Can Alfalfa Be Hayed and Grazed

J. R. Johnson
South Dakota State University

W. L. Tucker

C. E. Stymiest

L. C. Blome

Follow this and additional works at: http://openprairie.sdstate.edu/sd_cow-calf_1984

Recommended Citation

This Report is brought to you for free and open access by the Animal Science Reports at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in South Dakota Cow-Calf Field Day Proceedings, 1984 by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
Summary

A study established at Cottonwood in 1981 is being evaluated to compare 10 grazing alfalfa varieties plus two hay types in three treatment combinations involving grazing and haying.

Through 1984, after 2 years of treatment, dormant season grazing did not reduce hay production. However, dormant season grazing and early spring grazing both reduced alfalfa and grass stands when compared to the haying treatment. These reductions may substantially reduce the length of time that stands can be maintained. Although there are no appreciable differences to date in alfalfa variety performance, it is expected that some will be more persistent than others for grazing and/or haying.

Early stand losses through either poor variety selection or haying/grazing management practices can be predicted to have serious economic consequences.

Introduction

Alfalfa is essentially the only legume used for pasture and hay production in the central and western parts of South Dakota and in the rest of the Northern Great Plains.

In the drier half of South Dakota, Travois (a grazing type of alfalfa) is used for grazing and to a limited extent for single cutting hay. Travois is increasingly difficult for producers to obtain, but newer, untested varieties are available. Also, it is thought that when used for hay production the grazing types of alfalfa (as contrasted to the hay types) may have similar production, better persistence and more flexibility for dual use (haying and grazing). However, direct comparisons previously have not been made and there is no other regional testing of the new varieties.
Procedure

All 10 available grazing alfalfa varieties and two hay types (Ladak 65 and Vernal)\(^1\) were planted on a clayey range site at the Cottonwood Station in Haakon County in May 1981. All 12 varieties were strip planted with crested wheatgrass. Each entry is 7’ x 60' and is replicated three times. Plots were fenced and three treatments developed to represent these common practices:

- Treatment I. Dormant Grazing (fall, late winter, or very early spring) Plus Haying.
- Treatment II. Spring Grazing Only.
- Treatment III. Haying Only.

The schedule of management practices used through the 1984 growing season follows.

<table>
<thead>
<tr>
<th>Date</th>
<th>Treatment I</th>
<th>Treatment II</th>
<th>Treatment III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981 May</td>
<td>Seeded</td>
<td>Seeded</td>
<td>Seeded</td>
</tr>
<tr>
<td></td>
<td>Mowed Weeds</td>
<td>Mowed Weeds</td>
<td>Mowed Weeds</td>
</tr>
<tr>
<td>1982 July</td>
<td>Hayed</td>
<td>Hayed</td>
<td>Hayed</td>
</tr>
<tr>
<td>1983 March</td>
<td>Grazed</td>
<td>Grazed</td>
<td>Hayed</td>
</tr>
<tr>
<td>April</td>
<td>Hayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984 March</td>
<td>Grazed</td>
<td>Grazed</td>
<td>Hayed</td>
</tr>
<tr>
<td>April</td>
<td>Hayed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment I is the double or dual use treatment with the grazing portion being flexible depending on forage availability. It has been spring grazed very early twice. In May 1983, very little forage residue existed so the grazing heifers were fed baled hay to supplement grazing. Grazing is designed to leave a minimum of residue and to have severe trampling. Grazing use of Treatment II (Spring Grazing Only) is structured to remove 80% of current season production. Grazing in both treatments is time compressed because of the small fenced plots (each about 60’ x 280’).

In 1982, 1983 and 1984, samples were taken to estimate hay production with alfalfa, grass and weeds separated, dried and weighed. In 1983 and 1984 alfalfa and grass stands were estimated by measuring gaps in the drill rows.

\(^1\) Alfalfa varieties, sources and date information. DANEB, Univ. of Nebr.-USDA-SDSU advanced lines; D-2, SDSU advanced line; DRYLANDER, Ag Canada 1971; LADAK 65 (a hay type), Mont. Sta. Univ. 1965; MAVERICK, North Amer. Plant Breeders 1981; RAMBLER, Ag Canada 1955; RANGELANDER, Ag Canada 1977; ROAMER, Ag Canada 1966; SPREDOR II, Northrup-King 1981; TETON, SDSU 1985; TRAVOIS, SDSU 1962; VERNAL (a hay type), Univ. of Wisc.-USDA 1953.
Results and Discussion

Production

Dormant season grazing of hay lands is a common practice and is often suspected of reducing hay production in addition to shortening stand life. Also, it is reasonable to expect that alfalfa varieties should perform differently to grazing and haying management practices. However, after 3 years of study, no definitive production differences exist among the major varieties in comparing Treatment I (Dormant Grazing Plus Haying) to Treatment III (Haying Only). For that reason, production from TI and TIII are considered together in Table 1. Varieties performed similarly for both TI and TIII. Two experimental lines, Daneb and D-2, had somewhat lower production than Teton and Vernal. Examination of Table 1 reveals that, where alfalfa production is low, grass production tended to be high and vice versa. However, total production was not different in 1984 for any alfalfa variety in Treatment I or Treatment III.

