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ABSTRACT 

AN EXPLORATION OF THE  

APPLICATION OF SPATIAL NETWORK SCREENING METHODS  

ON IOWA RURAL ROAD CRASHES 

ROSANNA MARIA NOVELLINO SUAREZ 

2021 

 

Safety on the roadway system is important due to its usage on mobility and 

accessibility, especially on rural roads in the state of Iowa. Single vehicle run off road 

crashes have been increasing in the United States and studies and research has increased 

due to the concern with those. For this effort, a spatial-temporal method of traffic safety 

network screening is utilized in order to evaluate the concerning type of crashes in 

particular locations. The study of single vehicle run off road crashes using the proposed 

method is important since distributions and clusters of crashes along roadways can be 

observed and further evaluations can be performed. 
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CHAPTER 1.   MOTIVATION AND OBJECTIVE 

The roadway system is a valuable public resource that enables both mobility along 

highways and streets and access to public and private properties along the highways and 

streets (1-2). Regarding mobility, roadway professionals seek to provide maximum 

appropriate capacity and speeds to serve the needs of traffic seeking to progress from one 

location to another.  Regarding accessibility, roadway professionals seek to provide 

appropriate access to properties. The appropriate levels of mobility and accessibility are 

generally based on the roadway functional classification, with the overall goal of safe and 

efficient operations on the roadway system maximize the value and serve users properly.  

However, due to the somewhat conflicting goals of mobility and accessibility, conflict 

often arises when inappropriate access is provided. These conflicts degrade safety and 

efficiency in the form of crashes, near misses, swerving, hard braking, increased delay 

and traffic congestion, lower speeds, as well as other results. Figures 1.1 and 1.2 include 

representations of the interactions between mobility and accessibility (3).  Several studies 

and research have been conducted to evaluate the problem (5-10), but most have not been 

resolved. 
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Figure 1.1: Roadway functional 

hierarchy (2). 

      

Figure 1.2: Access Control Hierarchy 

(4).

When areas of concern are not properly evaluated, suitable solutions cannot be 

offered, and improvements do not occur for future traffic conditions (5, 11-14). 

Identifying roadway needs is essential when improving safety measurements (12-14). 

Roadway needs should be evaluated on existing networks but also prior to construction of 

network changes or additions to anticipate safety impacts. Implementing safety planning 

and measurements in transportation have become an essential step internationally and 

required in the United States (14). 

Network screening is an essential tool in this process since it allows the 

identification of sites where safety measures can be applied and improvements can be 

made (5, 9, 12-17). Transportation agencies might address identified locations through 

improvements to geometric, signage, access, or other options. Multiple network screening 

methods exist, each with benefits and deficiencies. Most existing methods rely on 

connecting crashes to the roadway network which can be problematic in some cases. 
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Prior to development of network screening methods, identification of roadway 

sections needing improvement was problematic. During the 1970s, states were required 

by federal statute to “develop a highway safety improvement program that would be able 

to reduce the number and severity of crashes”.  To ease implementation, a federal Hazard 

Elimination Program (HEP) was initiated within the official highway safety act of 1986. 

After that, states developed Hazard Evaluation Systems (HES) which were used to 

identify sites with potential safety problems. This was the first-time locations with 

concern were evaluated and where network screening was basically born (18). 

Also, Geographic Information Systems (GIS) and spatial and temporal analysis 

has been developed and used to identify crashes (15, 17, 19, 21, 22, 26). This is possible 

due to GIS’s capabilities to collect information, integrated, and offer its visualization 

(20). The use of GIS has offered simplifications when managing and evaluating crash 

data (21-23). Several studies have used this application to develop models based on 

methodology and technology in order to obtain reliable risk estimates (22).  

Using GIS, studies have applied clustering to crashes (17, 19). The method 

includes all crashes located in the area where the cluster is created as shown in Figure 

1.3. In the figure, there are multiple segments and crashes shown as blue dots. The gray 

segments are representing local roads while the red segment represents US 18. In this 

case, only US 18 was intended to be evaluated. Due to the circular selection region, many 

unrelated crashes are included along the segment to be evaluated. 
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      Figure 1.3: Evaluated Area Using General Clustering Method. 

A modification of that approach is to include only the crashes located along US 

18 by selecting only crashes along the roadway section as shown in Figure 1.4. As it can 

be observed, those crashes that belong to different roads are not included in the selection. 

While most existing methods initiate with the roadway network, an alternate method is to 

initiate with the crash locations and relate these to the network links (segments) and 

nodes (intersections) where they are located.  
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                Figure 1.4: Evaluated Area Using Proposed Clustering Method. 

In the United States, run-off-road (ROR) crashes are frequent in rural areas (24-

26). About 30 people die every day due to rural ROR crashes (26). ROR crashes result in 

one-third of traffic fatalities on the rural road network making them a major problem in 

transportation safety (25). From 2016 to 2018, fifty-one percent of traffic fatalities in the 

United States were composed of roadway departures or ROR crashes (26).  

Countermeasures to ROR crashes involve helping drivers maintain their lanes, 

reducing the potential of crashes due to lane departure, and minimizing the severity of 

crash occurrence (26). For example, shoulder or center rumble strips assist drivers to 

maintain their lanes, removal of roadside objects reduces the potential of crash 

occurrence, and the addition of breakaway features for signposts reduces the severity of 

crashes. However, first, in order to apply any countermeasures, the locations where this 

type of crashes are occurring must be identified. 

The objective of the current exploration is to use spatial temporal techniques to 

evaluate rural and run-off-road crashes along coincidental network connections. By 

applying that method, the primary goal is to identify clusters and evaluate crash 
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distributions along the segments. The objective will be achieved by using ArcGIS, 

Microsoft Excel, R, and Google Earth.  

ArcGIS will enable the combination of the crash and road data to visualize and 

classified the crashes. Crash locations, including all types of segments and intersections, 

and crash densities for all crash types will be presented on the map. The inclusion of 

those in the program, allows categorization and crash selection by including different 

fields, allowing the creation of new data sets. The data sets can include a particular type 

or manner of crash that requires further evaluation. Using Python, the crash points 

located along the segments can then be related to each other and crash counts can be 

generated.  

From a selected point along the segment, crash counts can be obtained using the 

appropriate sight distance for the selected segment, and the location for those are also 

detected. With the crash count and the location of each selected area, different graphs 

were created with Microsoft Excel, R, and Google Earth. The intend behind the creation 

of the graphs was to allocate clusters among the evaluated segments. The three programs 

were used to compare the outputs of each, and to confirm the existence of clusters after 

applying the proposed method. With crash clusters available, traffic and roadway 

characteristics can be included in the analysis, and sites can be prioritized for civil 

engineering purposes. The efficient completion of the current exploration could 

contribute with practitioners who intent to apply network screening for crash evaluation.  
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CHAPTER 2.   LITERATURE REVIEW 

 

Traffic volume growth has been relatively consistent over the past several 

decades.  As shown in Figure 2.1, except for a recession-related decline during the 2007-

2012 timeframe and the recent COVID-related decline of 2020, national traffic volumes 

have shown a relentless upward trend.  

 

Figure 2.1: General Growth of Traffic in the United States (27).  

For Iowa, as shown in Figure 2.2, traffic growth has also increased steadily, not just for 

highway traffic but also other modes. The Highway VMT category has shown the most 

significant percentage increase, and it includes automobiles, pickup trucks, and 

motorcycles.  
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Figure 2.2: General Growth of Transportation in Iowa (28).  

A negative aspect of traffic volume growth is a corresponding increase of road 

traffic crashes, which have been shown to be significantly related to traffic volume (6, 20, 

23, 24, 29-46, 49). Additionally, many of these crashes are severe, involving either 

fatalities or major injuries (8, 19, 20, 29). Approximately 1.2 million lives lost worldwide 

and roughly 38,000 annual fatalities in the United States due to road crashes (20, 24, 25, 

46). However, fatalities on Iowa roadways have steadily decreased over the past several 

decades despite an increase in traffic volume (28).  Thus, as crash frequency has been 

increasing with the growth in traffic, traffic safety is a public and socioeconomic concern 

(6, 20, 46), with Iowa having some success reducing fatalities. 

To address this concern, much research has been devoted to evaluating road 

traffic safety (5-10, 20, 23, 29-45, 48, 49). Traffic safety research has addressed diverse 

topics that include various crash factors and types, countermeasure implementation and 

effectiveness, statistical methods, and approaches, and evaluating approaches for 

identifying crash clusters.  The evaluation of crash factors has been directly related to 

drivers in several studies. Those studies include but are not limited to driver’s speed, age, 

experience, substance involvement, distractions, and others (6, 7, 31, 38, 39, 41, 50-54). 
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Also, crash factors evaluations involve different road conditions analysis and weather 

conditions (31, 50, 55, 56-58). In general, drivers under the age of 24 are more involved 

in crashes when compared to other aged drivers (7, 38, 39, 41, 52, 54), fatal injuries are 

more likely to occur to older drivers when compared to other drivers age categories (38, 

50, 53), the use of drugs and alcohol could be a cause leading to more crashes and worse 

injuries (31, 50, 51), male drivers are more likely to be involved in a crash but female 

drivers are more likely to have serious injuries (31, 38, 39, 41, 54). Weather conditions 

have also presented a relationship with crashes since an impact on crash occurrence since 

to persist when weather conditions are present (31, 55, 56, 50, 57, 58).  

Crash types are highly involved in most safety analysis studies. In most cases, 

crash types are widely related to severity and crash counts. In several studies, crash types 

are directly involved with modeling creation for different purposes (32, 35, 59-62). The 

reason for that is that similar crash types are likely to occur when there are deficiencies 

on the road design, but different crash types occur when different crash factors such as 

driver and environmental conditions are involved. Most of the time, crash types are 

associated to different conditions at certain locations (32, 35, 59-62). Because of that, 

generating models depending on the crash type is not always successful, however, it 

could be used as a complementary option. Angle, head-on, rear-end, sideswipe, same 

direction and opposite direction, pedestrian-involved, and single vehicle crash types are 

the most evaluated in studies (32, 35, 59-62).  

Most traffic safety studies have the common objective of identifying or 

developing effective countermeasures to prevent and reduce severe crashes. Depending 

on different circumstances of why the crashes are happening, different countermeasures 
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can be applied (31, 54, 63-67). Some studies have identified general countermeasures 

including hazard warnings, control on speed limits, improving on light conditions, 

roundabouts incorporation, and many others (31, 54, 63-67). It has been proven that the 

application of effective countermeasures offers a potential to reduce crashes (67). 

Previous studies have also focused on the evaluation of countermeasures for run-off-road 

crashes. Some are the improvement of curves design, high friction surface treatments, the 

increase of safety campaigns addressed towards drivers, rumble strips or guardrails, 

increasing the separation between opposing lanes, using traversable roadside slope 

designs, relocating, or shielding fixed roadside objects, and others (54, 64). Another 

method to evaluate and identify crashes, is the development of crash clusters.  

Much of this research addresses steps within the Roadway Safety Management 

Process, which involves: network screening, diagnosis, countermeasure selection, 

economic appraisal, project prioritization, and safety effectiveness evaluation (11). These 

steps are often combined into four distinct steps: network screening, diagnosis and 

countermeasure selection, economic appraisal and project prioritization, and effectiveness 

evaluation (HSM). Though the process is cyclical, as shown in Figure 2.3, network 

screening is often viewed as the initial step where the identification of potential sites for 

safety countermeasure application occurs (5, 9, 12-17).  Diagnosis and countermeasure 

selection is subsequently applied to the identified sites with economic appraisal and 

project prioritization comparing the selected countermeasure projects for implementation.  

Effectiveness evaluation occurs after some time has passed since evaluation and this 

leads to improvements in the cyclical process over time.  For this thesis, the focus is 

primarily on the network screening aspect but with impacts on subsequent steps in mind. 
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   Figure 2.3: Roadway Safety Management Process (HSM).  

With the focus on network screening and, more specifically, network screening of 

single vehicle run-off-road (SVROR) crashes, a literature review of related topics 

follows: network screening, crash cluster analysis), and run-off-road crash research.  

Network Screening 

In the U.S., federal mandates during the 1970s required states to each develop and 

implement a highway safety improvement program. Network screening, or identification 

of hazardous locations and elements, became an obvious important first step. Following 

the network screening process, per the four-step Roadway Safety Management Process, 

countermeasures and projects were developed with subsequent effectiveness evaluation 

intended. To provide guidance and ease implementation, a federal Hazard Elimination 
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Program (HEP) was initiated in 1978. With the impetus of the HEP, many states 

developed Hazard Evaluation Systems (HES) which included network screening to 

identify likely hazardous locations and develop a list of safety improvement candidate 

locations. (18)  

Network screening is an analytical process to quantify and assess safety 

performance of the roadway network, comparing individual locations (sites) to one 

another and ranking the sites on relevant criteria. The process is a crucial initial step that 

identifies sites of concern by first determining sites with greater tendency for crashes, 

whether total crashes or some subset thereof (e.g., severity or some other crash 

characteristic such as run-off-road crashes).  Subsequently, these sites are assessed to 

whether they are outside some norm. Historically, the assessment of sites based on 

roadway geometrics (e.g., segments and intersections) has been based on density, rate, or 

severity comparisons but more recently assessed via more rigorous statistical means.   

