILC	1922	Morocco	310	15	2647	10	2259	14	1174	10	1598	12
ILC	1929	Syria	220	16	2396	13	2578	9	615	16	1452	14
ILC	1931	Turkey	391	12	-	-	2270	13	1166	11	1276	15
ILC	1932	Jordan	356	13	2405	12	2725	5	1178	9	1666	11
ILC	1934	Iran	592	10	2292	14	2625	8	1249	5	1670	10
ILC	3256	Cyprus	327	14	1484	15	2374	12	620	15	1202	16
Loc.	Mean		899		3214		2588		1174		1966	
Rank			4		1		2		3			

TABLE - 32:	Means and ranks f	for yield for 16 entri	es in the Chickpea Adaptat:	ion Trial (CAT)
	grown at four loc	cations, South Dakota,	during 1982 and 1983.	

Variety	<u>Origin</u>	N	Yield kg/ha	Plant Height <u>(cm)</u>	Plant Spread <u>(cm)</u>	Plant Stand %	100-seed
ICC 493	18 India	16	2234	36	28	74	23
ICC 494	48 India	16	2273	33	34	74	14
ICC 500)3 India	16	2657	36	32	82	23
ICC 58	10 India	16	1485	39	41	73	14
ICC 101	36 ICRISAT	16	2008	34	30	80	13
ICC 1152	24 ICRISAT	16	2175	32	33	75	14
ICC 4	82 Turkey	16	2939	39	40	54	31
ILC 5	19 Egypt	16	1910	39	37	66	20
ILC 192	19 India	16	1808	38	38	59	23
ILC 192	22 Morocco	16	1598	37	38	51	29
ILC 193	32 Jordan	16	1666	37	40	59	26
ILC 19:	34 Iran	16	1670	41	37	71	31
ILC 32	56 Cyprus	16	1202	35	39	53	30
LSD 0.0	5		737	7	10	20	6

TABLE 33:Means for seed yield, plant height, plant spread, plant stand, and 100-seed
weight for 16 entries in the Chickpea Adaptation Trial grown at four
locations, South Dakota, during 1982 and 1983

Analysis of variance for each trait at each location for the varieties included in the Chickpea Adaptation Trial is presented in Table 34. There were significant differences among varieties for seed yield, plant height, plant spread, plant stand, and 100 seed weight at all locations. Analysis of variance (Table 35) revealed significant differences among locations, and varieties, and significant location x variety interactions for all traits studied.

Estimates of heritability and genetic advance expressed in percent of the mean obtained from the combined analysis of data for locations and years are presented in Table 36. In general, heritabilities for all characters were relatively high. Seeds/pod and 100-seed weight exhibited heritabilities of 98% each. Seed yield had a heritability of 94%, while plant height and plant spread exhibited 87% and 88% heritabilities, respectively.

Table 37 presents a correlation matrix between characters studied in the Chickpea Adaptation Trial. A highly significant correlation coefficient (r=0.31) was observed between plant yield and 100-seed weight, while a significant negative correlation (r=0.18) was obtained between yield and plant spread. Positive association was observed between plant height and yield while a highly significant correlation was exhibited between spread and height. There also was a highly significant positive correlation (r=0.30), between plant height and 100-seed weight. A highly significant negative correlation, (r=0.57) was recorded between 100-seed weight and number of seeds/pod.

	Broo	Brookings(1982)		Highmore(1982)		d City(1983)	Highmore(1983)	
Traits	df	MS	df	MS	df	MS	df	MS
Yield	15	43358**	14]33468**	15	18750**	15	15213**
Plant Height	15	**08	14	36*	15	65**	15	54*
Plant Spread	15	154**	14	64**	15	120**	15	227**
Plant Stand	15	1328**	14	626**	15	238**	15	1398**
100-seed wt.	15	71**	14	478**	15	193**	15	176**

TABLE - 34: Variety mean squares for five agronomic traits in CAT grown at four different locations, South Dakota, during 1982 and 1983.

*, ** significant at 0.05 and 0.01 levels respectively

TABEL 35: Analysis of variance over all locations of five agronomic traits in 16 entries of CAT, grown in South Dakota during 1982 and 1983

Carbon Contraction	MS							
Source	df	Yield <u>(kg</u> /ha)	Plant Height <u>(</u> cm <u>)</u>	Plant Spread <u>(cm)</u>	Plant Stand %	100-seed wt.(g)		
Location	3	2422451**	2272**	1296**	7396	1605**		
Variety	14	119754**	93**	227**	1948	718**		
Loc. x var.	42	31175**	49**	115**	602	69**		
Rep. within Loc.	12	9082	29	81**	291	5		

*, ** significant at 0.05 and 0.01 levels respectively

	0	0	0			Expected Adva	Genetic
Trait	٥Ĝ	$\sigma(G \times loc)$	°e	н	x	5%	10%
Yield	3688728.70	9602555.26	225827.34	94	1966.0	47	40
Plant Height	92.53	49.32	23.37	87	36.4	24	20
Plant spread	226.96	115.06	34.64	88	35.8	30	25
100-seeds weight	718.04	68.94	3.15	98	23.0	31	26
Seeds/pod	0.18238	0.004	0.0307	98	1.3	16	13