Table 1. Hay Production in 1984. Treatments I and III Averaged Together

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Alfalfa</th>
<th>Crested wheatgrass</th>
<th>Weeds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daneb</td>
<td>377b</td>
<td>1443</td>
<td>105abc</td>
<td>1925</td>
</tr>
<tr>
<td>Drylander</td>
<td>575ab</td>
<td>1302</td>
<td>52c</td>
<td>1930</td>
</tr>
<tr>
<td>D-2</td>
<td>394b</td>
<td>1300</td>
<td>61c</td>
<td>1752</td>
</tr>
<tr>
<td>Ladak 65</td>
<td>495ab</td>
<td>1211</td>
<td>135a</td>
<td>1841</td>
</tr>
<tr>
<td>Maverick</td>
<td>567ab</td>
<td>1152</td>
<td>113abc</td>
<td>1831</td>
</tr>
<tr>
<td>Rambler</td>
<td>572ab</td>
<td>1288</td>
<td>65bc</td>
<td>1925</td>
</tr>
<tr>
<td>Rangelander</td>
<td>524ab</td>
<td>1221</td>
<td>56c</td>
<td>1802</td>
</tr>
<tr>
<td>Roamer</td>
<td>593ab</td>
<td>1146</td>
<td>82abc</td>
<td>1821</td>
</tr>
<tr>
<td>Spredor II</td>
<td>585ab</td>
<td>1138</td>
<td>76abc</td>
<td>1798</td>
</tr>
<tr>
<td>Teton</td>
<td>645a</td>
<td>1221</td>
<td>64bc</td>
<td>1930</td>
</tr>
<tr>
<td>Travois</td>
<td>576ab</td>
<td>1160</td>
<td>112abc</td>
<td>1846</td>
</tr>
<tr>
<td>Vernal</td>
<td>638a</td>
<td>1190</td>
<td>127ab</td>
<td>1956</td>
</tr>
<tr>
<td>Average</td>
<td>545</td>
<td>1231</td>
<td>87</td>
<td>1863</td>
</tr>
</tbody>
</table>

1/ To convert to 12% moisture hay, multiply by 1.136.
2/ Numbers not followed by the same letter in a column are significantly different (P < .05) by Waller-Duncan K-ratio T test.
3/ There were no significant differences (P > .05) for these components.
When all varieties were considered collectively (Table 2), production differences in 1983 began to show for alfalfa, TI = 1937 lb/A vs TIII = 1585 lb/A, and for crested wheatgrass, TI = 914 lb/A vs TIII = 1433 lb/A. However, the differences cancelled themselves out so that total production was not different, TI = 2880 lb/A vs TIII = 3026 lb/A. Field observations suggested that the dormant season grazing of TI appeared to suppress grass production, which may have released moisture for increased alfalfa production. This is reflected in the "relative proportion" figures for 1983 in Table 2.

Table 2. Hay Production for All Varieties in 1983 and 1984

<table>
<thead>
<tr>
<th></th>
<th>Treatment I</th>
<th>Treatment III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alfalfa</td>
<td>Grass</td>
</tr>
<tr>
<td></td>
<td>Pounds per acre (oven dry weights)</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>1937*</td>
<td>914*</td>
</tr>
<tr>
<td>1984</td>
<td>482</td>
<td>1014*</td>
</tr>
</tbody>
</table>

Relative proportions (percentages)

				100				100
			67	52	47	1	100	
			30	62	29	2	100	

1/ To convert to 12% moisture hay, multiply by 1.136.

2/ In comparing the same component (alfalfa, grass, weeds or total) in TI versus TIII, numbers followed by an asterisk are significantly different (P<.05).

By 1984, which was the second year of full treatments, dormant season grazing of Treatment I had reduced total hay production compared to Treatment II (Table 2). Here total production is TI = 1626 lb/A vs TIII = 2100 lb/A. Also, grazing in TI continued to significantly reduce grass production (TI = 1014 lb/A vs TIII = 1447 lb/A) and increased weed production, TI = 130 lb/A vs TIII = 45 lb/A.