Some studies have based the evaluation of crashes depending on driver’s speed, 

age, experience, substance involvement, and distractions (6, 7, 31, 38, 39, 41, 50-54). 

Others have involved different road conditions analysis and weather conditions in order 

to establish relations among crashes (31, 50, 55-58). Another very commonly used subset 

to determine sites with greater tendency for crashes is to define crash types and crash 

severity (32, 35, 59-62).  The identified sites are then assessed for potential 

countermeasures. 

Related to the determination of sites with greater tendency for crashes, analysts 

have historically summarized data based on geometric features of the roadway network, 

namely intersections and segments (5, 12-14, 62, 63). Whereas this certainly makes 
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logical sense as engineering countermeasures would generally be applied across the 

network, basing the identification of safety concerns on factors on network elements that 

may disperse impacts over lengths and obfuscate actual safety concerns.  For example, if 

a length of roadway has an intense grouping of crashes along a short stretch but the crash 

impacts are dispersed along the entire length, this may not be obvious and may not be 

flagged for review or mitigation.  Conversely, if the crashes are spaced reasonably 

evenly, which has been noted as being the case for run-off-road (31, 54, 63-67), then the 

section of roadway again may not be flagged even though a more systemic 

countermeasure might be appropriate.  Furthermore, with regard to intersections, the 

length issue is less obvious; however, the assigning of crashes to intersections for 

subsequent summarization often ignored the crashes in proximity to the intersection that 

may have resulted from operations at the intersection.  Developing a method to assess the 

distribution of crashes around a location both to identify concentration and spread is thus 

important, perhaps by ignoring the roadway geometrics initially and basing the 

identification on crash clustering initially. 

Due to this importance, network screening methods have been often researched 

for potential improvements both to initial site identification (9, 10, 16, 20, 32, 34, 44, 52, 

53, 64, 66-75) and to subsequent assessment (31, 54, 63-67). Recent methods have taken 

advantage of statistical methodology, including multivariate and spatial statistic (as well 

as other) improvements over time (7, 29, 32, 33, 35, 36, 43, 48, 56, 58, 59, 61-63, 69, 77-

83). These improvements are intended to produce viable results for the subsequent steps. 

Viable, valid network screening methods return results where locations with a significant 

frequency of collisions are identified and subsequently evaluated (70). When areas of 
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concern where crashes are constantly taking place at are not properly evaluated, suitable 

solutions for those crashes cannot be offered, hence improvements and countermeasures 

are not established and applied for future conditions (5, 11-14).  

Over the past few decades, several different network screening methods have 

been used, ranging from reasonably simplistic, easily applied to more sophisticated. 

These methods have evolved over time and development continues.  Some of the 

methods include: crash frequency, crash rate, crash severity, rate quality control, index 

methods, spatial location and proximity, Bayesian methods, and multivariate modeling 

techniques (6).  

The crash frequency method consists of the summarization of a number of crashes 

for a particular spot location; this method is related to the spot map method. The spot 

locations are compared and ranked depending on their crash frequency and those with 

high crash locations are further evaluated for statistical significance (89). 

The crash rate method evaluates the risk of exposure depending on high crash 

locations. Similar to the crash frequency method, this method also classifies locations 

with higher rates as high crash locations. In this method, the basis for ranking crashes is 

the number of found crashes divided by the number of vehicles present in the location 

(89).  

Crash severity methods are those which incorporate the measure of severity into 

the crash analysis as their name indicate. This method includes frequency, rate, and ratio 

of more severe crashes. Severe crashes are those which are given a more relative weight 

when compared to those considered as less severe. Including the severity of crashes in the 
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analysis helps agencies to offer more attention to those sites in which more fatal crashes 

are occurring when compared to crashes with a lower severity (89).   

The rate quality control method is used to evaluate those sites in which crash rates 

are greater when compared to similar areas. Similar to the crash rate method, this method 

includes statistical control test in order to determine what the critical crash rate is in 

similar places to determine whether the observed site is significant or not (89). 

Lastly, index methods are those that intend to include the severity indices with 

other factors as the ones previously mentioned. The most common of these include the 

weighted rank method, the crash probability index method, and the Iowa method. The 

weighted rank method consists of the inclusion of some of the previously mentioned 

methods in order to calculate a single index value for each site, and then, rank them as in 

previous methods to assign significance. The crash probability index method creates a 

combination of the results of crash frequency, crash rate, and crash density, in order to 

then rank the sites and determine which sites should be prioritized. The Iowa method 

generates three ranking lists involving frequency rank, a rate rank, and a severity rank, 

which are then combined into a single rank to also determine significance of sites (64, 

89). 

For spatial location and proximity, often this involves use of Geographic 

Information Systems (GIS) (12, 19-23) for application; however, this need not be the case 

given valid coordinates within the database.  Different methods that have been developed 

to assess spatial location and proximity for network screening include: short/sliding 

window (6, 11, 14, 16, 29), Continuous Risk Profiles (CRP) (6, 11, 14, 20), Point Pattern 

Analysis (PPA) (5, 10, 16, 32, 81), and Kernel Density Estimation (KDE) (17, 19, 20, 48, 
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69). The network screening method developed as part of the research related to this thesis 

essentially improves upon KDE by travelling along the network to determine proximity 

and crash densities rather than a radial proximity.  These crash clustering methods, and in 

particular, KDE are discussed more thoroughly in the following Crash Clustering 

Methods section. 

Bayesian methods that have been applied to network screening include two 

primarily distinct subsets, Empirical Bayesian (16, 32, 68, 70, 71, 84, 85) and Full 

Bayesian (29, 68, 32-34, 79, 84) or Bayesian hierarchical model (22, 31, 70), and 

Bayesian spatial model (7, 77). However, the focus of this thesis is not on the statistical 

methodology but on the development of crash clustering. 

Generally, when applying some of the previously mentioned methods, the data is 

first classified into different characteristics and factors which can include variation in 

accidents and injuries factors (77), spatial characteristics or considerations (29, 33, 79, 

84, 86), driver behaviors depending on different elements (6), crash frequency, crash rate, 

crash risk (7, 9, 20, 84), historical crash data (17) and others. Overall, roadway crashes 

are typically classified depending on the interaction of the driver, the vehicle, the 

roadway characteristics, and environmental factors (35).  

The next section revisits the topic of spatial location and proximity and focuses 

further on the crash clustering methods, including additional details regarding network 

screening.  Though Bayesian statistical methods have been used to enhance network 

screening, again that is not the focus for this thesis. 
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Crash Clustering Methods 

Hotspots identification, also known as black spots and sites with promise, is the 

process in which locations composed by a higher number of crashes usually caused by 

local risks factors are recognized (16, 32, 67, 69-71).  The location of hotspots in 

intersections and along different types of segments is very important since it allows 

improvements to be made on the identified affected areas (68, 72). One of the most 

important aspects when identifying hotspots is to make sure that only true hotspots are 

being recognized and no errors are being included on the hotspot identification (10, 16, 

17, 19, 20, 23, 34, 36, 68, 70, 72, 73).  

Different studies have been focused on the comparison and analyses of methods 

in order to determine which method is found to be the most efficient when identifying 

hotspots depending on their given characteristics (23, 33, 67, 69, 73). Even though some 

methods have been proven to perform better than other in different studies, their 

performance is dependent on the locations of the crashes and their circumstances (69). It 

can be said that the methods that have been compared the most have included spatial 

modeling and temporal methods. In some studies, they have been found to perform better 

when compared to the other methods (35, 36, 73). Other methods that have been helpful 

for hotpot identification in different studies have been GIS (19-23) as well as Empirical 

Bayes (16, 34, 67, 68, 70, 71, 85) 

Clustering has been another recognized method to identify and classify hotspots 

(12, 13, 16, 19, 23, 24, 31, 48). The main objective of clustering is to reclassify the data 

and arrange it in the most suitable way in order to evaluate the crashes effectively (23, 

48). When clusters are implemented, hidden relationships and patterns can be found for 



 

 

 

17 

crashes and high risks locations are identified (16, 12, 13, 24). In some studies, this 

method has been combined with hierarchical Bayesian models (16, 24, 31), with the 

kernel density estimation method (24), by applying K-functions (12, 13, 19, 23) and 

others.  

Clusters allow the identification of contributing factors and relevant properties 

that allow the development of more accurate test scenarios (24, 31). Clusters are mostly 

defined and classified depending on roadway conditions and design, crashes 

characteristics and kinematics or environmental conditions (24, 31). They can also be 

subdivided later based on the variance of their variables and characteristics to simplify 

the evaluation of the data (36). Cluster analysis is commonly applied to crash 

segmentation applying temporal or spatial distribution and to pattern identification in 

order to recognize factors and variations in crashes (24).  

Research have shown that identifying crashes in order to reduce them is as 

important as understanding the relationship between road network risk and prediction 

variables (48). In order to reduce the frequency of traffic accidents, those much be 

identified withing the road segments (5). Safety network screening have been widely 

used to improve road locations (31). In order to provide roadway safety, locations with 

high collisions must be identified (14). For that reason, identifying hotspots have become 

a priority in different studies (7, 13, 15, 17, 18, 21, 68, 77). In order to do this important 

step, a variety of steps have been used and developed (68). 

There are various methods that are used to estimate crash frequencies or severities 

in different locations (15). Most of the locations where those are evaluated are through 
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segments and intersections (15). Crash screening methods are very popular and used to 

analyze crashes in large areas and identify hotspots (15). The following paragraphs 

contain a short explanation of the most common methods.   

Sliding Window Method (SWM) 

The sliding window method consist of the estimation of potential for safety 

improvement at the start of a segment and then the estimation procedure is repeated until 

the window approaches the end of the segment that is being evaluated (6, 16). For the 

sliding window method, the hot spot window length, and the minimum number of crashes 

per hotspot are used as defining parameters. Under this method, critical threshold is used 

to determine whether hotspots are present or not and it consist of the minimum number of 

crashes per hotspot (16).  

Previous studies have used a sliding window to calculate both crash count by 

severity and the predicted crash count on the basis of the developed SPFs and to calculate 

additional performance indices on the basis of both the link and the window data (29). In 

most studies, SWM has been compared to other methods (6, 11, 14, 16, 29). In some 

studies, SWM has presented an undesired number of false negatives (11, 16). Although 

SWM has been useful to identify individual locations that needed improvement, other 

methods have demonstrated better performance overall (6, 11, 14, 16, 29). 

Peak Searching Method (PS) 

The PS method is performed when the segment is subdivided to small windows 

and with the data, potential for safety improvement (PSI) is estimated in order to test 

them later using coefficient of variation until a maximum PSI is found, or the window 

reaches the end of the segment (6, 15). In other words, the peak searching method divides 
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the segment into windows with the same length and the coefficient of variation is 

determined in order to obtain the statistical significance of the crashes (16). In most 

studies, the peak searching method has been compared to different methods (6, 11, 15, 

16). Similar to the sliding window method, the peak searching method has presented an 

undesired number of false negatives and false positives (11). Because of the lack of 

accuracy of the peak searching method, some studies have found superior methods when 

they are compared, and those have been selected instead (6, 11, 16). 

Continuous Risk Profile 

The network screening method of continuous risk profile (CRP) was developed 

with a web-based application also called California Safety Analyst (CASA) (11). CRP 

first reduces the data to only significant collisions to then obtain the predicted collision 

frequency from the corresponding SPF (11, 20). The CRP method produces a measure of 

risk which identify the density of collisions per unit distance of roadway (14). It is able to 

monitor the risk changes over the years and to quantify effective countermeasures (14). 

One of the advantages of this method, is that it does not require SPFs estimations or 

segmentation of roadways since it uses spatial correlation (11, 14).  

In some studies, the CRP approach has been compared with SWM, PS, other 

methods, and it has been found that false positives and false negatives are reduced when 

using CRP while a better general performance have been observed (6, 11, 14, 20). The 

CRP approach has successfully detected high collision concentration locations in 

previous studies (6, 11, 14, 20). 
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Point Pattern Analysis 

Point pattern analysis is based on the study of spatial arrangements of points in a 

determined space. The method is used in multiple areas in order to relate different points 

and its easier application is usually on maps. The modeling of this method occurs when it 

is inferred that an arrangement is the result of some process. the arrangement is typically 

on simple circles and ellipses, depending on given distances. At the end of the process, all 

points have the same location (5, 10, 16, 32, 81). 

The point pattern analysis method has also been used on hotspots studies of 

crashes. It can be said that the point pattern analysis is divided into density-based 

methods and distance-based methods. On the density-based methods, the kernel density 

estimation (KDE) and quadrat analysis are used (the former being the most popular), and 

for the distance-based methods K-functions and Moran’s I analysis are used. Results for 

this method have been successful, but there are some other methods that have outperform 

it due to the lack of accuracy that it can present in some cases (5, 10, 16, 32, 81). 