TABLE 36:Estimates of genotypic, genotype x location, error variances, broad senses herita-
bility, means and expected genetic advances under 5 and 10% selection intensities
for various traits

where, $\sigma_{\rm p}^2 = \sigma_{\rm V}^2 + \frac{\sigma_{\rm VL}^2}{L} + \frac{\sigma_{\rm e}^2}{RVL}$ 2 10. σ_V 2 Genotypic variance Heritability (H) Phenotypic variance $\sigma_{\mathbf{p}}$ 2 L =location, R =replication V = genotype σν = variance due to the genotype Genetic advance(GS) = (k) (^OP)(H) 2 OCL = variance due to genotype and location Gs = expected genetic advance 2 0 e σ_p = phenotypic standard deviation = total error vairance k = selection differential which varied with

k = selection differential which varied with selection intensity values of k used 2.06(5%) & 1.76(10%)

				the second se
Traits	Plant Height	Plant Spread	100-seeds weight	No. of seeds/ pod
Plant yield	0.02	-0.18*	0.31 **	-0.10
Plant height		0.43**	0.30 **	-0.03
Plant spread			0.06	-0.16
100-seeds wt.				-0.57**

TABLE - 37: Phenotypic correlations for five agronomic traits in CAT grown at Brookings, Highmore, Rapid City, South Dakota during 1982 and 1983

*,** significant at 0.05 and 0.01 levels, respectively

Path analysis indicated that 100-seed weight had a strong direct effect while number of seeds per pod showed a weak direct effect on yield (Table 38). Seed weight also contributed to seed yield through indirect effects of plant height and plant spread. Plant height and plant spread also have exhibited contribution to yield through indirect effects of seeds per pod.

Stability parameters for seed yield and 100 seed weight are given in Table 39. Regression cofficients for seed yield ranged from 0.64 to 1.38 and 0.56 to 1.36 for seed size.Varieties ILC 482, ICC 5003, ICC 10136, ICC 11524, and ILC 519 showed regression cofficients of 1.39, 1.38, 1.02, 1.07 and 0.98, respectively. Variety ILC 3256 exhibited the lowest mean seed yield (1202 kg/ha) and a regression coefficient of 0.64.

TABLE 38: Path coefficient analysis of the direct and indirect influecnes of plant height, plant spread, 100-seed weight and number of seeds/pod upon seed yield in the Chickpea Adaptation Trial (CAT)

Type of effects		Coefficients
Seed yield vs plant height Direct effect	r= 0.02	0.12
Indirect effect via plant spread		-0.10
Seed yield vs plant spread Direct effect Indirect effect via plant height	r=-0.018	-0.23 0.05
Seed yield vs 100-seed weight Direct effect Indirect effect via seeds/pod	r= 0.31	0.38 -0.07
Seed yield vs number of seeds/pod Direct effect Indirect effect via 100-seed weight	r=-0.10	0.11 -0.21

	+	ers	ramet	ty Pa	Stab111				1000		
100-seed weight			Yield				Seed	Ortoto	Variaty Oria		
s ² d1	R ²	bi	x	s ² d1	R ²	ы	x	Color	Colo	variety origi	
958	0.985	1.01	23	87	0.853	1.13	2234	Brown	India	4918	ICC
2787	0.995	0.61	14	69	0.822	1.14	2273	Brown	India	4948	ICC
331	0.957	1.01	23	109	0.879	1.38	2657	Brown	India	5003	ICC
1449	0.990	0.60	14	62	0.806	0.76	1485	Black	India	5810	ICC
1551	0.990	0.56	13	88	0.855	1.02	2008	Brown	ICRISAT	10136	ICC
825	0.982	0.61	14	68	0.820	1.07	2175	Brown	ICRISAT	11524	ICC
1938	0.992	0.99	23	90	0.858	1.22	2 39 5	Brown	ICRISAT	11529	ICC
641	0.977	1.34	31	48	0.764	.1.39	29 39	Cream	Turkey	482	ILC
1210	0.988	0.86	20	98	0.868	0.98	1910	Cream	Egypt	519	ILC
769	0.981	0.97	23	46	0.756	0.87	1808	Cream	India	1919	ILC
5 30	0.973	1.28	29	97	0.866	0.85	1598	Cream	Moroco	1922	ILC
270	0.947	1.34	30	68	0.819	0.79	1542	Cream	Syria	1929	ILC
948	0.984	1.14	26	142	0.905	0.89	1666	Cream	Jordan	19 32	ILC
678	0.978	1.36	31	149	0.909	0.88	1670	Cream	Iran	1934	ILC
6655	0.978	1.33	30	80	0.843	0.64	1202	Cream	Cyprus	3256	ILC
3	0.984 0.978 0.978	1.14 1.36 1.33	26 31 30	142 149 80	0.905 0.909 0.843	0.89 0.88 0.64	1666 1670 1202	Cream Cream Cream	Jordan Iran Cyprus	1932 1934 3256	ILC ILC ILC

TABLE 39: Means (\bar{x}) , regression coefficients (b_1) , variances accounted for by regression (R^2) , and deviation mean squares (s^2) for yield and 100-seed weight in 15 entries of CAT evaluated at four location

Discussion

<u>Cicer arietinum</u>, a crop of considerable antiquity, is native to South-west Asia and the Mediterranean regions, while Ethiopia is considered a secondary centre of diversity (112). van der Maesen (111) has conluded that high yields of chickpea realized in Central Asia, Iran, Afghanistan, Turkey, and the Caucasian region of Russia would indicate the spring and summer periods around the Mediterranean and the winter period in South Asia. Although contrasting in several meterological variables, these areas are suitable for high productivity of chickpea. An optimum combination of such variables is yet to be worked out in this crop. The contrasting climatological and cultural factors of chickpea cultivation in India compared to Iran and the Mediterranean regions, successful summer cultivation in Iran versus traditional winter cultivation in India, and the dominant role of natural selection show that existing cultivars are adapted to specific environmental conditions, and therefore will have restricted adaptation.

The phenotypic variability observed in chickpea germplasm for several morphological characters, moderate estimates of broad sense heritability for characters such as seed size, seed yield, seeds per pod, plant height and lack of any relationship between maturity and yields emphasize the role played by natural selection in shaping the diversity found in present day culti ated types.

