Design and Evaluation of a Fisheries Information Storage and Retrieval System (FISARS) for the State of South Dakota

Richard P. Kramer
DESIGN AND EVALUATION OF A FISHERIES INFORMATION STORAGE
AND RETRIEVAL SYSTEM (FISARS) FOR THE STATE OF SOUTH DAKOTA

BY

RICHARD P. KRAMER

A thesis submitted
in partial fulfillment of the requirements for the
degree Master of Science, Major in Wildlife and
Fisheries Science, South Dakota
State University

1979
DESIGN AND EVALUATION OF A FISHERIES INFORMATION STORAGE
AND RETRIEVAL SYSTEM (FISARS) FOR THE STATE OF SOUTH DAKOTA

This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable as meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.
ACKNOWLEDGMENTS

Financial support was provided in part by the U.S. Fish and Wildlife Service and the South Dakota Department of Game, Fish and Parks. The funds were administered by the South Dakota Cooperative Fishery Research Unit at South Dakota State University, Brookings, South Dakota.

I would like to express my thanks to Dr. Donald C. Hales, who provided assistance in preparing this study, to Dr. Richard L. Applegate, who acted as major adviser and to Dr. Robert Benda, who provided valuable assistance in writing this report.

The personnel at Research and Data Processing, South Dakota State University, Brookings, South Dakota, provided information and assistance in designing the retrieval system. I would like to express my thanks to Warren Hovland, who wrote the GIVEFISH program and to Del Johnson and Cheryl Jorgenson, who assisted me on writing the BIBFISH programs.

John Kelley served as data coder and prepared many of the data sheets. His help is gratefully acknowledged.

Finally, special thanks goes to my wife Becky, who prepared many of the figures and data sheets, and provided emotional support throughout my work.
ABSTRACT

Extensive data collected each year from the streams and lakes of South Dakota necessitates a computerized system with which to efficiently utilize the large amount of material. A fisheries related data storage and retrieval system (FISARS) was developed sufficiently to provide cost estimates in creating and maintaining such a system. Detailed descriptions were made to provide information in implementing and utilizing the retrieval system.

A survey was made of state fish and game agencies currently operating storage and retrieval systems. This information along with comments provided by the fisheries personnel in the state of South Dakota was used as a guideline in developing the FISARS System.

The FISARS System is composed of two data bases. One data base contains bibliographic reference material related to fisheries work within the state of South Dakota. The other data base contains specific data about individual bodies of water. The two data bases can operate together or individually.

Estimates were made concerning the cost of coding and transferring data, keypunching and verifying, and building of both data bases. Two computer facilities are available with which the storage and retrieval systems could be used, therefore, estimates of costs in operating the system were made for each facility.
The programs used to build and manipulate the bibliographic data bases were written in COBOL language and access of the data base utilized the VSAM (Virtual Storage Access Method) method. Only the computer programs providing the actual retrievals of the data base containing lake and stream survey information need to be written to make the storage and retrieval system functional.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>3</td>
</tr>
<tr>
<td>Computer Facilities and Access Methods</td>
<td>4</td>
</tr>
<tr>
<td>BIBFISH Data Base Description</td>
<td>4</td>
</tr>
<tr>
<td>GIVEFISH Data Base Description</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>25</td>
</tr>
<tr>
<td>Cost of Developing and Operating the FISARS System</td>
<td>27</td>
</tr>
<tr>
<td>Operating the FISARS System</td>
<td>30</td>
</tr>
<tr>
<td>Capabilities</td>
<td>36</td>
</tr>
<tr>
<td>Reduction in Operation Cost and Completion of the FISARS System</td>
<td>38</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>41</td>
</tr>
</tbody>
</table>

APPENDIX A

BIBFISH Programs

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Tape Build</td>
</tr>
<tr>
<td>2 - VSAM Disk Build</td>
</tr>
<tr>
<td>3 - Retrieval</td>
</tr>
<tr>
<td>4 - Add and Update</td>
</tr>
</tbody>
</table>