Clustering 

Clustering analysis consists of grouping a set of variables associating their 

similitudes in order to create groups. Clustering as a segmentation method is intended to 

organize and group large data into a small number of groups by associating the 

characteristics of the found crashes. This method has been widely used in multiple studies 

in order to analyze data (7, 8, 12, 13, 15, 18, 48, 71).  
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Crash Prediction Model 

In some studies model crash frequencies that accounts for spatial correlations are 

evaluated. One method that has been previously used is the site-level CPM which uses 

the same mean and variance of the crash frequency and assumes that the observations are 

mutually independent. The zone-level CPM has been also used on county, states, traffic 

analysis zone, local health area, and others (86). Macro CPMs have been used to 

incorporate safety into traffic planning and traffic safety estimation. Micro CPMs 

requires the mean and variance of crash frequencies to be equal to analyze observations 

(48). After evaluating the CPM method, it has been found that the spatial modeling in 

CPM includes spatial correlation among the observations and generates a better safety 

assessment (48, 86). 

Kernel Density Estimation (KDE) 

Density estimation is an important concept in statistics. Density estimation offers 

valuable information about a particular data set involving different features such as 

skewness and multimodality. For a random quantity of X with a probability function of f, 

the function offers a natural description of the distribution of X. Also, with the function 

of f, probabilities associated with X can be observed (47). 

The function f can be applied as (47):  

𝑃(𝑎 < 𝑋 < 𝑏) =  ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

              for all 𝑎 < 𝑏. 
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Under the density-based methods, the kernel density estimation (KDE) is used to 

estimate crash frequencies or severities (5, 7, 12, 13, 15, 17, 21, 30, 42-44, 49, 74-76, 80-

82). KDE is a non-parametric method in which a density estimation technique is used.  

The identification of hotspots is a systematic process in which road sections that suffer 

from high-risk crashes are identified. The KDE method can be used to estimate the 

density of traffic accidents on a roadway network (5, 7, 12, 13, 15, 17, 21, 30, 42-44, 49, 

74-76, 80-82). This method enables the evaluation of local probability accident 

occurrence and the probable dangerousness of particular area (81).  

KDE has been used to detect highly crash risk sections, to observed temporal 

variation of hotspots across the road network along with the Moran’s Index method, to 

investigate spatial variations and several more. KDE have been adopted in previous 

studies and expected crash rates have been identified (5, 7, 12, 13, 15, 17, 21, 30). All of 

the studies in which KDE have been implemented, have shown potential for this method 

and satisfying results (49). The kernel density estimation tool has become one of the most 

promising spatial tools since it determines the risk of an accident by also making 

comparisons (5, 7, 10, 12, 13, 15, 17, 21, 30).  

In a general view of the kernel density estimation tool, each point has a 

symmetrical surface and the distance between the points and the reference locations is 

determined. That is done in order to estimate the distribution of accident points. Once the 

hotspots are identified, they are classified by homogenous types based on environmental 

characteristics, and clusters are created (7, 12).  
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In more detailed, on the KDE method, a continuous crash density surface is 

created by using a circular search area by the kernel function which is applied on each 

crash. After that, grid cells are overlaid over the study area for each of which the density 

is estimated by the addition of the overlapping density surface of each crash point (49). In 

other words, this method places a symmetrical surface over the evaluated points and 

analyses the distance from the selected points to the location of reference based on the 

mathematical function that it includes. After that, the values for all of the surfaces per 

point are added for each of the selected locations of reference. The kernels are created 

over a point in order to generate a smooth and continuous surface. The estimated density 

is calculated by adding these values at each observation withing the bandwidth (43, 76, 

83). 

The kernel density function can be applied as (76):  

𝑓(𝑥, 𝑦) =  
1

𝑛ℎ2
∑ 𝐾

𝑛

𝑖=1

(
𝑑𝑖

ℎ
) 

In this equation, 𝑓(𝑥, 𝑦) represents the density estimate at the location of (𝑥, 𝑦). 𝑛 

represents the number of observations, ℎ is the bandwidth or the kernel size, 𝐾 is the 

kernel function, and 𝑑𝑖 represents the distance between the selected location of (𝑥, 𝑦) 

(76). For a better understanding of the variables involved in this function, please refer to 

Figure 2.3.  
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            Figure 2.4: Diagram of how the kernel density method works (64). 

On the other hand, the kernel function is applied as (49):  

𝑓(𝑥, 𝑦) =  ∑
1

𝑛 × 2 × 𝜋ℎ2

𝑛

𝑖=1

× 𝑊𝑖 × 𝐾(
𝑑𝑖

ℎ
) 

In this equation, 𝑓(𝑥, 𝑦) represents the density estimate at the location of (𝑥, 𝑦). 𝑛 

represents the number of observations, ℎ is the bandwidth or the kernel size, 𝐾 is the 

kernel function, and 𝑑𝑖 represents the distance between the selected location of (𝑥, 𝑦), 𝑊𝑖 

is the intensity of the observation (49, 76). For a better understanding of the variables 

involved in this function, please refer to Figure 2.4. 
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        Figure 2.5: Kernel density method with kernels (49). 

Kernel functions can be normal, uniform, quartic, epanicnikov, and triangular. 

Among all of those options, the most popular are normal for quartic functions and 

ArcGIS (49, 74, 83). The normal kernel function is used more often since it provides 

convenient mathematical properties and when it was compared to the others in previous 

studies, it resulted to have a smaller efficiency loss. On the other hand, the epanicnikov 

function is better when it comes to mean square error (74). The selection of the kernel 

function depends on what the study area and the data include and what results are 

expected from the particular study. 

Even though KDE have several parameters, some are more influential than others. 

The two main parameters which affect KDE the most are bandwidth and cell size. The 

bandwidth is highly important since it determines the extent of search area (43, 49, 75, 

80). In all cases, it is important to experiment with different intervals of bandwidths in 

order to determine which one fits the data more accurately. Generally, the range goes 
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from 20 to 1,000 meters but since every data set is different, the ranges might change 

depending on the area to be study. In particular studies, the bandwidth has been selected 

to be equal and double the cell size in order to follow the hotspots pattern (49, 75). If the 

bandwidth is large, a smooth density pattern is created which makes the separation of 

local hotspots more challenging. If the bandwidth is small, then only individual hotspots’ 

locations are highlighted and evaluated creating a sharp density pattern (43). 

After using the network KDE method to identify the potential hotspots, in some 

studies, potential hotspots are extracted onto density maps to help with visualization (5, 

12). In some cases, once the network KDE method is applied, segments show zero 

crashes and those can be discarded (5). Similarly, to other studies, the KDE method has 

also been evaluated and compared with other methods (5, 30, 76). For some studies, after 

comparing methods, the network KDE results to identify potential hotspots performs 

better than results based on aggregated crash data (5, 49) and in other cases, it just meets 

with the requirements of the study (5, 7, 12, 13, 15, 17, 21, 30, 42-44, 49, 74-76, 80-82).  

As it has been previously stated, several studies have used the Kernel Density 

Estimation tool as a method to identify hotspots. The geographic information system 

(GIS) has played an important role in the process of identifying crashes and preventing 

them. GIS is a tool on expansion, always proving new analysis opportunities and tools for 

research (56). This tool offers efficiency when providing screening analysis in order to 

screen and diagnosticate for crashes (42-44 75, 76, 82, 83).  

The Kernel Density Estimation has been used in the frame of the spatial analysis 

along network (SANET) (42-44 75, 76, 82,). This method can be applied to data located 
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in GIS since a toolbox was included for the general KDE process under the spatial 

analysis network option (42). Previous studies have used the SANET tool, and the results 

have shown a precise definition of crashes proving the accuracy of the tool. 

Kernel density estimation has two different forms. Planar Kernel Density 

Estimation (PKDE) and Network Kernel Density Estimation (NKDE). Both of these 

methods have been widely used when identifying clusters. (13, 15, 42). Those two 

methods have been compared in other studies, and results have shown that NKDE is less 

depending on input parameters which is advantageous when determining clusters in some 

cases. Because of the advantages that the NKDE method offers, it has been chosen as the 

primary method for studies (13). Also, in previous studies the NKDE method has 

identified continuous local hotspots which is advantageous when identifying hotspots 

(15). 

The Planar Kernel Density Estimation is widely used when studying crashes since 

the density is calculated within a homogenous 2D space. The PKDE analyses events 

withing a 2-D homogenous space in which the longer the distance between a point and 

the location, the lower the weight of the selected point. This method uses the Euclidean 

distance between the located crashes alternating the result (42). The two key parameters 

that are involved in this method are the kernel function k and the bandwidth r. PKDE has 

outperformed NKDE in previous studies since PKDE is less dependent on the given input 

parameters (42). On the other hand, one of the disadvantages of this method, is that it 

uses Euclidean distance between the events which is not accurate since crashes occur 

along a road network (42). 
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The planar kernel density function can be applied as (42):  

𝜆(𝑠) =  ∑
1

𝜇𝑟2
𝑘

𝑛

𝑖=1

(
𝑑𝑖𝑠

𝑟
) 

In this equation, 𝜆(𝑠) represents the density in the locations s, 𝑟 represents the 

radius (bandwidth) of KDE, 𝑘 is the weight of point 𝑖, 𝑘 is the weight of point 𝑖 at a 

distance 𝑑𝑖 of the location s (42). This function can also be referred as the kernel function 

of the relationship between 𝑑𝑖𝑠 and 𝑟. 

The Network Kernel Density Estimation follows the PKDE process by including 

a calculation of the density of point type events on a linear unit instead of using the 2-D 

homogenous area unit that the PKDE employs. Previous studies have involved this type 

of KDE instead of the planar alternative when events were occurring on a road network. 

The network kernel density function can be applied as (42):  

𝜆(𝑠) =  ∑
1

𝑟
𝑘

𝑛

𝑖=1

(
𝑑𝑖𝑠

𝑟
) 

In this equation, 𝜆(𝑠) represents the density in the locations s, 𝑟 represents the 

search radius (bandwidth) of KDE, 𝑘 is the weight of point 𝑖, 𝑘 is the weight of point 𝑖 at 

a distance 𝑑𝑖 of the location s (42). This function can also be referred as the kernel 

function of the relationship between 𝑑𝑖𝑠 and 𝑟. 
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Advantages 

As expected, due to its highly use for different studies, the KDE method has 

various advantages when compared to the other clustering methods. One advantage is the 

considerations of spatial autocorrelation of crashes when preparing clusters (49).  

Another advantage of this method is its efficiency when obtaining scores for 

exiting samples and also providing new samples that reflect the underlying data structure. 

That is performed by providing the new total log probability density under the model and 

generating models for a data set (74).  

This method has also been found to be superior and advantageous to multiple 

methods that involve statistical hotspot and clustering techniques (43). The major and 

most important advantage of this method is how accurate this method has been proven to 

be when taken into different studies and compared with others. Also, this method allows 

the user to determine the spread of risk of an accident or crash. The spread of risk is the 

area around an existing cluster in which accident are more likely to occur based on the 

spatial dependency of the selected place (76).  

For those and more reasons, KDE has always been considered when creating 

clusters and evaluating crashes along roadways (49). After the evaluation of KDE and 

completed comparisons, it can be said that in general, this is a simple method to 

implemented to data, and it is also an easy method that still offers accurate results. 
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Challenges 

As expected with any method, some challenges can be found. The main challenge 

when implementing KDE is selecting the appropriate value for some of its variables. As 

stated earlier, the selection of the bandwidths plays a very important role in the kernel 

density estimation. If the variable is assigned incorrectly, then the results are not going to 

be as accurate and other methods could be able to outperform KDE when the results are 

compared. In order to overcome this disadvantage, a series of bandwidths should be 

tested in order to find the one that fits the study better.  

Also, some studies have brough the concern that KDE considers discrete 

phenomenon as a continuous area (44). This can also be overcome by carefully 

evaluating the area in which this method will be applied and correcting any found or 

suspicious discrepancies.  

As it was mentioned earlier, the use of clusters becomes crucial when identifying 

hotspots and when evaluating crashes in an effective manner (16, 19, 12, 13, 31, 48, 23, 

24). The most common methods are hierarchical clustering, density-based clustering, and 

K-means clustering. Hierarchical clustering allows you to identify clusters by breaking up 

the dataset into different groups while also allowing you to evaluate additional groups 

inside the previous groups (16, 31, 24). Density-bases clustering methods tend to focus 

only on points that are tightly packed instead of assuming that every single point is part 

of a cluster (48). Lastly, K-means clustering considers every single point from the dataset 

and evolve the clustering over a series of iterations (12, 13, 19, 23).  
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Agglomerative hierarchical cluster analysis has been a one of the used methods in 

previous studies to evaluate run-off-road crashes. One of the benefits of using that 

approach, is that the main characteristics of the clusters are driven by the variables that 

were used in the cluster analysis. For this method, each crash in the dataset is considered 

its own cluster and then similarities are found among them, and a new cluster is created 

by merging the currently existing clusters. The clustering procedure was composed by 

three main steps. The first step included the measurement of the distance between two 

clusters and the determination of their location. The second step included the 

agglomeration criterion in which the previously selected clusters were merged depending 

on their characteristics, and a new cluster was created. The third and last step of the 

clustering procedure included the evaluation of the existing clusters in order to determine 

the number of clusters that were going to be used for the study (24). 