This study was designed to evaluate a large number of germplasm collections and segregating populations with the hope of identifying genotypes adapted to South Dakota environments. Three independent trials F3YT (F3 Yield Trial), LYT (Large-seeded Yield Trial) and CAT (Chickpea Adaptation Trial) indicate the adaptiveness of chickpea to South Dakota environments. The F3 populations were derived from crosses involving parents possessing resistance to ascochyta blight, high yield, and wide adaptation. The large-seeded trial entries were derived from germplasm collections maintained at ICARDA and have shown superior performance either in regional or international trials conducted by ICARDA. The Chickpea Adaptation Trial included land races widely grown in different countries of the Middle East. It also consisted of other entries developed through hybridization and pure line selection in India and Egypt (54).

The observed high means for seed yield, plant height, and plant spread in the F3 populations, especially at Brookings, were attributed to genetic heterogeneity. The F3 populations have Ascochyta resistance from their tall Russian parents and are less affected by high humidity and moisture than Ascochyta susceptable lines, such as the local check. As a result, seed yield and vegetative growth were highest for the F3 entries at Brookings in response to abundant moisture (Table 5). The data showed that eleven F3 populations were significantly better yielders than the best check entry, ILC 482. Under drier conditions at Highmore, no significant differences were observed between ILC 482 and F3 populations. Since most of the resistant parents of these populations were tall and relatively late in maturity their progenies also have exhibited tallness and late maturity. To be productive in South Dakota, it is essential that these populations be

planted as early as possible in the Spring so they will mature before high moisture coupled with cool temperature extend the maturity by encouraging indeterminant growth which 'results in lower yields, nonuniform seed size, and poor seed quality. Similarly, both LYT and CAT trials demonstrated wide variability among traits studied; except that LYT and CAT exhibited higher means and variation under dry conditions (Highmore and Rapid City). Means of 2328 kg/ha and 41g at Rapid City, compared to 999 kg/ha and 29g at Highmore for seed yield and 100-seed weight, respectively, were resulted in the LYT trial. Moreover, the LYT trial has exhibited wide ranges and moderate coefficients of variation for all characters studied. Seed size ranged from 20g/100-seed weight in the check to 46g/100-seed weight in ILC 112. Although, 65.5g/100-seed weight has been reported Singh & Tuwafe, (97), the observed 42 g/100-seed weight with mean yield of 2060 kg/ha by ILC 112 should categorize this entry into the large-seeded, group with a reasonably high yield. Seed size of chickpeas, in addition to its importance as a seed yield component, influences the commercial value of the crop (84). In addition Pinthus (84) reported that the yield obtained following planting of larger seeds (within the same variety) graded markedly and significantly higher than that obtained from smaller seeds. Likewise the average yield of large-seeded types consistently and conspicuously exceeded the yield of small-seeded types.

The only difference between the F3YT and the other two trials (LYT) and (CAT), was that the LYT and CAT trials did not have disease resistance genes in their genetic background. Therefore, means from these two trials (LYT and CAT) for yield and other characters were very low at Brookings and very high at Highmore and Rapid City. The later two locations are more favorable environments for growing chickpea due to their drier and warmer conditions. However, a significant amount of variation for all traits studied was obtained in all locations.

In general, the results provide ample evidence for the presence of extensive genetic variability among and within the germplasm collections studied. The South Dakota results are in agreement with results for 25 morphological characters in 3400 kabuli accessions of chickpea reported by Singh and Tuwafe (98). In general, heritability estimates were high for all traits. This is not surprising because in most cases varieties responded similarly at Highmore and Rapid City, reducing genotype x environment interactions. Singh and Auckland (95) reported similar broad sense heritabilities for plant height and seed size, and Pandey and Tiwari (82) reported narrow sense heritabilities for plant height, plant spread, 100-seed weight, and yield, which are in line with findings of this study. This indicates that breeding for plant height and seed size is possible due to their high heritability.

Highly significant positive correlations of yield with plant height and plant spread were found in F3YT. Whereas in LYT and CAT negative associations of yield with plant height and spread were observed. The positive correlations in F3 populations are expected since the parental lines were originally chosen to consist of tall genotypes with the hope of obtaining tall segregants suitable for mechanized harvest. Moreover, F3 is an early generation and it is not

surprising that it behaved differently from homozygous varieties in the LYT and CAT trials. The significant positive correlations of yield with plant height, plant spread, and 100-seed weight, plus the direct contribution of seed size to yield, in early generations is very encouraging. Populations could be advanced in a particular desired direction without appreciable loss in expression of other desired characters.

The positive relationship of seed size with yield in all three trials suggests that emphasis should be made in regard to seed size while selecting for seed yield. Gawda and Pandya (53) reported a negative correlation between grain yield and plant height, and a positive correlation between grain yield and 100-seed weight. This is in agreement with the present findings in LYT. The exhibited significant positive correlation between seed yield and 100-seed weight is useful because it may be possible to select genotypes with high yield and large seed.

Path coefficient analysis, which facilitates separation of correlation coefficients into direct and indirect effects, gave a better picture of relationships between pairs of traits. Studies on direct and indirect effects (Table 24) revealed that the direct effect of plant height on seed yield was positive and highest thus was true for plant spread and 100-seed weight. This indicated that plant height and plant spread do influence seed yield, while 100-seed weight is an important component of seed yield. The observed negative correlation of yield with seeds/pod was caused by a large negative indirect effect via 100

seed- weight, otherwise the direct effect of seeds/pod was low but positive. Path analysis confirmed that seed size was a major contributor to seed yield in both LYT and CAT trials. Positive direct effects for 100-seed weight and seeds/pod in chickpea also were reported by Gowda and Pandya (53) and Jatasra et. al. (61) Path analysis further confirmed that emphasis should be given to seed size while selecting for seed yeild.