Stands

Estimates of stand for hay lands and pastures are necessary for indicating comparative differences in longevity. When using the basal intercept method of stand evaluation (see Table 3, footnote 1) on a new seeding of alfalfa or grass, it is common to have stands increase before decreasing (becoming weaker). In comparing the average yearly stand values of Table 3, it is apparent that from 1982 through 1984 stands of alfalfa and grass were both continuing to increase or improve, presumably from an increase in size of plant crowns. As of this time, the alfalfa varieties and crested wheatgrass are performing the same for all three treatments and that is why they are presented together in Table 3. The relatively few differences in 1983 alfalfa stands were not present in 1984.
Table 3. Percent Stand in 1983 and 1984 as Determined from Basal Intercept, Treatments I, II and III Considered Together.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 ^2/</td>
<td>66bc ^3/</td>
<td>66 ^4/</td>
<td>56 ^2/</td>
<td>63abc ^3/</td>
<td>71a ^3/</td>
</tr>
<tr>
<td>Daneb</td>
<td>43</td>
<td>65c</td>
<td>67</td>
<td>53</td>
<td>69ab</td>
<td>74ab</td>
</tr>
<tr>
<td>Drylander</td>
<td>26</td>
<td>50d</td>
<td>68</td>
<td>50</td>
<td>62abc</td>
<td>68b</td>
</tr>
<tr>
<td>D-2</td>
<td>63</td>
<td>72ab</td>
<td>74</td>
<td>53</td>
<td>63abc</td>
<td>72ab</td>
</tr>
<tr>
<td>Ladak</td>
<td>59</td>
<td>69abc</td>
<td>69</td>
<td>73</td>
<td>58c</td>
<td>71ab</td>
</tr>
<tr>
<td>Maverick</td>
<td>43</td>
<td>63c</td>
<td>73</td>
<td>59</td>
<td>66abc</td>
<td>74ab</td>
</tr>
<tr>
<td>Rambler</td>
<td>36</td>
<td>68abc</td>
<td>70</td>
<td>50</td>
<td>71a</td>
<td>72ab</td>
</tr>
<tr>
<td>Rangelander</td>
<td>23</td>
<td>65bc</td>
<td>72</td>
<td>50</td>
<td>61bc</td>
<td>71ab</td>
</tr>
<tr>
<td>Roamer</td>
<td>53</td>
<td>68bc</td>
<td>70</td>
<td>69</td>
<td>64abc</td>
<td>74ab</td>
</tr>
<tr>
<td>Spredor II</td>
<td>46</td>
<td>69abc</td>
<td>68</td>
<td>53</td>
<td>64abc</td>
<td>71ab</td>
</tr>
<tr>
<td>Teton</td>
<td>50</td>
<td>75a</td>
<td>71</td>
<td>50</td>
<td>65abc</td>
<td>76a</td>
</tr>
<tr>
<td>Travois</td>
<td>63</td>
<td>67bc</td>
<td>69</td>
<td>66</td>
<td>62bc</td>
<td>74ab</td>
</tr>
<tr>
<td>Vernal</td>
<td></td>
<td>66</td>
<td>70</td>
<td>57</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>46</td>
<td>66</td>
<td>70</td>
<td>57</td>
<td>64</td>
</tr>
</tbody>
</table>

^1/ Stands evaluated on basis of each 6" gap in a row equaling 0.5% less than a full stand. For example, if a 100' row had 64 6" gaps, that would be a 68% stand (64 x .05 - 32; 100 - 32 = 68). ^2/ No statistical analysis conducted in 1982. Stands evaluated one month after seeding. ^3/ Numbers not followed by same letter in a column are significantly different (P<.05) by Waller-Duncan K-ratio T test. ^4/ There were no significant differences (P<.05) for these components.

Although stands for individual varieties were not affected by the three treatments in 1984, there are some stand differences due to treatment when all varieties are considered together (Figure 1). The trends evident in Figure 1, especially for alfalfa, may be pointing toward eventual differences in length of stand life due to treatments. In 1983, alfalfa stands in TI were poorest (61%) and best in TII (72%), but stands for TIII (66%) were not different from the other two treatments. By 1984, alfalfa stands in both grazing treatments (TI = 66% and TII = 67%) were substantially less than in TIII (76%). It is too early to know whether grazing will result in early stand loss of alfalfa, but the 1984 differences are of concern and are probably reflected in 1984 hay production differences seen earlier in Table 2.