Kernel density estimation for the spatial clustering investigation of crashes have 

been used in several studies. Different studies have considered this method to be the most 

successful and the most promising to describe and analyze spatial patterns and crashes 

(17, 19, 48). One alteration that could be made, is adding another value to the kernel 

density method. Adding another value could improve the sites selection that could need 

further investigation by identifying high density accident areas (19). A different way to 

proceed with the kernel density method, could be to apply natural break cluster to the 

dataset. Natural break cluster can be used in this case to determine the most appropriate 

arrangement that results in clusters of density. From the kernel density results, the areas 

could be then divided into different classes and the differences among them can be 

compared in order to minimize the deviation within each class (48). 
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Other methods have been implemented by different studies. An example of those 

other methods is the multidimensional clustering algorithm. This method includes a graph 

theoretical framework which is advantageous for segmentation and grouping 

multidimensional data which can be applied to multivariate data that evaluate crashes. 

The segmentation process includes a graph in which each edge contains a particular 

weight that includes the similarity of two different crashes. The graph is then partitioned 

into two sets in order to minimize the similarities between the existing crashes on the 

dataset and continue to work only with the most relevant clusters (37). Even though there 

are multiple clustering methods, the data should be evaluated in order to choose the 

appropriate method and obtain the most appropriate clustering results. 

Run-off-Road Crashes 

Run-of-road crashes, also known as roadway departures, are defined as crashes 

that occur when a single vehicle crosses an edge line or a center line, or when it leaves 

the traveled way (24-26). Not only do they constitute a significant portion of crashes in 

the United States but many result in fatalities (24, 78). Run-of-road crashes have been 

associated and reported as one-third of traffic fatalities on the rural road network making 

them a major problem in transportation safety (25). From 2016 to 2018, fifty-one percent 

of traffic fatalities in the United States were roadway departure or run-off-road crashes 

(26).  

Evaluation of run-off-road crashes is needed in order to reduce their frequency. 

As crash locations are random but crash types are not, studies should be applied to run-

off-road crashes (87). Studies have proposed to apply countermeasures to keep vehicles 
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on the roadway (26, 87) and to target high-risk locations (87) using systemic applications 

in order to provide roadway safety and prevent future crashes (25, 26, 87).   

Run-off-road crashes have been evaluated with cluster methods in order to 

evaluate their factors and variations with the aim of improving future conditions. In 

previous studies, the two largest clusters for run-of-road crashes involved drift in daylight 

and drift at night with the characteristic that drivers were able to maintain control of the 

vehicle previous to the crash. Run-of-road crashes could be directly involved with drift 

events, low-friction curves, excessive curve speeds, and driver maneuvers (24). 

Factors Affecting Run-off-Road Crashes 

A very important aspect on reducing run-off-road crashes is to identify the key factors 

that are directly associated with the crash (37, 39). Previous studies have identified a 

variety of combinations of factors that have included but are not limited to: 

• Human factors or driver characteristics 

• Crash and vehicle characteristics 

• Roadway related information 

• Environmental factors  

More specifically, different studies have analyzed data sets considering different key 

factors for run-off-road crashes. Those studies have included factors that are considered 

to be directly affecting the safety of the road and resulting in fatal run-off-road crashes 

(38-41, 54).  

In the human factors or driver characteristics category, information such as driver 

age, intoxication, condition of the driver, driver gender, driver injury, carelessness, 

speeding and driver distraction have been considered in previous studies (38-41, 54). 
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Under this category, speeding has been identified as one of the key factors that could lead 

to run-off-road crashes (38, 39, 54). Other factors that have been observed to contribute 

are distraction, inexperience, and reckless driving (39, 54).  For gender characteristics, 

male passenger-car drivers at dawn seem to be vulnerable to fatal run-off-road crashes 

while females between the ages of 65 and 74 driving non-passenger cars have been 

observed to be higher risk (38). It was also found that compared to females, males have a 

greater propensity toward property damage only during a run-off-road crash. For the 

driver age, older drivers have shown to be more likely involved in fatal run-off-road 

crashes under partial access control zones and under general conditions (38, 41). 

Regarding intoxication of the drivers, it was found that drug or alcohol usage during 

driving increases the risk of being severely injured during a run-off-road crash (41, 54) 

The crash characteristics have included crash year, crash time, and collision type (38, 

40, 41, 54) while vehicle related information has been limited to include the vehicle 

condition and the vehicle type (38, 39, 54). Previous studies have also found that 69% of 

run-off-road crashes were overturned and 31% occurred due to hitting objects outside the 

carriageway (38, 39). 

For the roadway related category, data access control, alignment, speed limit, lighting 

condition, road condition, road type, intersection, surface condition, road width, lane 

width, shoulder width, road-side objects and highway type have been included (38-41, 

54). Previous studies have found that the majority of run-off-road crashes take place on 

rural roads and straight road segments (39, 54). It was also found that roads with a small 

safety zone tend to have more run-off-road crashes when compared to others. Also, 
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roadways with strong curvatures have been found to add 3 times more run-off-road 

crashes when compared to straight roads (40). 

Regarding environmental factors, weather, time of day, and day of week have been 

evaluated (38-41). Studies have found that the majority of run-off-road crashes have 

occurred at clear weather conditions with enough lighting and on dry road surface (39, 

41). Even though most crashes occur on dry road surfaces, it was found that the presence 

of ice, snow or wet road can worsen category of the run-off-road crash when compared to 

dry surfaces (41, 54). Also, it can be noted that 38% of the run-off-road crashes took 

place during the evening time (39, 54) and more than half occurred during working days. 

(39) 
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CHAPTER 3.   DATA METHODOLOGY 

The data used for development of the methodology and the corresponding 

analyses was obtained from the Iowa Department of Transportation (Iowa DOT). The 

data included road, crash, and traffic data for the years from 2015 to 2019. The road data 

include many attributes across all road classifications, i.e., interstates, US routes, state 

routes, and local roads. The crash data include attribute tables with the “statistical” (i.e., 

non-personal) data for all reported crashes that meet the State reporting threshold. While 

5 years of crash data are included, only 1 year of road data were included for this initial 

analysis.  There are two primary reasons for this. First, while the crash data are updated 

and generally released within a few months of the end of the year, the road data releases 

are usually delayed. Second, for the purpose of initial methodology development, one 

year of road data proved simpler to manage. 

To reduce the data to rural, single-vehicle, run-off-road (SVROR) crashes, 

ArcGIS (ESRI, 2021) software was used. Appropriate queries and relates were used to 

develop subsets of the data, using the relevant tables from the road and crash data. First, 

the data were reduced to rural roads and crashes. The crash data were then further 

reduced to run-off-road (ROR) then single-vehicle only. The results of the queries and 

relates for annual rural SVROR crashes are shown in Figures 3.1 through 3.5 as well as 

Table 3.1. Figures 3.1 through 3.5 have several similarities, with potential clusters of 

SVROR crashes visible at a statewide level, which may not result in tight clusters at a 

roadway level. However, overall, the SVROR crashes seem somewhat sparse which is 

not unexpected. Beyond that, summarizations of the most relevant tables among the data, 
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were obtained for descriptive statistic purposes after each table was related to the final 

subset of interest. 

 

 

    Figure 3.1: Crashes after querying data for the year of 2015. 
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  Figure 3.2: Crashes after querying data for the year of 2016. 

 

    Figure 3.3: Crashes after querying data for the year of 2017. 
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     Figure 3.4. Crashes after querying data for the year of 2018. 

 

 

     Figure 3.5. Crashes after querying data for the year of 2019. 
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As noted, from Figures 3.1 through 3.5 rural, SVROR crashes appear sparse though 

with potential concentrations at a statewide viewing level. This matches expectation from 

prior studies (31, 54 63-67). However, first, even at this map scale, there are some 

apparent regional concentrations that repeat annually. This might be due to the possibility 

of design improvements on certain areas if that is the cause for the repetition of those 

crashes. Second, the map scale may bely the actual concentrations, either showing more 

concentration than actuality or the reverse. That could be avoided by observing the 

crashes in a different perspective or by applying a statistical method for more precise 

evaluations. Third, the crash points shown may not depict the actual crash frequency as 

several crashes could have been located at the same point(s). The developed methodology 

attempts to identify clusters of crashes more precisely, specifically rural SVROR crashes 

for this study. 

Table 3.1: Annual crashes for rural, rural ROR, and rural SVROR with percentages. 

  2015 2016 2017 2018 2019 

Rural 17,127 17,389 17,510 18,313 18,622 

Rural & ROR 6,390 6,413 6,256 6,361 6,262 

Rural, ROR & Single Vehicle  5,355 5,360 5,290 5,444 5,263 

Rural & ROR (%) 37.3 36.9 35.7 34.7 33.6 

Rural, ROR & Single Vehicle 

(%) 

31.3 30.8 30.2 29.7 28.3 

 

Within Table 3.1, results from the tiered sub-queries (rural; rural, ROR; and rural, 

SVROR) are shown for the 5 evaluation years. Generally, the trend seems to be 
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increasing crashes with 2019 having the highest frequency for both rural and rural, ROR 

crashes and only slightly less than 2018 for rural, SVROR. Additionally, percentages of 

rural crashes that were ROR for the analysis years are shown. The percentages appear 

reasonably consistent, from 37.3% to 33.6%, with perhaps some decline during the 

period. Beyond that, the percentages of rural, ROR crashes that involved only a single 

vehicle (rural, SVROR) are shown, with similar observations regarding consistency with 

a slightly lower percentage in the final year. 

Figure 3.6 presents the previously discussed results in a graph. Run-of-road 

crashes have been associated and reported to one-third of traffic fatalities on the rural 

road network making them a major problem in transportation safety (25). In this case, 

they represent over 30% of rural crashes which is one of the motives of this study. Even 

though there has been a slight reduction during the evaluation years for this particular 

data, the problem with SVROR crashes does persist in the United States (26).  The 

remainder of the data exploration and description is based on the rural, SVROR crash 

subset. 

SVROR Crash Severity 

Often safety analysis begins with an assessment of crash severity. The annual 

crash severity summary for rural, SVROR crashes is shown in Table 3.2. Crash severity 

is generally denoted by the KABCO scale which subsets severity into fatal, major injury, 

minor injury, and possible/unknown injury as well as property damage only (PDO). Fatal 

crashes involve at least one fatality but could also involve additional, non-fatal injuries.  

Similarly, major injury crashes  
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Figure 3.6: Annual crashes for rural, rural ROR, and rural SVROR. 

involve at least one major injury but no fatalities though, again, these could include less 

severe injuries. Clearly, the number of fatal crashes (and, similarly for other severity 

levels) does not  

necessarily equate to the number of fatalities, i.e., there could be more fatalities than fatal 

crashes and additional non-fatal injuries. PDO crashes involve only damage to property. 

Table 3.2: Annual SVROR crashes by crash severity. 

  2015 2016 2017 2018 2019 

Fatal 76 99 89 68 81 

Major Injury 356 353 342 290 265 

Minor Injury 1,003 944 1,046 958 898 

Possible/Unknown 1,001 985 1,026 971 932 

Property Damage Only 2,919 2,984 2,787 3,157 3,087 
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As shown in Table 3.2, no clear increasing or decreasing trend is apparent over 

these 5 years for fatal crashes. The same can largely be said for minor injury crashes.  

However, major injury crash frequencies may indicate some decline; however, this may 

be due to some short-term variation. A reverse trend with a similar caveat can be 

observed for possible/unknown crashes. Finally, the number of PDO crashes seems to 

have increased during the 5 years but, again, though the trend seems more apparent, there 

is one aberrative year that inserts uncertainty. Figure 3.7 displays these results 

graphically. ROR crashes constitute a significant portion of crashes in the United States 

and also it is known that most of those crashes result in fatalities (24, 78). For the current 

data, most crashes did not result in fatalities but instead, in property damage only. This 

could be due to the location in which these crashes are occurring or variations on the 

roadway design that might prevent fatal crashes. The reasoning for that could be further 

evaluated in a different study. Perhaps the inclusion of clusters for severe crashes in 

future evaluations would offer a clearer reason of why less fatal crashes are occurring 

when compared to the other crash severities.  

 

Figure 3.7: Annual SVROR crashes by crash severity. 
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SVROR Time of Day 

Another frequent safety consideration is the time of day during which crashes occur. 

Typically, most crashes occur during the daytime hours, particularly the morning and 

evening commute, as most traffic occurs during that timeframe. However, the poorer 

sight distance brought about by darkness can influence the normal expectation, 

particularly in rural areas where artificial lighting is not available. To assess the time of 

day for crashes, the crash data field that uses 2-hour time bins (e.g., midnight to 1:59am, 

2:00am to 3:59am, etc.) was used. Table 3.3 displays the summary of the time of the day 

for rural, SVROR crashes. 