APPENDIX B

Data Sheets

<table>
<thead>
<tr>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Legal Classification</td>
</tr>
<tr>
<td>B - General Water Description</td>
</tr>
<tr>
<td>C - General Water Description</td>
</tr>
<tr>
<td>D - Water Chemistry</td>
</tr>
<tr>
<td>Form E - Organism Abundance and Spawning Habitat</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Form F - Fish Stocking and Removal</td>
</tr>
<tr>
<td>Form G - Natural Reproduction Summary</td>
</tr>
<tr>
<td>Form H - Netting Summary</td>
</tr>
<tr>
<td>Form I - Length Frequency</td>
</tr>
<tr>
<td>Form J - Age and Growth Distribution</td>
</tr>
<tr>
<td>Form K - Pollution and Survey Data</td>
</tr>
<tr>
<td>Form L - Water Resource Improvements, Recommendations and Finances</td>
</tr>
<tr>
<td>Form M - Access Facilities</td>
</tr>
<tr>
<td>Form N - Test Netting Field Sheet</td>
</tr>
</tbody>
</table>

APPENDIX C

BIBFISH Subject Index .. 74

APPENDIX D

River Codes ... 77

APPENDIX E

Lake Codes .. 87

APPENDIX F

Organism Codes .. 98

Fish ... 99

Aquatic Macrophytes .. 102

APPENDIX G

Management and Access Codes 104

APPENDIX H

GIVEFISH Build Program 107
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Sheet for Bibliographies</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Sample BIBFISH Retrieval</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Sample Field Map</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Summary of cost estimates for creating and operating GIVEPISH and BIBPISH Data Bases</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>Work to be completed before FISARS System is functional</td>
<td>40</td>
</tr>
</tbody>
</table>
INTRODUCTION

The importance and usefulness of computers in the field of fisheries has been well documented. Lackey (1975) enumerated current and potential applications of computers in fisheries science. These range from relatively simple programs which analyse specific data such as age and growth (Gerking 1965) to rather sophisticated data analysis (Hesse 1977); modeling systems (Patten 1969; O’Heeron and Ellis 1975); and extensive storage and retrieval systems (Nixon 1971; Brogden et al 1974; Natch and Weber 1976).

Lake surveys are often an important part of managing a fisheries resource. After years of collecting baseline material and making continuous additions, manual filing systems have become large and inefficient to use. Because of this, along with the need to have quick and accurate access to this material, many states have begun or have in operation computerized data storage and retrieval systems (Clark et al. 1977). These systems may also contain packages for performing various data analyses.

State fish and wildlife agencies often have different needs depending on the quality and quantity of their fisheries resources, money available and human populations. This necessitates designing individual storage systems for each state’s particular needs. Large amounts of fisheries data are collected each year in South Dakota. Raw data collected in past years and publications are reports concerning projects and studies on various South Dakota waters are on file. Pursuing these files to compile specific information or to determine the extent of
studies on a particular body of water often requires many hours of searching. A fast and efficient system is needed to handle stored data for maximum benefit. Such a system could save time, money and manpower in performing complicated or tedious data manipulations.

With these criteria, the objectives for this project were:

1. Test and sufficiently develop a storage and retrieval system in order to provide an estimate of cost of such a system including building, yearly operation and updating.

2. Outline the capabilities of the system and project its future use.
MATERIALS AND METHODS

The Fisheries Information Storage and Retrieval System (FISARS) is comprised of two separate data bases, GIVEFISH and BIBFISH. GIVEFISH provides detailed information about individual lakes or rivers in South Dakota and BIBFISH is a bibliographic storage and retrieval system which contains bibliographic references of published and unpublished material concerning the lakes and streams of South Dakota. Both data bases work in conjunction with each other or separately to form the mother system, FISARS.

The computer programs designed to manipulate the two data bases, GIVEFISH and BIBFISH, are similar in theory; therefore only the programs manipulating BIBFISH were completely written and tested. Test data for GIVEFISH was compiled and a data base was built to provide further information concerning cost estimates.