Stability parameter analyses showed that regression coefficients for yield ranged from 0.64 to 1.38. This indicated that the genotypes have very different environmental responses. Varieties ICC 10136 and ICC 11524 with mean yields of 2008 kg/ha and 2175 kg/ha, respectively, showed regression coefficients of 1.02 and 1.07. These yields and regression coefficients nearly equal to 1.0 indicated general adaptability for these two varieties. ILC 519 showed a regression coefficient of 0.98, (approximately 1.0) and low yield; this indicated poor adaptability to all environments. Varieties ILC 482 and ICC 5003 with mean yields of 2939 kg/ha and 2656 kg/ha exhibited regression coefficients of 1.39 and 1.38, respectively. This indicated high adaptability to high yielding environments (favorable environments). The top yielding variety, ILC 482, due to its relative resistance to diseases, exhibited high yield even in the unfa orable environment (Brookings). Much higher yields were obtained at Highmore in 1982, and Rapid City in 1983, which confirmed its superiority under favorable rather than unfavorable environments. The yield reduction by all entries at Highmore in 1983 was attributed to a weed problem rather than

to general environmental conditions. On the other hand, variety ICC 5003 which was the top yielder at Highmore and Rapid City during 1983, and second best yielder at Highmore during 1982 was the 9th yielder at Brookings during the 1982 crop seasons. These results confirmed that this variety was much better adapted to favorable environments.

Stability parameter analyses indicated that regression coefficients for 100-seed weight ranged from 0.56 to 1.36 which showed that varieties had different environmental responses for seed size (Table 39). Varieties ICC 4918, ICC 5003, ICC 11529 and ILC 1919 exhibited regression coefficients of 1.01, 1.01, 0.99 and 0.97 respectively with means of 23g/100-seed weight each. These values indicated that the environmental effect on seed size was similar for these varieties. Since these varieties are small-seeded types, seed size is not expected to deviate much from 23g/100-seeds. On the other hand, varieties ILC 1922, ILC 1929, ILC 1934, ILC 3256 and ILC 482, (large-seeded types) which showed mean seed sizes of 29, 30, 31, 30 and 31g/00-seed weight, respectively, exhibited regression coefficients ranging from 1.28 to 1.36. This indicated that these varieties might produce larger seed in favorable environments.

Varieties ILC 482 and ICC 5003 exhibited high means and steep regression lines for yield indicating positive response to favorable environments. ICC 5003 especially expressed its sensiti ity to change of en ironment by showing above average yields under fa orable, and below average yields under unfavorable environments. Figure 16 provides a generalized interpretation where each ariety is represented by a

 Figure
 16:
 The relationship of variety adaptation (regression coefficient) and variety mean yield for 15 chickpea varieties (1=ICC 4918, 2=ICC 4948, 3=ICC 5003, 4=ICC 5810, 5=ICC 10136, 6=ICC 11524, 7=ICC 11529, 8=ILC 482, 9=ILC 519, 10=ILC 1919, 11=ILC 1922, 12=ILC 1929, 13=ILC 1932, 14=ILC 1934, 15=ILC 3256

single point. The position of each point indicates the type of adaptability (regression coefficient) and the average yield performance of the variety. Varieties with large regression coefficients produced highest mean yields, indicating adaptability to high yielding environments. Varieties originating in, or bred specificaly for particular geographic areas of the world tended to have a degree of similarity as found by Finlay and Wilkinson (42). Figure 16 shows that all of the Indian cultivars (+ signs) except ICC 5810, are well adapted to high yielding environments. This is to be expected because they originated and were bred for semi-arid areas similar to central and western South Dakota regions (Highmore and Rapid City). These varieties may not show their full potential in eastern South Dakota due to their sensitivity to high humidity and late-season moisture conditions. Similar observations for 277 barley varieties were obtained by Finlay and Wilkinson (42) in Australia. The results also suggest that selection for seed yield should be made in the proposed area of production since the performance of any variety is dependent on the environment in which it is grown. In this study, x81TH 111, ILC 134, and ILC 482 in F3YT, LYT and CAT trials, respectively have exhibited superior performances across all test locations (Table 40) and may provide a reservoir from which cultivars adapted to South Dakota cropping systems could be developed.

TABLE 40: Summary of data from F_3YT , LYT, and CAT trials

	F ₂ YT	LYT	CAT
Mean (ka/ha)	1021	2255	1066
Range (kg/ha)	305-3263	1350-2661	221-5192
C.V. (%)	20	23	21
Number of testing sites	2	2	4
Number of test entries	16	19	16
Top yielding entry	x81TH 111	ILC 134	ILC 482

CONCLUSION

In this study a large number of germplasm accessions and breeding lines of chickpeas were evaluated electrophoretically and in field trials from 1982 to 1984. Electrophoretic assays showed monomorphism for acid phosphatase (ACP), esterase (EST) and malate dehydrogenase (MDH) and polymorphism for alcohol dehydrogenase (ADH), 6-phosphogluconate dehydrogenase (PGD) and peroxidase (PRX) enzyme systems among the chickpea collections assayed.

Inheritance studies of the polymorphic enzymes showed simple Mendelian segregation for 4 enzyme loci including <u>Adh1, Pgd1, Pgd2</u>, and <u>Prx1</u>. A total of 12 genotypes were observed among the four loci including <u>Adh1</u> (4 genotypes), <u>Pgd1</u> (3 genotypes), <u>Pgd2</u> (3genotypes) and Prx1 (2 genotypes).