Table 3.3: Annual SVROR crashes by time of day. 

  2015 2016 2017 2018 2019 

Midnight to 1:59 AM 317 340 377 347 329 

2:00 AM to 3:59 AM 309 257 310 299 264 

4:00 AM to 5:59 AM 345 302 325 335 362 

6:00 AM to 7:59 AM 556 611 505 641 600 

8:00 AM to 9:59 AM 525 508 436 491 537 

10:00 AM to 11:59 AM 400 421 379 473 445 

Noon to 1:59 PM 418 476 414 479 439 

2:00 PM to 3:59 PM 566 564 567 536 530 

4:00 PM to 5:59 PM 603 540 601 540 577 

6:00 PM to 7:59 PM 451 512 497 474 437 

8:00 PM to 9:59 PM 453 433 452 439 372 

10:00 PM to 11:59 PM 412 401 427 390 371 
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Results indicate that the time bins corresponding to normal morning and evening 

commute times contain the highest frequencies of crashes, as expected. Generally, the 

afternoon commute time was the higher time bin with the morning commute generally 

the second highest. Most crashes occurred between 4:00pm to 5:59pm for all of the years 

except for 2016 in which most crashes occurred from 2:00pm to 3:59pm. The least 

number of crashes occurred from 2:00 am to 3:59 am for all of the years as well. Beyond 

this, the year-to-year variation appears unremarkable and consistent. Also, though 

daytime hour frequencies are generally higher than nighttime hour frequencies, the 

reduction does not appear as marked as expected for all crashes. Potentially, this could be 

related to the rural SVROR nature of the database. Similar to the crash severity 

discrepancy with other studies, a particular time of the day could be frequent for the 

current data but not in all cases. Perhaps some aspect (e.g., horizontal curvature, 

particularly sharp curves) of an unlit roadway might lead to increased SVROR crashes in 

rural areas. If so, an expectation for clusters at these locations would exist. Figure 3.8 

displays these results graphically. 

 

     Figure 3.8: Annual SVROR crashes by time of day. 
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SVROR Lighting 

Related to time of day, lighting is similarly interesting. Again, typically crashes 

during daylight are markedly higher than for darkness situations due to normal commuter 

traffic and generally increased activity during the day. Table 3.3 displays the summary of 

the lighting, based on time of day when compared with civil twilight times (NOAA, 

2019) for rural, SVROR crashes.  Morning and evening twilight durations are based on 

the civil twilight definition and are thus only 30 minutes each; thus, these frequencies 

should normally be small. 

Table 3.4: Annual SVROR crashes by lighting (daylight/darkness). 

  2015 2016 2017 2018 2019 

Daylight 2,997 3,068 2,913 3,062 2,970 

Darkness 2,110 2,065 2,160 2,132 2,054 

Morning Twilight (dawn)  130 139 101 140 134 

Evening Twilight (dusk) 118 93 116 110 105 

 

 Results from Table 3.4, indicate that most rural, SVROR crashes occurred during 

the daylight consistently across years. Again, this result is not unexpected. However, the 

relative proportion of darkness crashes to daylight crashes seems rather high and worth 

further consideration. Again, perhaps some aspect (e.g., horizontal curvature, particularly 

sharp curves) of an unlit roadway might lead to increased SVROR crashes in rural areas. 

If so, an expectation for clusters at these locations would exist. Additionally, a potential 

for seasonal variations related to the length of sunlight compared with darkness might 

prove interesting. Figure 3.9 displays these results graphically. 
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 Figure 3.9: Annual SVROR crashes by lighting (daylight/darkness). 

SVROR Location of First Harmful Event 

The location of the first harmful event field indicates where the initial harmful 

event for a crash occurred. The first harmful event is not necessarily the initiating event 

but the first resulting in harm or damage. The options are shown, along with annual 

frequency of occurrence, in Table 3.5. For SVROR crashes, an expectation would be that 

harmful events would not occur on the roadway but off the roadway (e.g., shoulder, 

median, roadside, gore, outside trafficway) where some fixed object would be 

encountered. However, an animal strike followed by a roadway departure would be 

included as SVROR. Figure 3.10 displays these results graphically. 

For rural, SVROR crashes during the analysis timeframe, the predominant first 

harmful event location was the roadway with indication of a decreasing trend. The other 
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in the figure to avoid redundancy. When summed, the frequency of these “off roadway” 

crashes are similar to the “on roadway” frequencies. This could also be related with 

design characteristics depending on the location in which these are occurring in the map. 

Table 3.5: Annual SVROR crashes by location of first harmful event. 

  2015 2016 2017 2018 2019 

On Roadway 2,620 2,741 2,660 2,482 2,515 

Shoulder 1,066 1,045 1,008 1,088 988 

Median 279 250 251 353 403 

Roadside 723 732 721 805 718 

Gore 48 24 37 31 39 

Outside trafficway 550 513 534 604 521 

In parking lane/zone 13 8 5 2 0 

Separator 0 1 1 1 0 

Other (explain in 

narrative) 

2 3 3 9 5 

Unknown 43 37 58 49 59 
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Figure 3.10: Annual SVROR crashes by location of first harmful event. 

SVROR Weather Conditions 

The weather conditions field indicates the circumstances of the weather while the 

crash occurred. Table 3.6 shown below includes the weather conditions for each year 

with the respective crash frequencies. For SVROR crashes, it would be expected that 

most crashes occur during clear weather conditions since these types of crashes are not 

dependent on weather conditions. However, the presence of snow or perhaps rain, could 

increases the chances of a vehicle leaving the road depending on the severity of the 

weather condition experienced. Figure 3.11 displays these results graphically. 
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       Table 3.6: Annual SVROR crashes by weather conditions. 

  2015 2016 2017 2018 2019 

Clear 2,992 2,940 3,061 2,762 2,609 

Cloudy 936 989 968 901 875 

Fog, smoke, smog 78 92 127 102 77 

Freezing rain/drizzle 186 151 171 321 284 

Rain 330 281 361 390 335 

Sleet, hail 17 21 10 63 17 

Snow 584 593 405 689 709 

Blowing snow 99 152 67 118 256 

Severe winds 21 39 31 24 35 

Blowing sand, soil, dirt 8 4 1 3 2 

Unknown 0 0 0 0 0 

Not Reported 79 64 64 60 50 

 

For rural, SVROR crashes during the analysis timeframe, the predominant 

weather condition while the crashes occurred was clear weather conditions as expected 

with indication of a decreasing trend. The other primary weather conditions were cloudy 

conditions, snow, rain, and freezing rain/drizzle. Only the primary weather conditions 

that seemed to have an influence on crashes are shown in the figure. Overall, it can be 

said that most SVROR crashes occurred while clear weather conditions are observed, as 

expected. The presence of snow, rain, and freezing rain/drizzle do contribute.  Future 

analyses could examine clusters of this subset of SVROR crashes, especially as these 



 

 

 

51 

weather conditions are relatively infrequent, thus perhaps crash frequencies are 

overrepresented. 

 

 

Figure 3.11: Annual SVROR crashes by weather conditions. 

SVROR Surface Conditions 

The surface conditions field indicates the circumstances of the surface while the 

crash occurred. Table 3.7 shown below includes the surface conditions description for 

each year with the respective frequencies. The surface conditions include dry, wet, ice, 

snow, and other conditions of the surface. For SVROR crashes, it would be expected that 

most crashes occur during dry surface conditions, similar to the clear weather conditions 

of the previous field. However, the presence of ice on the road could increase the chances 

of a vehicle leaving the road. Figure 3.12 displays these results graphically. 
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Table 3.7: Annual SVROR crashes by surface conditions. 

  2015 2016 2017 2018 2019 

Dry 2,802 2,865 3,108 2,613 2,420 

Wet 485 473 534 591 549 

Ice/frost 717 695 541 850 1028 

Snow 568 527 392 651 701 

Slush 74 121 40 181 115 

Mud, dirt 31 30 22 37 33 

Water (standing or moving) 3 4 3 5 3 

Sand 3 10 10 5 2 

Oil 1 0 0 1 1 

Gravel 604 580 590 455 372 

Other (explain in narrative) 18 9 6 13 11 

Unknown 34 24 28 37 26 

Not Reported 15 27 16 5 2 

 

From Table 3.7, most rural SVROR crashes occurred when the surface presented 

dry conditions. This result is expected for the evaluated types of crashes and relates to the 

weather conditions category. Following dry surface conditions, the other predominant 

surface conditions were wet, ice, snow, and gravel. Similar to the weather conditions, 

most crashes occurred during normal or dry conditions followed by snow/rain residues on 

the surface. As mentioned earlier, the presence of snow, water, and especially ice, could 

increase the chances of a vehicle to leave the road. Supporting that point, for all three 
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categories, the number of crashes per year is increasing. On the other hand, the number of 

crashes occurring on gravel roads could be due to the high amount of gravel roads located 

in rural areas, however for this category, decreasing crashes are observed. Those surface 

conditions that presented the highest number of crashes will be shown in the figure. 

 

 

      Figure 3.12: Annual SVROR crashes by surface conditions. 

SVROR First Harmful Event 

The location of the first harmful event field indicates where the initial harmful 

event for a crash occurred and those options are shown, along with annual frequency of 

occurrence, in Table 3.8. For SVROR crashes, an expectation would be that harmful 

events would not occur on the roadway but off the roadway (e.g., shoulder, median, 

roadside, gore, outside trafficway) where some fixed object would be encountered. 

However, an animal strike followed by a roadway departure would be included as 

SVROR. Figure 3.13 displays these results graphically. 
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The first harmful event field indicates what the initial harmful event for a crash to 

occurred was and those options are shown, along with annual frequency of occurrence, in 

Table 3.8. For SVROR crashes, an expectation would be that the first harmful event 

would include a rollover, or collision with the ditch. Figure 3.13 displays the results 

graphically.  

Table 3.8: Annual SVROR crashes by first harmful event. 

  2015 2016 2017 2018 2019 

Non-collision events:  Overturn/rollover 1478 1521 1440 1276 1376 

Collision with fixed object:  Ditch 1750 1842 1923 1915 1767 

Collision with fixed object:  Others 1479 467 441 578 528 

Collision with:  Other 191 162 196 206 204 

Non-collision events 266 251 225 325 341 

Miscellaneous events 96 97 118 154 163 

 

From Table 3.8, it can be observed that most rural SVROR crashes occurred when 

the first harmful event was collision with ditch. This result is expected for the evaluated 

types of crashes since most likely, that is the first object that the vehicle will hit after a 

SVROR crash. Following that event, the other relevant first harmful events were non-

collision events - overturn/rollover, collision with cable barrier, collision with animal, 

and collision with embankment. The values through the years appear to be constant since 

no major variation is observed.  
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Figure 3.13: Annual SVROR crashes by first harmful event. 

SVROR Road System 

Safety analysis is also often performed related to the road system. The road 

system field somewhat indicates the ownership of the road on which the crash took place. 

For this analysis, interstate, US routes, Iowa routes, farm to market routes, local roads, 

and construction roads are included for each evaluated year. For SVROR crashes, the 

type of road in which the crash occurs should not have such a great impact since SVROR 

crashes are common in all rural roads. Figure 3.14 displays these results graphically. 
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Table 3.9: Annual SVROR crashes by road system. 

  2015 2016 2017 2018 2019 

Interstate 951 870 853 1,068 1,071 

US Route 767 782 705 738 777 

Iowa Route 535 635 611 602 588 

Farm to Market Route 2,107 2,096 2,076 2,145 1,967 

Local Road 993 980 1,045 890 860 

Construction 2 2 0 1 0 

 

roads, interstates, and US routes were the other predominant roads in which SVROR 

crashes took place. Farm to market and local roads present a highest total of crashes when 

compared to interstates, US routes, and Iowa routes when combined together. Perhaps 

this indicates that major attention should be offered to these roads. Overall, all road 

systems do not present any significant changes throughout the evaluated years and as 

expected, roads with construction were not significant in this case.  
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     Figure 3.14: Annual SVROR crashes by road system. 

SVROR Roadway Contributing Circumstances 

Roadway contributing circumstances field indicates any roadway related 

circumstances that might have an effect on the crash. Those contributing circumstances 

are shown, along with annual frequency of occurrence, in Table 3.10. For SVROR 

crashes, and from what has been observed in previous fields, an expectation would be 

that there will not be any roadway contributing circumstances for this type of crashes. 

However, it was previously noted that ice, snow and wet surface conditions could have an 

impact on the increased number for the current type of crashes. Figure 3.15 displays these 

results graphically, only including those relevant categories. 
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Ruts/holes/bumps 37 3062 25 19 31 

Other 261 16 290 262 287 

 

Most SVROR crashes presented none contributing roadway conditions, as it was 

expected. As mentioned earlier, the previous fields indicated that was going to be the case 

for roadway contributing circumstances. Also, surface conditions on the roadway did 

present an effect on SVROR crashes. That was also indicated earlier on the surface 

conditions and weather conditions fields. It was also observed that 2016 did not show 

consistency with the rest of the years, which can be due to an error in the data. In a 

general note, SVROR crashes are not greatly affected by roadway contributing 

circumstances but could become an influencing factor when surface conditions are 

present. 