Test data for GIVEFISH was taken from a 13 county area, Region IV, north and east of Beadle County and bounded by North Dakota on the north and Minnesota on the east. This area was ideal for testing a retrieval system because it is near the computer facilities and it has numerous lake and stream records which were on file at Webster, South Dakota, 144 km (90 mi) north of Brookings, South Dakota. Region IV contains 15 permanent (never winterkills or summerkills), 22 semi-permanent (winterkills or summerkills once every ten years), and 97 marginal (winterkills or summerkills once every five years) lakes. As of 1 July 1978, the South Dakota Department of Game, Fish and Parks (GFP) reorganization reduced the number of management regions in the state
from five to four. Although this did not alter the testing of data it
must be noted that the Region IV referred to in this text no longer
includes the counties of Beadle, Kingsbury and Brookings, but now
includes McPherson, Edmunds and Faulk counties. BIBFISH was tested by
utilizing references from a collection of North Central Reservoir
Investigation studies (1976 Unpublished, North Central Reservoir

COMPUTER FACILITIES AND ACCESS METHODS

An IBM 370-148 computer was used to store and retrieve data at
South Dakota State University, Brookings, South Dakota. The computer
runs on OS/VS1 with one megabyte of storage and six 3340 disc drives.

The data was accessed with VSAM (Virtual Storage Access Method)
(IBM 1975). VSAM was chosen because of its efficiency in using files
on a disc pac. Files can be accessed both sequentially and randomly.
VSAM also utilizes alternate indexes, which provides a unique way to
gain access to a related data base set, so it is not necessary to keep
multiple copies of the same information organized in different ways
for different applications.

BIBFISH DATA BASE DESCRIPTION

Data Base Organization

The problems in maintaining and updating a reference file are
numerous. There have been many manual methods devised to handle small
reprint libraries (Burns and Mosby 1971), but these become difficult to
manipulate on a large scale. Lee, et al. (1971) developed a computerized
system using key words from the title to be used as retrieval categories.

The BIBFISH programs (Appendix A) were developed to coincide with the GIVEFISH data base. The header cards (Columns 6-9) of most GIVEFISH data sheets (Appendix B) provide space for a four digit identification number. This is used when any of the data from each page is taken from a publication and not from a GFP survey. Publications are given numbers sequentially and stored in the BIBFISH data base. Therefore when a PISARS printout indicates that data was obtained from other than GFP surveys, a BIBFISH retrieval will provide a complete listing of the references.

BIBFISH can also be used to retrieve references centering around a specific subject or a specific lake by using the subject index (Appendix C), river codes (Appendix D) or lake codes (Appendix E).

The subject index (Appendix C) was designed to contain all areas expected to be found in the field of fisheries. These were listed in alphabetical order by subject and the sub-headings under each subject were assigned a five digit code number. This index was used to create a key word format (alternate keys) for each bibliographic reference.

Alternate indexes provide a method for organizing a file of references under more than one subject key. In this case the principle key is the individual number given to each bibliographic reference and the ten alternate keys are those describing the content of the reference.

The data base was designed to store up to 5000 (560 characters) references or records and not more than 500 subject replicates. This
means that of the 5000 records, no more than 500 may be of the same subject. Core space allotted for these parameters can be set according to need and can be increased whenever needed. Test data was punched on cards and then read on tape to provide a printout for verification. The corrected tape was then read on disc and the VSAM File built.

Each reference is coded on a date sheet (Fig.1) and given a five digit bibliographic code (Card 1, Columns 1-5) sequentially as new references are added. This is the primary key for retrieval. The following ten, five digit columns are the alternate indexes. Here the subject codes are placed pertaining to the reference. These spaces can also be used to indicate the code number for a particular body of water. A zero is added to the lake and river codes in order to complete the five digit space. This enables the retrieval of studies from only a specific body of water. Figure 1 presents an example of how these subject codes (Appendix C) would be used. On card one, columns 21-25, the number 16170 is written. This is the code for Lewis and Clark Lake (Appendix E).