Estimation of fixation indicies and theoretical inbreeding coefficients supported the notation that chickpea is a highly selfpollinated crop with less than 1% of outcrossing. This result suggests that the mating system and selection are important factors maintaining genetic variability in chickpea.

Genotypic and allelic frequencies demonstrated the presence of appreciable genetic variation in chickpeas. .lost of the genetic variability was observed in .liddle Eastern (Palestine, Iraq Lebanon, Syria, Jordan), Asian (Indian, Afghanistan, Pakistan USSR) and East African (Ethiopia) countries.

The observation of large amounts of genetic variability within closely situated regions suggests that genetic conservation strategies should stress collection of large numbers of populations in each agroecological zone.

Field trials demonstrated significant differences within and among quantitative traits. High means and variations for charaters studied indicated that there is high genetic variability in the materials tested. The exhibited high heritability values in LYT and CAT for seed yield demonstrated low genotype x environment interaction. This indicated that it is possible to breed suitable varieties for centeral and western South Dakota. Lines such as ILC 482, ICC 5003 and ICC 11529 in CAT; ILC 83 ILC 112, ILC 132 and ILC 134 in LYT; and X81TH 056, X81TH 085, and X81TH 111 in F3YT, that showed good performances in the tests, should be given more consideration for further exploitation. For example, varieties such as ILC 482 must be increased and evaluated in multiple locations within the region.

Correlation and path coefficient estimates showed that seed size is an important character to consider when selecting for increased seed yield. This is confirmed by high significant positive correlations between seed yield and seed size observed in all the three trials. This suggests improvement of seed yield and seed quality both at the same time is possible.

Regression studies indicated that chickpea varieties respond to environmental variation, and selection for yield and seed size should be carried out in favorable environments.

As a whole, the field study has shown that chickpea has potential in South Dakota agriculture. However, like any other major

crop chickpea also does require proper breeding methodologies:

introduction, screening, hybridization, selection, evaluation including cultural practice studies to achieve the expected goal.

The second second

And and the second second with the second second

BIBLIOGRAPHY

- 1 Adams, W.T. and R.J. Jolly. 1980. Genetics of allozyme variants in loblolly pine. J. of Hered. 71: 33-40.
- 2 Allard, R.W. Principles of Plant Breeding. John Wiley and Sons Inc. 1960.
- 3 Allard, R.W. and A.D. Bradshaw. 1964. Implication of Genotype -Environmental Interaction in Applied Plant Breeding. Crop Sci. 4: 503-508.
- 4 Allard, R.W., G.R. Babbel, M.T. Glegg, and A.L. Kahler 1972. Evidence for coadaption in <u>Avena</u> <u>barbata</u>. Proc. natn. Acad. Sci. 69: 3043-3048.
- 5 Allard, R.W. and A.L. Kahler. 1971. Patterns of Molecular Variation in Plant Populations. Proceeding of the Sixth Berkeley Symposium volume 237-254. University of california Press. April, June and July 1971.
- 6 Allard, R.W. and A.L. Kahler 1971. Allozyme Polymorphisms in Plant Populations. Stadler Symposia Vol. 3: 9-24.
- 7 Allard, R.W. A.L. Kahler and M.T. Clegg. 1975. Isozyme in Plant Population Genetics Isozymes IV Genetics and Evolution 261-272. Acadamic Press Inc. Sanfrancisco.

- 8 Allard, R.W., A.L. Kahler, and B.S. Weir. 1971. Isozyme Polymorphisms in Barley Populations. Proceedings of the Second International Barley Genetics Symposium pp 1-13.
- 9 Allard, R.W., R. D.Miller, and A. Kahler. 1978. The relationship between degree of environmental heterogenesity and genetic polymorphism. In: structure and functioning of plant populations,(eds. A. J. Freysen, J. W. Woldendrop). pp.49-73. New York: North-Holland Publ.
- 10 Allard, R.W. and P.L. Workman. 1963. Population studies in Predominately Self-Pollinated Species. IV. Seasonal Fluctuations in Estimated values of Genetic Parameters in Lima Bean Populations. Evolution, 17: 470-480.
- 11 Allen, F. L., R.E. Comstock, and D.C. Rasmusson. 1978. Optimal environment for yield testing. Crop Sci. 18: 747-751.
- 12 Asawa, B.M., and A.S. Tiwari 1976. Association analysis in gram. Indian J. of Genetics and Plant Breeding, 36: 315-322.
- 13 Arunchalam, V. 1981 Genetic Distance in Plant Breeding. Indian J. of Genet. 41: 226-236.
- 14 Bassiri, A. and M.W. Adams 1978. Evaluation of common bean cultivar relationships by means of isozyme electrophoretic patterns. Euphytica 27: 707-720.

- 15 Bassiri, A. and I. Rouhani. 1977. Identification of broad bean cultivars based on isozyme patterns. Euphytica 26: 279-286.
- 16 Bekele, E. 1983. Allozyme genotypic composition and genetic distance between the Ethiopian land race populations of barley. Hereditas 98: 259-267.
- 17 Bekele, E. 1983. Some measures of gene diversity analysis on land race populations of Ethiopian barley. Hereditas 98: 127-143.
- 18 Brewer, G.J., and C.F. Sing. An introduction to isozyme techniques. Acadamic Press, 1970.
- 19 Brim, C.A., S.A. Usanis, and C.F. Tester. 1969. Organ specificity and genotypic differences in isoperoxidases of soybeans. Crop Sci. 9: 843-845.
- 20 Broich, S.L. and R.G. Palmer 1981. Evolutionary studies of soybean. The frequency and distribution of alleles among collections of <u>Glycine max</u> and <u>G. soja</u> on various origin. Euphytica 30: 145-147.
- 21 Broue, D. D.R. Marshall and J. Muller, 1977. Biosystematics of subgenus <u>Glycine</u> isoenzymatic data. Aust. J. of Bot. 25: 555-566.
- 22 Brown, A.H.D 1978. Isozyme, plant population genetic structure and genetic conservation. Theor. Appl. Genet. 52: 1 5-1 7.