 

 

    Figure 3.15: Annual SVROR crashes by contributing circumstances - roadway. 
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SVROR Horizontal Alignment 

The horizontal alignment field was used in order to further evaluate the roadway 

horizontal alignment design in which crashes took place. Those include whether the 

alignment was straight or had curves, and if other characteristics were involved. Those 

horizontal alignment features are shown, along with annual frequency of occurrence, in 

Table 3.11. For SVROR crashes, it is expected that most crashes occur on straight 

horizontal alignment. The presence of curves along the alignment in which these crashes 

occurred might have an impact on the number of crashes or severity, but that is not as 

expected. These results are displayed graphically in Figure 3.16, and only relevant 

categories are included. 

Table 3.11: Annual SVROR crashes by horizontal alignment. 

  2015 2016 2017 2018 2019 

Straight 3907 3900 3921 4059 3955 

Traversing curve to left 730 742 738 741 689 

Traversing curve to right 495 545 494 536 537 

Other (explain in 

narrative) 24 26 32 22 32 

Unknown 76 37 29 19 15 

Not Reported 123 115 76 67 35 

 

As expected for SVROR crashes, straight horizontal alignments presented the 

most crashes with a very steady number of crashes on the evaluated years. Straight 

horizontal alignments take approximately 70% of SVROR crashes while approximately 
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20% of SVROR crashes occur along horizontal alignment curves. Comparing those 

crashes that occur along curves with those that do not, the horizontal alignment design 

factors do not significantly affect SVROR crashes. The previous statement indicates that 

most likely, there are no improvement that could be applied to the horizontal alignment in 

order to decrease the number of crashes that occurred in that location. 

 

 

 Figure 3.16: Annual SVROR crashes by horizontal alignment. 
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not as expected. These results are displayed graphically in Figure 3.17, and only relevant 

categories are included. 

Table 3.12: Annual SVROR crashes by vertical alignment. 

  2015 2016 2017 2018 2019 

Level 3,711 3,651 3,736 3,762 3,649 

At crest 182 171 168 153 169 

Traversing uphill 410 486 447 519 538 

Traversing downhill 740 787 760 807 755 

At sag (bottom of hill) 104 98 68 99 78 

Other (explain in 

narrative) 17 15 6 15 21 

Unknown 64 35 25 19 15 

Not Reported 127 122 80 70 38 

 

As expected for SVROR crashes, level vertical alignments presented the most 

crashes with a very steady number of crashes on the evaluated years. Similarly, to the 

horizontal alignments, level vertical alignments take approximately 70% of SVROR 

crashes while approximately a little over 20% of SVROR crashes occur along traversing 

vertical alignments. With those results, it can be implied that vertical alignment design 

factors do not significantly affect SVROR crashes. The previous statement indicates that 

most likely, there are no improvement that could be applied to the vertical alignment 

design to decrease crashes that occurred in that location. 
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 Figure 3.17: Annual SVROR crashes by vertical alignment. 

Methodology 

As was mentioned earlier, ArcGIS was used to visualize and manipulate the data 

as the software enables creation and viewing of maps, compilation of spatial and non-

spatial data, and analysis of spatial data. Geographic Information System (GIS) software 

(such as ArcGIS) provides multiple functions to analyze crashes, having been used for 

simple linear analyses, map development, identification of risk areas, and spatial analysis 

(13, 18, 29, 31, 32, 84). The software has been used in recent studies to generate maps, 

create models, and for risk estimation. Spatial characteristics have been previously 

evaluated using the tools of proximity analysis, density analysis, hotspot analysis, 

directional distribution analysis, group analysis, overlay analysis, spatial-temporal 

analysis, and network analysis (18). Additionally, GIS has been a useful tool when 

understanding and analyzing data to identify hotspots. Multiple studies have used GIS as 

a tool to identify hotspots but in most cases, clusters are not created after that (7). The 
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Highway Safety Information System (HSIS) uses GIS safety tools and screening 

techniques to analyze data, but it mainly determines crash counts (29).  

In previous studies, the spatial join operation in GIS has been adopted to 

aggregate the segment buffers which have allowed the identification of various types of 

midblock segments (15). Other studies have used some toolsets by GIS to detect hotspots 

(21). Particularly, a study had the objective to identify hotspots by location while using a 

spatial statistical visualization and modeling techniques. The used methodology involved 

data analysis that included million vehicle kilometers travelled (MVKT) measures and 

the emerging hotspot analysis tool by ArcGIS Pro. From ArcGIS, several tools were used 

to summarize spatial distribution, identify clusters, and explore patterns over time. From 

the study, it was found that hotspots were identified and a better development for roads 

could be implemented thanks to the methodology that was used (18). In previous studies 

and overall, ArcGIS has been found to be a useful tool to identify potential hazardous 

locations and implement safety measures (31). 

For my research, ArcGIS was used to extract data for the descriptive statistics 

previously presented and to develop data subsets (e.g., SVROR) for the subsequent 

processes. ArcGIS Pro was used with these data subsets to develop the clustering.  To 

facilitate the ArcGIS Pro processes, Python code was developed to automate selection of 

each crash then, for each crash, traveling along the roadway network to identify 

frequency of crashes within bins of distance based on tenths of stopping sight distance 

(SSD). Sight distance is one of the primary elements of roadway design. Sight distance is 

the available visibility provided to a driver in order to be able to observe stationary or 

moving objects along the road surface. Design criteria and guidance for sight distance is 
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relative to its application depending on the highway and street classification (88). As 

different roads were evaluated, the sight distance to be used was determined depending 

on the type of road and corresponding speed limit. The data were manipulated within 

Excel and mapped with ArcGIS to visualize the data in an alternate way, both graphs and 

within maps, to verify and make sense of the KDE output from R. 

R is widely used to evaluate data and to develop software and data analysis. R 

was used on the ArcGIS Pro/Python output to generate the KDE scatterplots (using the 

smoothScatter function).  

Applying the KDE method to the obtained data was a crucial step in the analysis. 

It was important to determine whether the proposed and created clustering method was 

significant or not. Also, evaluating the proposed method and observing the resulting 

clustering distribution was important and R allowed the simplification of that process. To 

apply KDE to the obtained data, the smoothScatter function was used. The application of 

this function allows the creation of a scatterplot with a smoothed color density 

representation using a 2D kernel density estimate. The obtained output will not only 

illustrate the points where the crashes occurred, but also the color of the plot will indicate 

whether a cluster is found or not, and if the cluster is significant.  
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CHAPTER 4.    RESULTS 

To evaluate the effectiveness of the initial methodology, three different case study 

roadways were developed: I-35 from Ankeny to Ames (north of Des Moines), I-380 from 

Iowa City to Cedar Rapids, and US20 from I-35 east to Dike. Both I-35 and I-380 are 

heavily travelled, high-speed routes in Iowa with a high percentage of daily commuters 

but with relatively few curves. US 20 is a less heavily travelled, slightly lower speed 

highway with some notable curvature. All three routes travel through terrain that 

undulates with alternating farm field (e.g., corn, soybean) and tree cover, as is typical of 

much of Iowa. 

Summary descriptive data regarding, and the case study sections are shown in 

Table 4.1. General information regarding each case study location is provided, including 

annual average daily traffic (AADT) volumes, length (in miles), and vehicle miles 

travelled (VMT), the latter used for crash rate calculations. For each section, two subsets 

and two stopping sight distance (SSD) lengths were developed.  The “rural” subset 

includes all crashes along the sections that are outside corporate limits per the Iowa road 

data.  The “SVROR” subset includes rural crashes that were also coded as single-vehicle, 

ROR crashes. For all of the rural crashes, I-380 presented the highest crash rate which is 

expected since I-380 has high volumes. The lowest crash rate was found when single 

vehicle run off road crashes were evaluated with a total sight distance along I-380. All 

these types of crashes will be evaluated in the following section.  
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      Table 4.1: Case study descriptive data and 5-year crash data. 

            Crash 

  AADT Length VMT Subset SSD Length Frequency  Rate 

I-35 46,358 15 686,426 

Rural 

Full 6,173 24.5 

Half 3,703 14.7 

SVROR 

Full 666 2.6 

Half 406 1.6 

US 20 9,176 48 441,210 

Rural 

Full 2,277 14.1 

Half 1,048 6.5 

SVROR 

Full 412 2.6 

Half 288 1.8 

I-380 53,025 9 479,560 

Rural 

Full 8,085 46.2 

Half 4,801 27.4 

SVROR 

Full 445 2.5 

Half 286 1.6 

 

The output from ArcGIS Pro/Python contained individual crash point coordinates 

and annual crash frequencies within SSD bins, each iteratively 1/10th (i.e., 

1

10
,

2

10
, … , ℎ𝑎𝑙𝑓 𝑆𝑆𝐷, … , 𝑓𝑢𝑙𝑙 SSD). These data included the crash coordinates, each year 

from 2015 through 2019, and crash counts for each individual bin.  Within Excel, these 

data were summarized to 5-year totals and subsets for half SSD and full SSD were 

extracted. From the subsets, Excel graphs were developed using the bubble graph option.  

Additionally, the subsets were imported into ArcGIS to develop thematic maps using the 
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coordinates and the crash counts.  These maps were exported as KMLs for importation 

into GoogleEarth to produce the images showing crash “clusters” coincident with aerial 

imagery. Furthermore, the data subsets, after minor additional preparation, were imported 

into R for KDE evaluation. Using R, the smoothScatter function which involved kernel 

density estimation was applied to the data. The set of different plots created via Excel, 

ArcGIS/GoogleEarth, and R allowed comparative visualization of results, mainly to aid 

understanding of the KDE output. Individual case study discussion occurs in the 

following sections. 

Interstate 35 – Iowa 

I-35 is classified as an interstate and stretches north to south from Texas to 

Minnesota. I-35 traverses the State of Iowa from south to north, from Missouri to 

Minnesota, passing through 9 counties: Worth, Cerro Gordo, Franklin, Wright, Hamilton, 

Story, Polk, Warren, Clarke, and Decatur. I-35 is a primary travel route through the 

center of the country, serving commercial truck traffic but also local commuter traffic 

(90). I-35 passes through the Des Moines metropolitan area which is the largest 

metropolitan area in Iowa.  Traffic volumes within and in the vicinity of Des Moines are 

notably higher.  The section from Ankeny north to Ames is a heavily travelled commuter 

route. 

The speed limit on rural interstates in Iowa is 70 mph, which applies to this 

section of I-35. For that speed limit, the corresponding design stopping sight distance is 

730 ft, using the standard SSD equation assuming a flat grade (i.e., 0%) and rounding for 

design purposes (88). However, to add some accommodation for the undulating terrain, 

we used a 3% grade and, thus, adjusted the SSD to roughly 770 ft. Thus, our tenths were 
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additive iterations of roughly 77 ft, with half SSD at roughly 386 ft. For this section of I-

35, both all rural crashes and rural, SVROR crashes were evaluated.  

Interstate 35 Full Stopping Sight Distance – Iowa Rural Crashes 

Figure 4.1 displays the I-35 case study area with the “clusters” displayed within 

both GoogleEarth (KMZ) and Excel.  The Excel graph appears to have more curvature 

due to a distortive effect of the horizontal axis scale. The split between the north and the 

south portion is due to that section of I-35 being interpreted as within the corporate limits 

of Huxley, Iowa.  

 

Figure 4.1: I-35 rural clusters, full SSD – KMZ and Excel. 
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Comparing the GoogleEarth and Excel images, several similarities are apparent.  

Many of the “clusters” appear to be similarly located, as expected.  Additionally, the 

spread of these “clusters” and relative “intensity” seem to match. Furthermore, based on 

this, when using the GoogleEarth imagery, the “clusters” can be visually associated to the 

surrounding landscape. Additionally, as shown in Figure 4.2, the Excel graphs can be 

divided to provide additional detail to the visualization. Clearly, the same can be done 

with the GoogleEarth imagery. However, again, the primary purpose of both the 

GoogleEarth and Excel images is to provide context to the R-based KDE output.  
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Figure 4.2: I-35 north and south section rural clusters, full SSD – Excel. 
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With the comparison and verification from the previous GoogleEarth and Excel 

figures available, the KDE output generated from the smoothScatter function in R can be 

evaluated with context. Figure 4.3 provides the 2D kernel density estimate for rural 

crashes along the I-35 case study section including the total count.  

 

Figure 4.3: I-35 rural clusters, full SSD – KDE. 
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In the figure, crash occurrence is represented with the color blue. Those locations 

with darker blue represent higher crash concentrations, while those with lighter blue, 

display locations with fewer crashes. The KDE output is similar to the Excel and 

GoogleEarth output, with similar locations and intensities. Four primary “clusters” were 

evident within the Excel and GoogleEarth output; however, the KDE output seems to 

indicate three.  However, as the KDE output is statistically based, the output results are 

more reliable. 