The final five cards on the data sheet contain specific information about the reference itself. Column 80 of card three and four are used as stoppers. Should the title fill only one card, a "1" is punched in "stop-1" indicating only one card was used and the remaining two cards are not added to the deck. If two cards are used, then a "2" is placed in "stop-2". This eliminates placing blank cards in the deck to fill the seven card record.
Figure 1. Data sheet for Bibliographies.
BIBFISH Retrievals and Programs

Four COBOL programs were written to set up and use the BIBFISH data base (Appendix A). Both programs 1 and 2 are used to build the data base. Program 1 will read the card file and record it on tape. A printout provides an opportunity to correct any errors before the VSAM disc file is built. Program 2 reads the tape file after all errors have been removed and builds the VSAM file. It does not provide a printout.

The actual retrievals are provided by program 3. BIBFISH retrievals are made by punching the first five columns of a card or on a terminal with the subject code desired to be searched. There is no limit to the number of retrievals per run. The printout (Fig. 2) indicates what is being searched and the accompanying bibliographies. In this example, the first retrieval was for bibliography number "3" or record "3". Immediately following is record number "3". The third search, code number 12001, is for references related to crustaceans. Four references were retrieved.

The final search code '47040' was used as a lake search. In the subject index (Appendix C) number 47040 does not appear, therefore, number 47040 or 4704 relates to Lake Wetonka in McPherson county (Appendix E). Since the data base does not contain any references relating to Lake Wetonka, there were no retrievals.

Program 4 is used to add or correct records. Correcting a record is a matter of reprocessing the complete record with its corrected identification code and the corrected reference. Adding a record is accomplished in the same manner except the identification code must be
Figure 2. Sample BIBFISH Retrieval.
a number that sequentially follows the last identification code in the file. Adding and deleting should be done only after a back log of corrections and additions are available because this process utilizes a quantity of computer time and is therefore expensive. Adding and deleting should be done on a yearly basis as new material becomes available.

GIVEFISH DATA BASE DESCRIPTION

Data Base Organization

In order to obtain an accurate estimate of costs for building and maintaining a large data base such as GIVEFISH, the test data from Region IV was used to create a trial data base. GIVEFISH was also organized according to the VSAM access method as was BIRFISH. The data records were organized with the lakes or streams numbered sequentially as the primary key. Five alternate - index clusters were established to more efficiently utilize related data sets.

The first alternate index is the lake or river codes (Appendix D and E). The alternate key provides access to each record by this code. The second alternate index is the ecological classification. The alternate keys are Trout, Walleye - Panfish - Bass, Game Fish - Rough Fish, Bullhead and Panfish - Bass. The third alternate index is water description and the alternate keys are Lake, River and Large Reservoirs. The fourth alternate index is status with alternate keys of Permanent, Semi-permanent, Marginal and Waterfowl. Description of these parameters is given in the GFP Lake Survey Manual (1971 Unpublished, South Dakota
Department of Game, Fish and Parks, Pierre, South Dakota). The final alternate index is region. As of 1 July 1978, there were four geographical regions or areas managed by GFP which serve as the alternate keys. The use of these alternate indexes will enable, for example, the accessing of the records of permanent waters under status or only rivers under water description.

To reduce the amount of disc space utilized, information from each water is only the most recent. Older data contained in Forms D, F, G, H, I, J, K, L, N (Appendix B) would be kept on a storage tape. Information on Forms A, B, C, E, M (Appendix B) will only be updated or deleted when needed.

Storage and retrieval programs and data analysis programs are to be written in COBOL. Data will be stored and accessed on a disc with tapes and cards providing a security duplicate of records.

Estimate of Cost

In order to create a retrieval system in which its usefulness would be retroactive, it is necessary to store previously collected data. Data was stored from 1970 to 1976 for several reasons. This was a period in which the South Dakota Department of Game, Fish and Parks (GFP) did their most intensive survey work and recorded data in a form closely resembling the structure of the data sheets prepared for this study.

Choosing these years also guaranteed that at least two years of test netting data was obtained from each water. On lakes where no test
netting was done during this period of time previously collected data was stored. Although this older data could not be considered valuable as a recent population indicator, it was considered useful in relating a lakes possible potential even though more recent information was not available.

To derive an estimate of the cost of storing this backlog of information the time spent transferring the records to the data sheets was recorded. Since Region IV contained the most extensive files of lakes and streams this provided an accurately estimate of the average time needed to record a typical lake. This was then expanded for the entire state.