- 23 Brown, A.H.D, 1979. Enzyme polymorphism in plant populations. Theor. Pop. Biol. 15: 1-42.
- 24 Brown, A.H.D. 1980. Genetic bases of Alcohol dehydrogenase polymorphism in Hordeum spontaneum. J. Hered. 70: 127-128.
- 25 Brown, A.H.D and R.W. Allard, 1969. Inheritance of an isozyme differences among the inbred parents of a reciprocal recurrent selection population of maize. Crop Sci. 9: 72-74.
- 26 Brown, A.H.D. and J. Munday, 1982. Population genetic structure and optimal sampling of land races of barley from Iran. Genetica 58: 85-96.
- 27 Brown, A.H.D., E. New, D. Zohary, and O. Dogan. 1978. Genetic varation in natural populations of wild barley <u>Hordeum</u> <u>spontaneum</u>. Genetica 49: 97-108.
- 28 Buttery, B.R. and R.I. Buzzell. 1968. Peroxidase activity in seeds of soybean varieties. Crop Sci. 8: 722-725.
- 29 Cherry, J.P. and P.L. Ory. 1973. Electrophoretic characterization of six selected enzymes of peanut cultivars. Phytochemistry 12: 283-289.
- 30 Clegg, M.T. and R.W. Allard. 1972. Patterns of genetic differentiation in the slender ild oat species <u>Avena</u> <u>barbata</u>. Proc. Natl. Acad. Sci. USA 60: 1820-182.

- 31 Dani, R.G., and B.R. Murty. 1982. Genetic Analysis of Biology of Adaptation in Chickpea. Indian J. Genet. 62: 183-195.
- 32 Demetrius L. 1977. Adaptedness and Fitness. Amer. Natur.111: 1163-1168.
- 33 Dewey, D.R., and K.H. Lu. 1958. A correlation and path-coefficient analysis of components of crested wheat grass seed production. Agron. J. 51: 515-518.
- 34 de Vienne, D. 1978. Variabilite chez une espece tetraploide: analyse soenzymatique et biometrique de pollen de quelques familles apparentees de luzerne. Ann. Amelior. Plantes 28: 289-307.
- 35 Dobzhansky, T. Genetics of the Evolutionary Process. Columbia University Press, New York, 1970.
- 36 Eberhart, S.A. and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36-40.
- 37 Efron, Y. 1969. Specific inhibition of acid phosphatase-3 in pollen of maize by the diazonium salt fast garnet GBC. J. Histochem. Cytochem. 17: 73-739.
- 38 El-Metainy, A.Y. and A.A. Omar. 1981. Biochemical genetics of <u>Zea</u> <u>mays L</u>. Isozymes and the linkage relationshi between Ap-1 and Ap-2 loci. Biochem. Genet. 19: 635-640.

- 39 Fedak, G. 1974. Allozymes As Aids To Canadian Barley Cultivar Identification. Euphytica 23: 166-173.
- 40 Ferrer-Monge, J.A. 1973. Esterase isozyme patterns in <u>Glycine max</u> exposed to gamma radiation. Can. J. Bot. 52: 273-275.
- 41 Frey, K. J. 1964. Adaptation reaction of oat straints selected under stress and non-stress environmental conditions. Crop Sci. 4:55-58.
- 42 Finlay, K. W., and G.N. Wilkinson. 1963. The Analysis of Adaptation in A Plant Breeding Programme. 1963. Aust. J. Agr. Res.14: 742-753.
- 43 Fottrell, P.F. 1966. Dehydrogenase isozymes from legume root nodules. Nature 210: 198-199.
- 44 Fottrell, P. F. 1968. Esterase isozymes from legume root nodules. Phytochem. 7: 23-29.
- 45 Frankel, O.H. and E. Bennet. (Editors) (1970): Genetic Resources in Plants - their Exploration and Conservation. Black ell Scientific Publishers. Oxford and Edinburgh.
- 46 Freeling M. 1983. Isozyme systems to study gene regulation during development: A lecture. Isozymes in Plant Genetics and Breeding 1983. 61: 83.

- 47 Gorman, M.B., and Y.T. Kiang. 1977. Variety-specific electrophoretic variants. Crop Sci. 17: 963-965.
- 48 Gorman, M.B. and Y.T. Kiang. 1978. Models for the inheritance of several variant soybean electrophoretic zymograms. J. Heredity 69: 255-258.
- 49 Gorman, M.B. Y. T. Kiang, R. G. Palmer and Y. C. Chiang. 1983. Inheritance of soybean, electrophoretic variants. Soybean Genet. Newsl. 10(in print).
- 50 Gottlieb, L. C. 1982. Conservation and duplication of isozymes in plants. Science. 216: 373-480.
- 51 Gowda, C.L.L. 1981. Natural Outcrossing in Chickpea. Int. Chickpea Newsl. No. 5:6.
- 52 Gowda, C.L. L. 1972. Path-Coefficient and techniques for yield and yield components in Bengal gram. (Cicer arietinum L.) M.Sc. Thesis, G. B. Pant. University of Agriculture and Technology. India.
- 53 Gowda, C.L.L. and B.P. Pandya. 1978. Path coefficient study in gram. Indian J. Agric. Sci. 5(10): 73-477.
- 54 Hawtin, G. C. and K. B. Singh. 1984. Prospects and Potential of Winter Sowing of Chickpeas in the Mediterranean Region. Ascochyta Blight and winter Sowing of Chickpeas. pp 7-16.