In this region, crested wheatgrass is strongly competitive with alfalfa. In mixed alfalfa-grass stands, grass typically remains for many years after alfalfa abundance decreases to minimal amounts. Figure 1 reveals stands of crested wheatgrass are being greatly affected by the three management practices (treatments). The differences in 1983 among treatments were amplified in 1984. In 1984, TI grass stands were 64%, TII were 75% and TIII
Percent stand in 1983 and 1984 from basal intercept for alfalfa and grass. 1/

1/ For discussion of stand determination, see Table 3, Footnote 1.
2/ Alfalfa stands did not significantly change (P>0.05) between 1983 and 1984.
3/ Grass stands in each treatment significantly increased (P<0.05) from 1983 to 1984.

were 79%, all of which are significantly different from each other. Again, it is too early to assign importance to these stand differences; although by 1984, stands for both alfalfa and crested wheatgrass were "best" for Treatment III which has never been grazed.

Direct Comparisons

Acknowledging the fact that the jury is still out on some questions regarding variety selection and stand longevity, some production comparisons can be made for the grazing and haying treatments. Table 4 is designed to directly compare productivity from among the three treatments. As seen in the first row of numbers, all treatments were uniformly hayed in 1983, thus, no differences. Treatments were imposed in 1983 and 1984.
Table 4. Hay Production, Grazing Available and Feed Equivalent for All Years and Treatments

<table>
<thead>
<tr>
<th>Year</th>
<th>Treatment I (Grazing plus haying)</th>
<th>Treatment II (Spring grazing)</th>
<th>Treatment III (Haying only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hay lb/A</td>
<td>Grazed/ feed AUM's/A</td>
<td>Hay lb/A</td>
</tr>
<tr>
<td>1982</td>
<td>4,644</td>
<td>0.00</td>
<td>4,644</td>
</tr>
<tr>
<td>1983</td>
<td>2,880</td>
<td>0.73</td>
<td>0</td>
</tr>
<tr>
<td>1984</td>
<td>1,626</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>9,150</td>
<td>10.17</td>
<td>4,644</td>
</tr>
<tr>
<td>If converted to AUM's ²/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982-84 Aug.</td>
<td>11.05</td>
<td></td>
<td>8.14</td>
</tr>
<tr>
<td>1983-84 Aug.</td>
<td>3.68</td>
<td></td>
<td>2.71</td>
</tr>
<tr>
<td>Hay and AUM's as used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982-84 Aug.</td>
<td>3,050</td>
<td>0.29</td>
<td>1,548</td>
</tr>
<tr>
<td>1983-84 Aug.</td>
<td>2,253</td>
<td>0.44</td>
<td>0</td>
</tr>
</tbody>
</table>

¹/ This value is extremely low because hay was fed to supplement grazing. Equivalent AUM's if hay is fed based on 900 lb hay/AUM.

No direct comparisons can be made between Treatment II (Spring Grazing) and the other treatments. Therefore, production estimates are specific for spring grazing practices only. AUM's harvested averaged 1.49 for 1983 and 1984. The range in AUM's used (1.90 in 1983 and 1.08 in 1984) should be expected in a spring pasture setting. The 2-year average of 1.49 AUM's may not hold up if stands begin to weaken.

Hay production in Treatment I versus Treatment III is similar with the spread in production being greater in 1984 than in 1983. Although the difference is relatively small, it may be magnified in coming years. The dormant season AUM's of grazing increased the "Total AUM's (converted plus actual)" to TI = 11.05 compared to TIII = 10.76. The "Total AUM's (converted plus actual)" for TI and TIII compare very favorably for 1982-84 and for 1983-84 as well. In considering the 1983-84 figures, both TI and TIII are substantially higher (2.94 and 2.89, respectively) than AUM's from haying versus grazing. The last two rows in Table 4 provide direct comparisons of hay production and grazed AUM's for 1982-84 and for 1983-84. Hay production between TI and TIII was not significantly different for 1983-84. However, it was different for 1984 alone. For 1983-84, dormant season grazing of TI did not reduce hay production when compared to TIII. Through 1984, the .44 AUM's of grazing provided by TI give a slight production edge to dormant season grazing of hay lands.
Conclusions/Implications

1. In the first two years of treatment, dormant season grazing of hay grounds did not reduce production when compared to hay ground that was not grazed. In fact, the AUM's provided as dormant season grazing represents additional production from that practice.

2. Based on early trends in alfalfa and grass stands, grazing may shorten productive life of hay grounds.

3. The major alfalfa varieties are performing similarly in all treatments. So, other grazing varieties appear to be as satisfactory as Travois.

4. Grazing alfalfa varieties grown with crested wheatgrass have produced as much hay as the two hay types (Ladak 65 and Vernal) and, if they are equally persistent, they can be successfully used for hay production in a single cutting environment.