Interstate 35 Half Stopping Sight Distance – Iowa Rural Crashes 

The crashes count involved in half of the sight distance will be evaluated. Figure 

4.4 shown below, includes the “clusters” for those crashes in both GoogleEarth and 

Excel. When the aerial imagery is observed in more detail, it can be observed that similar 

clusters to those found with the full stopping sight distance is observed, with the 

difference that less total crashes are present. 
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Figure 4.4: I-35 rural clusters, half SSD – KMZ and Excel. 

Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent.  Many of the “clusters” appear to be similarly located, as 

expected, but with less volume when compared to the full sight distance count. In order 

to compare and verify those results obtained with GoogleEarth and Excel, the 

smoothScatter function in R will be applied to the data set. Figure 4.5 displays the 2D 

kernel density estimate for rural crashes along the I-35 case study section including the 

half count of the sight distance.  
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Figure 4.5: I-35 rural clusters, half SSD – KDE. 

 

As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented four “clusters” as well as the Excel and 

GoogleEarth images. The location of the found “clusters” is the same location as those 

observed on the full sight distance situation. However, the density of those “clusters” 
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when compared to the full sight distance is different for the reason that as expected, there 

are fewer total crashes when half of the distance is observed. With both methods and both 

sight distances, most crashes along the selected segment occurred on traversing curves to 

the right and, along ramps and bridges. 

Interstate 35 Full Stopping Sight Distance – Iowa SVROR Crashes 

Figure 4.6 shown below, includes an illustration of the I-35 case study area with 

the “clusters” obtained by both GoogleEarth and Excel for single vehicle run-of-road 

crashes. Similar to the rural crashes in the same segment, the Excel graph includes more 

curves due to the characteristics of the horizontal scale.  
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Figure 4.6: I-35 SVROR clusters, full SSD – KMZ and Excel. 

Single vehicle run off road crashes along the selected area of I-35, are similar to 

those found in the total rural crashes. Many of the “clusters” conserved their location and 

fewer crashes on those locations are observed. From the figures, it was observed that 

most crashes along the selected segment occurred along curves. To evaluate and verify 

the found “clusters”, the KDE method was applied to the selected section using the 

smoothScatter function in R. Figure 4.7 provides the 2D kernel density estimate for 

single vehicle run off road crashes along the selection section in I-35 including the total 

count.  
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Figure 4.7: I-35 SVROR clusters, full SSD – KDE. 

In the figure, locations where crashes occurred are represented with the color blue 

as in the similar sections. With the KDE, a similar and clearer output can be observed. 

Properly representation of the “clusters” is represented as expected. Those areas that 

should be prioritized can also be identified. With both methods, it can be observed that 
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most crashes along the selected segment occurred on a traversing curve to the right. A 

similar output as the one obtained with full stopping sight distance for rural crashes is 

observed. 

Interstate 35 Half Stopping Sight Distance – Iowa SVROR Crashes 

The single vehicle run-off-road crashes count involved in half of the sight 

distance will be evaluated. Figure 4.8 shown below, includes the “clusters” for those 

crashes in both GoogleEarth and Excel. When the aerial imagery is observed in more 

detail, it can be observed that similar clusters to those found with the full stopping sight 

distance is observed, with the difference that less total crashes are present. 
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Figure 4.8: I-35 SVROR clusters, half SSD – KMZ and Excel. 

Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent. Many of the “clusters” appear to be similarly located, as 

expected, with the different that less crashes are observed. In order to compare and verify 

those results obtained with GoogleEarth and Excel, the smoothScatter function in R will 

be applied to the data set. Figure 4.9 displays the 2D kernel density estimate for single 

vehicle run-off-road crashes along the I-35 case study section including the half count of 

the sight distance. 
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Figure 4.9: I-35 SVROR clusters, half SSD – KDE. 

As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented one “cluster” as well as the Excel and 

GoogleEarth images. The location of the found “clusters” is the same location as those 

observed on the full sight distance situation. However, the density of those “clusters” 

when compared to the full sight distance is different as expected. With both methods and 



 

 

 

81 

both sight distances, the areas of interest were identified. Similar outputs were observed 

when both rural and single vehicle run-off-road crashes were compared. Using the full 

stopping sight distance, a total of four “clusters” were identified for rural crashes, and for 

single vehicle run-off-road crashes, only one of those four “clusters” were outstanding. 

When comparing those results with the half stopping sight distance, a very similar output 

was observed for both categories with the different that fewer total crashes were 

observed. For all of the evaluated categories in the case study, most crashes occurred 

along curves, ramps, and bridges. 

US Route 20 – Iowa 

US 20 is classified as a non-interstate expressway and stretches east to west from 

Massachusetts to Oregon. US 20 traverses the State of Iowa from east to west, from 

Illinois to Nebraska, passing through 12 counties: Woodbury, Ida, Sac, Calhoun, 

Webster, Hamilton, Hardin, Grundy, Black Hawk, Buchanan, Delaware, and Dubuque. 

US 20 is a primary travel route for the northern portion of the State, serving commercial 

truck traffic but also local commuter traffic (90). US 20 passes through the Dubuque, 

Waterloo/Cedar Falls, and Sioux City metropolitan areas which are larger communities in 

Iowa.  Traffic volumes within and in the vicinity of these metropolitan areas are notably 

higher as these sections are a well-travelled commuter route. However, the section used 

for this evaluation, from I-35 eastward to Dike is much more rural in nature and not as 

heavily travelled. 

The speed limit on rural expressways in Iowa is 65 mph, which applies to this 

section of US 20. For that speed limit, the corresponding design stopping sight distance is 

645 ft, using the standard SSD equation assuming a flat grade (i.e., 0%) and rounding for 
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design purposes (88). However, to add some accommodation for the undulating terrain, 

we used a 3% grade and, thus, adjusted the SSD to roughly 680 ft. Thus, our tenths were 

additive iterations of roughly 68 ft, with half SSD at roughly 341 ft. For this section of 

US 20, both all rural crashes and rural, SVROR crashes were evaluated. 

US Route 20 Full Stopping Sight Distance – Iowa Rural Crashes 

Figure 4.10 displays the US 20 case study area the “clusters” displayed within 

both GoogleEarth (KMZ) and Excel. Comparing the GoogleEarth and Excel images, 

several similarities are apparent.  Many of the “clusters” appear to be similarly located, as 

expected.  Additionally, the spread of these “clusters” and relative “intensity” seem to 

match. Furthermore, based on this, when using the GoogleEarth imagery, the “clusters” 

can be visually associated to the surrounding landscape. Again, the primary purpose of 

both the GoogleEarth and Excel images is to provide context to the R-based KDE output. 

 

 

 

Figure 4.10: US 20 rural clusters, full SSD – KMZ and Excel. 

With the comparison and verification from the previous GoogleEarth and Excel 

figures available, the KDE output generated from the smoothScatter function in R can be 
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evaluated with context. Figure 4.11 provides the 2D kernel density estimate for rural 

crashes along the US 20 case study section including the total count. 

 

    Figure 4.11: US 20 rural clusters, full SSD – KDE. 

In the figure, crash occurrence is represented with the color blue. Those locations 

with darker blue represent higher crash concentrations, while those with lighter blue, 

display locations with fewer crashes. The KDE output is similar to the Excel and 

GoogleEarth output, with similar locations and intensities. Primary “clusters” were 

evident within the Excel and GoogleEarth output; however, the KDE output seems to 

indicate three.  However, as the KDE output is statistically based, the output results are 

more reliable. 

US Route 20 Half Stopping Sight Distance – Iowa Rural Crashes 

Figure 4.12 shown below, includes the “clusters” for those crashes in both 

GoogleEarth and Excel. When the aerial imagery is observed in more detail, it can be 

observed that similar clusters to those found with the full stopping sight distance is 

observed, with the difference that less total crashes are present. 
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Figure 4.12: US 20 rural clusters, half SSD – KMZ and Excel. 

Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent.  Many of the “clusters” appear to be similarly located, as 

expected, but with less volume when compared to the full sight distance count. In order 

to compare and verify those results obtained with GoogleEarth and Excel, the 

smoothScatter function in R will be applied to the data set. Figure 4.13 displays the 2D 

kernel density estimate for rural crashes along the US 20 case study section including the 

half count of the sight distance. 

 

Figure 4.13: US 20 rural clusters, half SSD – KDE. 
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As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented three “clusters” as well as the Excel and 

GoogleEarth images with minor differences. The location of the found “clusters” is the 

same location as those observed on the full sight distance situation. However, the density 

of those “clusters” when compared to the full sight distance is different for the reason that 

as expected, there are fewer total crashes when half of the distance is observed. With both 

methods and both sight distances, most crashes along the selected segment occurred on 

traversing curves to the right and, along ramps and bridges. 

US Route 20 Full Stopping Sight Distance – Iowa SVROR Crashes 

Figure 4.14 shown below, includes an illustration of US 20 case study area with 

the “clusters” obtained by both GoogleEarth and Excel for single vehicle run-of-road 

crashes. Similar to the rural crashes in the same segment, the Excel graph includes more 

curves due to the characteristics of the horizontal scale. 

 

 

Figure 4.14: US 20 SVROR clusters, full SSD – KMZ and Excel. 
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Single vehicle run off road crashes along the selected area of US 20, are similar to 

those found in the total rural crashes. Many of the “clusters” conserved their location and 

fewer crashes on those locations are observed. From the figures, it was observed that 

most crashes along the selected segment occurred along curves. To evaluate and verify 

the found “clusters”, the KDE method was applied to the selected section using the 

smoothScatter function in R. Figure 4.15 provides the 2D kernel density estimate for 

single vehicle run off road crashes along the selection section in US 20 including the total 

count. 

 

Figure 4.15: US 20 SVROR clusters, full SSD – KDE. 

In the figure, locations where crashes occurred are represented with the color blue 

as in the similar sections. With the KDE, a similar and clearer output can be observed. 

Properly representation of the “clusters” is represented as expected. Those areas that 

should be prioritized can also be identified. With both methods, it can be observed that 

most crashes along the selected segment occurred along curves. A similar output as the 

one obtained with full stopping sight distance for rural crashes is observed but with less 

crashes, as expected. 
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US Route 20 Half Stopping Sight Distance – Iowa SVROR Crashes 

The single vehicle run-off-road crashes count involved in half of the sight 

distance will be evaluated. Figure 4.16 shown below, includes the “clusters” for those 

crashes in both GoogleEarth and Excel. When the aerial imagery is observed in more 

detail, it can be observed that similar clusters to those found with the full stopping sight 

distance is observed, with the difference that less total crashes are present. 

 

 

Figure 4.16: US 20 SVROR clusters, half SSD – KMZ and Excel. 

Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent. Many of the “clusters” appear to be similarly located, as 

expected, with the different that less crashes are observed. In order to compare and verify 

those results obtained with GoogleEarth and Excel, the smoothScatter function in R will 

be applied to the data set. Figure 4.17 displays the 2D kernel density estimate for single 

vehicle run-off-road crashes along the US 20 case study section including the half count 

of the sight distance. 
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Figure 4.17: US 20 SVROR clusters, half SSD – KDE. 

As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented one “cluster” as well as the Excel and 

GoogleEarth images. The location of the found “clusters” is the same location as those 

observed on the full sight distance situation. However, the density of those “clusters” 

when compared to the full sight distance is different as expected. With both methods and 

both sight distances, the areas of interest were identified. Similar outputs were observed 

when both rural and single vehicle run-off-road crashes were compared. Using the full 

stopping sight distance, multiple “clusters” were identified for rural crashes, and for 

single vehicle run-off-road crashes, only two of those “clusters” were outstanding. When 

comparing those results with the half stopping sight distance, a very similar output was 

observed for both categories with the different that fewer total crashes were observed. For 

all of the evaluated categories in the case study, most crashes occurred along curves, 

ramps, and bridges. 

 



 

 

 

89 

Interstate 380 – Iowa 

I-380 is classified as an interstate but as an auxiliary interstate, is contained 

wholly within the State of Iowa.  I-380 stretches north to south from Coralville/Iowa City 

to Waterloo and passes through 5 counties: Black Hawk, Buchanan, Benton, Linn, and 

Johnson. I-380 serves as a primary travel route between Coralville/Iowa City and 

Waterloo, serving commercial truck traffic but also local commuter traffic (90). I-380 

passes through the Cedar Rapids/Marion metropolitan area which is the second largest 

metropolitan area in Iowa.  Traffic volumes within and in the vicinity of these larger 

cities are notably higher, with the section between Coralville/Iowa City and Cedar 

Rapids/Marion being a heavily travelled route. 

The speed limit on rural interstates in Iowa is 70 mph, which applies to this 

section of I-35. For that speed limit, the corresponding design stopping sight distance is 

730 ft, using the standard SSD equation assuming a flat grade (i.e., 0%) and rounding for 

design purposes (88). However, to add some accommodation for the undulating terrain, 

we used a 3% grade and, thus, adjusted the SSD to roughly 770 ft. Thus, our tenths were 

additive iterations of roughly 77 ft, with half SSD at roughly 386 ft. For this section of I-

380, both all rural crashes and rural, SVROR crashes were be evaluated. 