- 55 Hedrick, P.W. 1971. A new approach to measuring genetic similarity. Evolution 25: 276-280.
- 56 Hedrick, P.W. Genetics of Populations. Van Nostrand Reinhold Company. 1983.
- 57 Hilderbrand, D.F., J.H. Orf, and T. Hymowitz. 1980. Inheritance of an acid phosphatase and its linkage with Kunitz-trypsin inhibitor in seed protein of soybeans. Crop Sci. 20:83.
- 58 Hill, J. 1975. Genotype-environment interaction a challenge for plant breeding. Agric.Sci. Comb. 85: 477-493.
- 59 Hunter, R. L. and C. L. Markert. 1957. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125: 1294-1295.
- 60 Jain, K.C., B.P. Pandya and K. Pande. 1981. Genetic Divergence in Chickpea. Indian J. Genet. 41: 220-225.
- 61 Jatasra, D.S., R. Chandgi, S. Chandra and S. Ajmer. (1978) Corrlation and Path Analysis in segregating populations of Chickpea (<u>Cicer</u> arientinum L.). Indian J. Agric. Sci. Res. 12(4): 219-222.
- 62 Johnson H.W., H.F. Robinson and R.E. Comstock. 1955. Estimates of Genetic and En ironmental ariability in Soybeans. Agronomy J. 314-318.
- 63 Josh S.N. 1972. Variability and association of some yield components in gram (Cicer anetinam L). Indian J. Agric. Sci.42(5) 397-399 Crop Sci. 23: 643-647.
- 64 Kahler, A.L. 1981. World-Wide patterns of Genetic Variation Among Four Esterase loci in Barley (Hordeun vulgare); Theor. Appl. Genet.59: 101-111.
- 65 Kahler, A.L. 1983. Inheritance and linkage of acid phosphatase locus AcP4 in maize. Journal of Herdeity 74: 239-246.
- 66 Kahler, A.L. and R.W. Allard. 1970. Genetic of Isozyme Variants in Barley. I. Esterases. Crop Sci. 10: 444-448.
- 67 Kahler, A.L, R. W. Allard, M. Krazkowa, E. Nevo, and C.F. Wehrhahn. 1980. Isozyme phenotype-environment associations in natural populations of theslender wild oat (Avena barbata) in Israel Theor. Appl. Genet. 56: 31-47.
- 68 Kahler, A.L., S. Heath-Pagliuso, and R. Allard. 1981. Genetics of Isozyme Variants in Barley II. 6-Phosphogluconate Dehydrogenase, Glutamate Oxalate Transaminase and Acid Phosphatase Crop Sci. 21: 536-540.
- 69 Kaltsikes, P.J., and E.N. Larter (1970). The Interaction of Genetic and Environment in Durum Wheat. Euphytica. 19: 236-242.
- 70 Krull, C.F. I. Marvaez, N.E. Borlaug, G. azquez, R. Rodriquez, and C. Meza. 1966. Results of the third Near-East-American

spring wheat yield nursery, 1963-1965. Int. Maize and Wheat Improvement Center Res. Bull. 5: Mexico 6. D.F.

- 71 Kumar, J., P.N. Bahl, R.B. Mehra, and D.B. Raju. 1981. Variability in chickpea. Int. Chickpea News P. No. 5:3.
- 72 Ladizinsky, G. 1975. Seed Protein Electrophoresis of the wild and Cultivated Species of Selection Faba of Vicia. Euphytica 24: 785-788.
- 73 Leblova, S. and E. Perglerova. 1976. Soybean ADH. Phytochem 15: 813-815.
- 74 Malek, S.S. and B. B. Singh. 1977. Isozymic variations in black and yellow seeded, isogenic lines of "Bragg" soybean. Soybean Genet. ewsl. 4: 21-23.
- 75 Markert, C.L., and R. Moller. 1959. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc. Natl. Acad. Sci. USA 45: 753-763.
- 76 Martin, P.S and S.K. Jain. 1980. Interpopulation in rose clover J. Hered. 71: 29-32.
- 77 Martinez A. A. Coiduras and M.T. Moreno. 1979. Quantitative Inheritance and Barriers to Crossability in <u>Cicer arietinum L</u>. Theor. ppl. Genet. 55: 5-16.

- 78 Nei., M. 1972. Genetic Distance Between Populations. Amer. Natur. 106: 283-292.
- 79 Nevo, E., A. Beiles, and N.Storch. 1983. Microgeographic Edaphic Differentiation <u>Hordeium</u> polymorphisms of Wild Barley. Theo. Appl. Genet. 64: 123-132.
- 80 Niknejad, M., M. Khash-khui and S.R.Ghorashy. 1971. Inheritance of seed size in chickpeas. Crop Sci. 11: 768-769.
- 81 Obisesan, I.O. and T. Fatunla. 1983. Genotype X Environment Interaction for Bunch Yield and Its Components in the Oil Palm (Elaeis guineensis, Jacq.) Theor. Appl. Genet. 64: 133-136.
- 82 Pandey, R.L. and Tiwari. 1983. Heritability and Genetic Gain in Chickpea. Int. Chickpea Newsl. No. 9: 5-6.
- 83 Pandey, J.P., and J.H. Torrie. 1973. Path Coefficient Analysis of Seed yield Components in soybeans (<u>Glycine max. L.</u>) Crop Sci. 13: 505-507.
- 84 Pinthus, M.J., A. BAR_AM and A. Muhasen. 1973. Environmental and genetic factors affecting seed size and grading of chickpeas (Cicer Arientinum L) Israel J. Agric. Res. 23(2): 59-67.
- 85 Pollak, L. M. 1982. Allozyme Polymorphisms Related to Mating System and Morphological Traits in Two Mass Selected Corn Populations. Ph.D. Thesis, Univ. of Nebraska.