Coded data, after being checked for errors, was keypunched on 80 column computer cards. Time and cost were recorded for keypunching. Data was then transferred to a VSAM disc for storage. Computer cost was recorded. With these costs calculated and using the total number of lakes and streams managed by GFP, the total cost for storing seven years of data statewide was estimated.

Parameter Selection and Design of Coding Sheets

Lagler (1952) outlined the methods and purposes of lake and stream surveys. This information could be used as the basic data with which a storage and retrieval system could be set up.

Several methods were detailed to ensure that all parameters needed for storage were used. A survey was sent to state wildlife agencies known to have storage and retrieval systems (Clark et al. 1977). These
states were asked for data sheets, costs of operation and uses of their systems. This information was used as a guideline in designing the coding sheets, along with data sheets from the U.S. Environmental Protection Agency's STORET (Nixon 1971) and BIO-STORET (Natch and Weber 1976).

A tentative parameter list was assembled using the GFP Lake Survey manual with necessary additions and deletions. This list was sent to all fisheries personnel and those involved in lake surveys for their comments. Changes were then made to the list and preliminary coding sheets were drawn up. These sheets were to be the basis for the storage and retrieval system. Two meetings were arranged with fisheries personnel to explain and discuss the retrieval system and coding sheets in detail. With information collected at these meetings the final coding sheets were prepared (Appendix B).

Description of Coding Sheets

All data sheets (Appendix B) were organized for information to be coded on 80 column computer cards. The following text provides instructions for completing each coding sheet.

The field map of Lake Kampeska (Fig. 3) gives an example of the form in which all field maps should be prepared. These will be used to locate sampling sites, access areas, dams and other points of interest to coincide with coding sheets using a letter by number designation. A river field map will contain a river mile index rather than letter by number to locate different areas. These maps will help standardize
sampling sites along with locating other important sites for field crews.

Form A - Legal Classification

Each coding sheet contains a similar header card (Card 1 - Columns 1-16) to provide necessary organization of information for storage. Each card contains a lake code and a card code to help with organization, prevent mix ups and card losses.

Form A contains the water name (Card 1, Columns 17-36) and legal classification of that water. Space is provided to contain only the legal classification of waters smaller than the mainstem reservoirs. Room for description of larger waters was left out due to the large amount of space required to create a much larger record with questionable benefit.

The header card (Card 1) contains a lake or stream code (Columns 1-4), which is unique for that water (Appendix D and E). Column 5 is a space provided for an agency code. This enables information other than that collected by GFP to be stored. Since all data in this study was collected by GFP, a number '1' is used to identify that agency. Columns 6-9 are used for an identification number of any data if it was obtained from published material. References are given a five digit code sequentially and are stored and retrieved by BIBFISH. Column 10 is provided for the 'Data Code' (DC), which indicates whether the data is new (N), to be deleted (D) or to be corrected (C). Columns 11-16 are for dates.
Form B - General Water Descriptions

Form B contains basic information as to water classification, population of surrounding areas, dam or outlet control and physical parameters. Data on this sheet is entered only once and items can be deleted or corrected.

The header card (Card 3) contains additional information not contained on Form A. "Units" (Column 10) will indicate whether data is metric (M) or English (E) units. Retrievals could be obtained in either English or metric units by personal choice. "River Index" (Columns 12-17) will be used to code a specific sampling site or a general area if the data is from a river. Columns 40-51 represent the sequence of water ways where river codes (Appendix D) of a lake drainage can be entered. The first two (four digit) codes are for the immediate waterways and the third indicates the major waterway into which it flows.

Form C - General Water Description

Form C contains several different categories of information. Parameters listed under "River Classification" were used to classify trout streams in the Black Hills of South Dakota (Glover 1975). Other parameters under "Water Resource Use and Development" and "Inlets and Outlets" are described in the GFP Lake Survey Manual. Information on this form is entered once with periodic updates and deletions.
Form D - Water Chemistry

GFP currently takes the listed water quality data during four periods of the year. Therefore, four sheets of Form D can be stored per year. Old data would be kept on tape.