Interstate 380 Full Stopping Sight Distance – Iowa Rural Crashes 

Figure 4.18 displays the I-380 case study with the “clusters” displayed within 

both GoogleEarth (KMZ) and Excel.  Comparing the GoogleEarth and Excel images, 

several similarities are apparent.  Many of the “clusters” appear to be similarly located, as 

expected.  Additionally, the spread of these “clusters” and relative “intensity” seem to 
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match. Furthermore, based on this, when using the GoogleEarth imagery, the “clusters” 

can be visually associated to the surrounding landscape.  
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       Figure 4.18: I-35 rural clusters, full SSD – KMZ and Excel. 
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With the comparison and verification from the previous GoogleEarth and Excel 

figures available, the KDE output generated from the smoothScatter function in R can be 

evaluated with context. Figure 4.19 provides the 2D kernel density estimate for rural 

crashes along the I-380 case study section including the total count. 

 

  Figure 4.19: I-380 rural clusters, full SSD – KDE. 
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In the figure, crash occurrence is represented with the color blue. Those locations 

with darker blue represent higher crash concentrations, while those with lighter blue, 

display locations with fewer crashes. The KDE output is similar to the Excel and 

GoogleEarth output, with similar locations and intensities. Three primary “clusters” were 

evident within all of the outputs from the different methods.   

Interstate 380 Half Stopping Sight Distance – Iowa Rural Crashes 

The crashes count involved in half of the sight distance will be evaluated. Figure 

4.20 shown below, includes the “clusters” for those crashes in both GoogleEarth and 

Excel. When the aerial imagery is observed in more detail, it can be observed that similar 

clusters to those found with the full stopping sight distance is observed, with the 

difference that less total crashes are present. 
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                  Figure 4.20: I-35 rural clusters, half SSD – KMZ and Excel. 
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Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent.  Many of the “clusters” appear to be similarly located, as 

expected, but with less volume when compared to the full sight distance count. In order 

to compare and verify those results obtained with GoogleEarth and Excel, the 

smoothScatter function in R will be applied to the data set. Figure 4.21 displays the 2D 

kernel density estimate for rural crashes along the I-380 case study section including the 

half count of the sight distance. 

 

Figure 4.21: I-380 rural clusters, half SSD – KDE. 
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As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented three “clusters” as well as the Excel and 

GoogleEarth images. The location of the found “clusters” is the same location as those 

observed on the full sight distance situation. However, the density of those “clusters” 

when compared to the full sight distance is different for the reason that as expected, there 

are fewer total crashes when half of the distance is observed. With both methods and both 

sight distances, most crashes along the selected segment occurred along curves and 

bridges. 

Interstate 380 Full Stopping Sight Distance – Iowa SVROR Crashes 

Figure 4.22 shown below, includes an illustration of the I-380 case study area 

with the “clusters” obtained by both GoogleEarth and Excel for single vehicle run-of-

road crashes. Similar to the rural crashes in the same segment, the Excel graph includes 

more curves due to the characteristics of the horizontal scale. 
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          Figure 4.22: I-380 SVROR clusters, full SSD – KMZ and Excel. 
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Single vehicle run off road crashes along the selected area of I-380, are similar to 

those found in the total rural crashes. Many of the “clusters” conserved their location and 

fewer crashes on those locations are observed. From the figures, it was observed that 

most crashes along the selected segment occurred along curves. To evaluate and verify 

the found “clusters”, the KDE method was applied to the selected section using the 

smoothScatter function in R. Figure 4.23 provides the 2D kernel density estimate for 

single vehicle run off road crashes along the selection section in I-380 including the total 

count. 

 

Figure 4.23: I-380 SVROR clusters, full SSD – KDE. 
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In the figure, locations where crashes occurred are represented with the color blue 

as in the similar sections. With the KDE, a similar and clearer output can be observed. 

Properly representation of the “clusters” is represented as expected. Those areas that 

should be prioritized can also be identified. With both methods, it can be observed that 

most crashes along the selected segment occurred along curves. A similar output as the 

one obtained with full stopping sight distance for rural crashes is observed. 

Interstate 380 Half Stopping Sight Distance – Iowa SVROR Crashes 

The single vehicle run-off-road crashes count involved in half of the sight 

distance will be evaluated. Figure 4.24 shown below, includes the “clusters” for those 

crashes in both GoogleEarth and Excel. When the aerial imagery is observed in more 

detail, it can be observed that similar clusters to those found with the full stopping sight 

distance is observed, with the difference that less total crashes are present. 
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               Figure 4.24: I-35 SVROR clusters, half SSD – KMZ and Excel. 
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Similar to the total sight distance, from the GoogleEarth and Excel images, 

several similarities are apparent. Many of the “clusters” appear to be similarly located, as 

expected, with the different that less crashes are observed. In order to compare and verify 

those results obtained with GoogleEarth and Excel, the smoothScatter function in R will 

be applied to the data set. Figure 4.25 displays the 2D kernel density estimate for single 

vehicle run-off-road crashes along the I-380 case study section including the half count of 

the sight distance. 

 

                                Figure 4.25: Kernel Density SVROR Crashes Half Count I-380. 
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As in the previous section, the KDE output is similar to the Excel and 

GoogleEarth output. The KDE output presented one “cluster” as well as the Excel and 

GoogleEarth images. The location of the found “clusters” is the same location as those 

observed on the full sight distance situation. However, the density of those “clusters” 

when compared to the full sight distance is different as expected. With both methods and 

both sight distances, the areas of interest were identified. Similar outputs were observed 

when both rural and single vehicle run-off-road crashes were compared. Using the full 

stopping sight distance, a total of three “clusters” were identified for rural crashes, and 

for single vehicle run-off-road crashes, only one of those four “clusters” were 

outstanding. When comparing those results with the half stopping sight distance, a very 

similar output was observed for both categories with the different that fewer total crashes 

were observed. For all of the evaluated categories in the case study, most crashes 

occurred along curves and bridges. 
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CHAPTER 5.     CONCLUSIONS 

 

For the current research, a different approach was followed in order to evaluate 

single vehicle run off road crashes. Observed crashes were evaluated along rural roads in 

the State of Iowa for a five-year period using case studies. One of the main objectives 

was to perform an analysis to determine whether or not clusters were occurring among 

the observed crashes. Following is a summarization of results and recommendations for 

future research. 

Summary 

Single Vehicle Run off Road Crashes 

 From the summary of the data, it was observed that rural crashes as 

well as single vehicle run off road crashes have been increasing through the years, which 

corresponds to what has been observed in the United States. Most single vehicle run off 

road crashes were comprised of property damage only crashes and occurred during 

normal peak travel hours and daylight, neither of these results surprising as this is 

consistent with prior research. For most single vehicle run off road crashes, weather 

conditions were not found to be a contributing factor; however, weather conditions 

overall showed a decreasing trend on the effect of these crashes, while weather conditions 

such as snow and ice, presented an increasing trend. Similar results were found for 

surface conditions, again not surprising as the two are linked. Additionally, most crashes 

involved rollovers or collisions with the ditch, which was expected for single vehicle run 

off road crashes. Farm to market routes, representing the most road mileage but typically 

lower volumes, had most single vehicle run off road crashes when compared to the other 
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roads. It was also found that single vehicle run off road crashes were not greatly affected 

by roadway circumstances in most cases. For the horizontal and vertical alignment 

contributions, approximately twenty percent of single vehicle run off road crashes were 

affected by those alignment contributions along the roadway. Lastly, most drivers were 

not distracted when the crash occurred. 

Interstate 35 

When I-35 was compared to the other roadways, it was found that all rural crashes 

presented the second to highest frequency along the second to longest evaluated roadway. 

From the section along I-35, both rural and single vehicle run off crashes were evaluated. 

Interstate 35 Total Sight Distance – Iowa Rural Crashes 

When rural crashes were evaluated along this roadway, there were a few locations 

along the segment that did not present any crashes. As significant clusters were analyzed, 

four of those were observed along the roadway. These clusters were identified using 

Microsoft Excel and the kernel density method. These clusters were located along 

horizontal curves and, on along areas in which transitions from an urban area to a rural 

area or vice versa were taking place. Including aerial imagery to the segment, allowed a 

closer observation and a more detailed inspection of the area in which those clusters were 

occurring was made. From the aerial, it was observed that those clusters and most crashes 

taking place along I-35 were along ramps, along exits and entrances to the interstate, 

along bridges, and on regular segments with curves.  
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Interstate 35 Total Sight Distance – Iowa SVROR Crashes 

For single vehicle run off road crashes, there were more locations along the 

segment that did not present any crashes when compared to all rural crashes, which was 

expected. Significant clusters were also analyzed for this section and, the same four 

clusters as those found along the rural evaluation were observed along the roadway. One 

of those clusters made a more significant impact when compared to the other clusters. 

That cluster was located along a horizontal curve. When the aerial imagery was observed, 

a similar result was found as those with the rural crashes. With both methods, it was 

found that most crashes along the selected segment occurred on a horizontal curve for 

both, all rural crashes, and single vehicle run off road crashes. 

US Highway 20 

US-20 was the longest segment evaluated in the current study. Even thought it 

had the most miles, it presented the least frequency of crashes when compared to the rest 

of the roads, most likely attributed to the markedly less traffic. Both types of crashes, all 

rural and single vehicle run off crashes were evaluated for US 20 as well.                      

US Route 20 Total Sight Distance – Iowa Rural Crashes 

Rural crashes were also evaluated along US Route 20. When the analysis was 

performed, the clusters were also identified as in the previous sections. From this section, 

a total of five clusters were identified and there were also some locations in which 

crashes did not occur. In this case, all of those five clusters were located along a 

horizontal curve. Taking a closer look at the crash cluster locations using aerial imagery, 

the clusters were found along curves, followed by ramps, and along an existing bridge. 

Overall, this segment did not include as many crashes when compared to the others. 
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Perhaps including more crash data from the past, would help the analysis and the effect of 

curves on rural crashes could be evaluated and verified. 

US Route 20 Total Sight Distance – Iowa SVROR Crashes 

Single vehicle run of road crashes were ever waited on this segment as well. 

When this was performed, a similar output like the one obtained from rural crashes was 

observed. The main difference between these two, was that out of the five clusters 

observed along the rural crashes, only two of those provided an impact with single 

vehicle run off road crashes. The two most significant crashes that were found in this 

case, were also located along horizontal curves. US 20 seems to have crash clusters along 

curves, perhaps indicating opportunity for some improvements. Also, horizontal curves 

appear to have an impact on single vehicle run off road crashes. 

Interstate 380 

When I-380 was compared to the other roadways, the highest number of crashes 

among the study were found and this roadway represented the shortest alignment of the 

study, probably explained by the greater traffic volumes. When evaluating the segment of 

I-380, all rural crashes and single vehicle run off road crashes were also summarized. 

Interstate 380 Total Sight Distance – Iowa Rural Crashes 

When crash clusters were investigated, most clusters were along horizontal 

curves, which matches the findings for the other roadways. In this case, a total of three 

significant clusters were found. Two of those were along horizontal curves and one of 

those was located on the transition from a curve to the straight segment. When the aerial 

imagery was observed, crashes taking place along horizontal curves were confirmed, as 

well as a cluster at a bridge. 
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Interstate 380 Total Sight Distance – Iowa SVROR Crashes 

Significant clusters were also analyzed for single vehicle run off road crashes 

along this section and, the same clusters as those found along the rural evaluation were 

observed along the roadway. The identified clusters were on the same locations as with 

rural crashes, with the difference that less total crashes were presented on the cluster. 

When the aerial imagery was included, a similar result was found as those with the rural 

crashes. Most single vehicle run off road crashes were located along horizonal curves, 

similar to the prior case study sections for I-35 and US 20. 

Recommendation for Future Research 

To improve and extend the results and methods thus far, the following are 

suggestions for future research towards the analysis of crash clusters. 

- Implementing different ways of the kernel density estimation and applications to 

the data. These could involve the inclusion of different software and comparison 

among them for possible improvement. The application of the current or future 

methodologies could also be attempted on different road classifications in order to 

compare observation among those. The current method could also be evaluated 

for different types of crash data, and even involve different states. Also, using the 

current methodology, different type of crashes could be evaluated, perhaps 

including more crash data. This could also be applied to urban areas instead of 

rural areas. 

- Explore different causes for single vehicle run off road crashes by taking a closer 

evaluation of the identified clusters. The severity of the crashes in the found 
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clusters could also expand the analysis and determine the reasoning behind less 

fatal crashes present. 

- Evaluate relationships between the roadway design and crashes in a further 

analysis. 

- Examine the analysis per year in order to find any relationships of the crashes or 

perhaps to evaluate the possibility of the locations with clusters improving or 

worsen throughout the years. The clusters found in the current exploration could 

also be evaluated per time of the day or season of the year. 
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