- 86 Popova, G.M. 1937. Chickpea. Pages 25-71 in Kulturnaya Flora SSR(Flora of cultivated plants of the USSR). Vol.4. Grain Leguminosae ed. Wulff, Z. V: Moscow and Liningrad State Agricultural Publishing Company.
- 87 Quiros, C. F. 1980. Identification of Alfalfa Plants by Enzyme Electrophoresis. Crop Sci. 20: 262-264.
- 88 Quiros, C.F. 1981. Starch gel electrophoresis technique used with alfalfa and other Medicago species. Can. J. Plant Sci. 61: 745-49.
- 89 Quiros, C.F. and K. Morgan 1981. Peroxidas and leucineaminopeptidase in diploid <u>Medicago</u> species closely related to alfalfa. Multiple gene loci, Multiple allelism and linkage.
- 90 Roy, N. N. and B. R. Murthy. 1967. Response to selection for wide adaptation in bread wheat. Curr. Sci. 36: 481-482.
- 91 Selander, Robert K., Michael H. Smith, Suh Y. Yang, Walter E. Johnson, and John B. Gentry. 1971. IV. Biochemical Polymorphism and Systematics in the Genus <u>Peromyscus</u>. I. Variation in the old-field mouse (<u>Peromyscus polionotus</u>). Studies in Genetics VI. University of Texas Publishers, 7103: 49-90.
- 92 Shah,R.1., A.R. Panthak, P.P. Zaveri, J.A. Patel and P.K. P. 1983. Genotype x Environment Interaction and Stablility Analysis for Yield in Chickpea. Int. Chickpea Newsl. No.8: 9-10.

- 93 Sheen, S.J. 1970. Peroxidases in genus <u>Nicotiana</u>. Theo. Appl. Genet. 40: 18-25.
- 94 Siegel, B. and A. Galston 1967. The isoperoxidases of <u>Pisum sativum</u>. Plant Physiol. 42: 221-226.
- 95 Singh, K.B and A. Auckland. 1975. Chickpea Breeding at ICRISAT. Proc. Int. Workshop on Grain Legumes. Jan. 13–16, ICRISAT, Hyderabad, India.
- 96 Singh, K.B. R.S. Malhotra and J.R. Witcombe. Kabuli Chickpea Germplasm Catalog. Aleppo, Syria, ICARDA. 1983.
- 97 Singh, K.B. and S. Tuwafe. 1980. Variability for Seed Size and Seeds per Pod in the Kabuli Chickpea Germplasm. Int.Chickpea Newsl.No.2: 4-5.
- 98 Singh, K.B. and S.Tuwafe. 1981. The Collection, Evalution, and Maintenance of Kabuli chickpea Germplasm at ICARDA. Int. Chickpea Newsl. No.4: 2-4.
- 99 Singh, K.B., S. Tuwafe and M.Kamal. 1980. Factors Responsible for Tallness and Low Yield in Tall Chickpea: Suggestions for Improvement. Int. Chickpea Newsl. No.2: 5-7.
- 100 Singh, L., D. Sharma, A.D. Deodhar, A.H. Bandey and K.B. Rastgi. 1976. Combining ability and heterosis for seed yield and ascorbic acid in gram. Indian J. Agric. Sci. 46(5): 211-216.

- 101 Singh, R.S., S.K. Jain and C.D. Qualset. 1972. Protein Electrophoresis as an aid to oat variety identification. Euphytica 22: 98-105.
- 102 Singh, S.P. and S. Ramanujam. 1981. Gene Action and Heterosis in Bengal Gram Indian Journal of Genetics and Plant Breeding Vol. 41, No.1: 150-153.
- 103 Smithies, O. 1955. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem. J. 61: 629-641.
- 104 Steel, R.G.D. and J.H. Torri. 1980. Principles and Procedures of Statistics. McGraw Hill, Book Co., Inc., New York.
- 105 Tanksley, S. D. and T. J. Orton. 1983. Isozymes in plant genetics and Breedings Part A and Part B. Elsevier, Amsterdam - Oxford wew York.
- 106 Tiselius, A. 1937. Electrophoresis of serum globulin. II. Electrophoretic analysis of normal and immune serum. Biochem. J. 31: 1464-1477.

107 Tomar, G.S., L. Singh, D. Sharma, and A.D. Deordhar. 1973. Phenotypic stability of yield and some seed characteristics in bengal gram (Cicer arietinum L.) varieties. JNKVV Res. J. 7: 3539.

- 108 Tuwafe, S. 1979. Evaluation of parents in three types of crosses in Chickpea (<u>Cicer arietinum L.</u>). M.Sc. Thesis, A.P. Agricultural University Hyderabad, A. P. India.
- 109 West, N.B. and E.D. Garber. 1967. Genetic studies of variant enzymes I. An electrophoretic survey of esterases and leucine amino peptidases in the genus Phaseolus. Can. J. Genet. Cytol 9: 640-645.
- 110 Wright,S. 1934. The method of path coefficients. Ann. Math. Stat.
 5: 161-215.
- 111 van der Maesen. 1984. Taxonomy, Distribution and Evaluation of the Chickpea and its Wild Relatives. Pages 95-101 in Genetic Resources and Their Exploitation - Chickpeas, Faba Beans and Lentils.
- 112 Vavilov, N.I. Studies on origin of cultivated plants. Leningrad, 1926.
- 113 Vela-Cardenas, M. and K.J. Frey. 1972. Optimum environment for maximizing heritability and genetic gain from selection. Iowa State J. Sci. 46: 381-394.