Form E - Organism Abundance and Spawning Habitat

Form E contains relative abundance information of aquatic plants, fishes and other organisms (Appendix F). Card 12 can be repeated four times, enabling up to 72 fish species to be listed.

Evaluation of spawning area (Card 13) contains information on five managed or important species and the locations of their spawning beds. This page will be recorded once with subsequent deletion or update of items.

Form F - Fish Stocking and Removal

Fish stocking information is recorded on Form F (Card 14). This card may be repeated twice to contain up to eight stocked species per year. Cards 15 and 16 may be repeated up to four times each per year to contain all commercial fishing information. Note that commercial species are recorded by total weight removed per year and that game species are recorded by total number. Old data would be stored on tape.

Form G - Natural Reproduction Summary

Form G contains data indicating the success of natural reproduction. This information is usually collected during late summer
or early fall and only the totals of up to 25 species will be recorded. Old data would be stored on tape.

Form H - Netting Summary Sheet

Test netting data provides a rough estimate of the abundance and species composition of fishes present in a water. Form H used to record old data which was recorded in this manner. This form can be duplicated twice per year and old data stored on tape. New data will be recorded on Form I and a program could provide the analysis. Description of sampling methods is discussed in the GFP Lake Survey Manual.

Form I - Length Frequency

Form I coincides with Form H. Test netting information is also utilized on this form by recording length-frequencies of individual fish. Two pages can be used to record up to 12 species. Species lengths can be recorded in either 0.5 inch increments or 1 inch increments. Groups of fish under 12 inches utilize the 0.5 distribution in order to show a smoother length frequency. A duplicate form could be made to code lengths in metric with the appropriate metric increments. Larger fish use the 1 inch distribution. To indicate this, column 8 of card 22 is used to show the distribution chosen. Columns 9-40 are used to indicate the length increment and columns 41-72 are used to record the number of fish in the corresponding increment above. This form is used for old data and can be repeated twice to store up to 12
species' length-frequency distributions per year. New data would be recorded on Form N.

Form J - Age and Growth Distribution

Calculations of age and growth data can be recorded on Form J. Two pages can be recorded to provide information on 16 species. Data is recorded similar to that in the GFP Lake Survey Manual. Card 24 contains the species, total size of sample (Columns 8-11), the size of the subsample taken (Columns 12-13) and the back calculated lengths of fish up to seven years of age. Card 24 will contain the total number of fish in each age-group and the number of fish from which back calculations were actually made. Old data would be recorded on tape.

Form K - Pollution and Survey Data

Card 26 of Form K contains pollution and fish kill estimates. Data can be entered yearly and old data will be stored on tape. Cards 27 through 29 contain information on creel survey and recreational survey data. Column 5 of card 27 and 29 are headed "AC"; this is to indicate how accurate the survey information is.

Only a limited amount of survey information is stored. When more complete information is needed the source of the data, if published, can be located using the "Source I.D." in columns 6-9 of cards 27 and 29. Old data would be stored on tape.

Form L - Water Resource Improvements, Recommendations and Finances

In an effort to provide information for planning future improvements and budgets Form L was created. Specific management and access
recommendations (Appendix G) are listed on this sheet. Columns 17–24 of card 30 will keep track of recommendations that have been completed each year. Card 31 lists new management recommendations, species of fish they will affect, benefit in man-days, year to be completed and an estimate of cost. Card 32 contains access recommendations and information similar to the management recommendations.

Card 33, at the bottom of Form L, was left for any additional information. It was used in the testing to record winterkill dates and management policies. Form L may be repeated twice and old data would be stored on tape.

Form M - Access Facilities

Form M allows a listing to be made of all access areas for each water as well as facilities available. Columns 48–77 of card 35 provide an estimate of the cost of maintenance, facilities and investment at each access site. This information will be used in planning of GFP budgets. Card 35 may be repeated up to 35 times.

Form N - Test Netting Field Sheet

Form N would replace Forms H and I, which were used to transfer old data to the system. All new test netting data would use this form. The header card (36) is the same as in forms H and I. One sheet is used for each species. Data acquired from up to 25 nets can be placed on this sheet. Total weights, numbers and location of each net are recorded on the lower left side of the page, excluding the length and weight of individual fishes. The right
hand side would be used to record the length and weights of up to 100 fishes from a random sample to obtain average length and weight information and length frequencies. Description of the data stored and analysed from this form will be given in the GIVEFISH Retrievals and Programs Section.

Coding Parameters

Fish

Bailey and Allum (1962) listed 93 species of fish occurring in South Dakota, but several exotics have been introduced since then. Future introductions had to be taken into consideration when creating a coding list; empty spaces were left in families where possible additions were anticipated. Fish were listed in phylogenetic order by family and given a code number starting at 1 and ending at 138 (Appendix F).

Aquatic Plants

The abundance of aquatic plants indicated on Form E (Columns 23-69) is only a subjective listing due to identification difficulties and lack of time needed to obtain a more accurate estimate of aquatic plant abundance.

Van Bruggen (1974) recorded over 190 marsh and aquatic plant species in South Dakota. In order to simplify identification and listing, codes were arranged by general families of aquatic plants and given a number (Appendix F). In some cases, when groups of plants could be easily identified within families, these groups
were assigned more than one code per family; such as the rushes (Cyperaceae) and the pondweeds (Najadaceae).

Management and Access Recommendations

Standard methods used to manage water resources were given codes (Appendix G) to be used on Form L. To simplify this list it was separated into three categories: fish management, habitat management and shore management. Access recommendations used a similar method. Recommendations may be added to the list as they become needed.

Lake and River Codes

Lake and river codes are four digits. The lake codes used were already organized by GFP (Appendix E). In these codes the first two digits signify the county number and the last two digits were given sequentially to the lakes in that county. Rivers and streams were given code numbers beyond the range of the lakes: 0100 thru 6799 (Appendix D).

GIVEFISH Retrievals and Programs

The program building the GIVEFISH data base (Appendix H) was completed to provide estimates of the size and cost of creating the data base. The complete development of the BIRPFISH data base and programs has facilitated in making cost estimates for the FISARS System and has acted as an example of how GIVEFISH retrievals could be programmed. Therefore, no further programs were completed to
manipulate the GIVEFISH data base. This section will investigate the possible retrieval programs with which to manipulate the GIVEFISH data base.

The simplest retrieval will be the standard retrieval. This program would simply research for a record and provide a printout. With the use of VSAM different related data sets could be accessed separately. Further refinement of the program would enable only certain segments of each record to be retrieved. Therefore, the use of a partial retrieval would enable, for example, the recovery of all stocking records of the lakes in Region II. The various forms and combinations in which retrievals could be made would be limitless.

One other essential program is for correction and deletions. It is necessary to be able to make corrections or deletions within each record and new records would eventually be added. These operations could be handled in one program such as with the BIBFISH data base.

Several additional sub-programs could be added to the GIVEFISH data base which would perform time saving procedures. Form N (Appendix B) was created to replace the use of Forms H and I after the initial test netting data was stored. Form N would be used to compile the test netting raw data and the sub-program would eliminate the need for additional computations and would store the information in the form of data sheets H and I.

The construction of an additional coding sheet to contain only fish stocking records could be utilized by each region. These coding sheets would take the place of the present stocking record sheets. At the end
of the season, this data would be keypunched and the sub-program would compile all stocking information and store it in the data base. This data could then be used to print out an annual stocking report.

Another sub-program could help maintain the quality of the data base. During the recording of the initial data for testing, it was noted that many areas of the lake records were incomplete or not up to date. This sub-program would search for incomplete sections of each record and provide a print out. It could also retrieve all data older than a preselected date. This would provide information for managers in planning for the upcoming field season and enable them to complete unfinished water records and keep them up to date.

Since all old data would not be stored on a VSAM disc file, access to this data would require a separate program. In all probability this information would not be needed frequently, therefore, it would be most economical to store it on tape. This program, in order to keep it simple, would only provide retrievals of individual records or parts of records.

The complexity and length of programs necessary to manipulate the GIVEFISH data base would only be limited by the needs of the state and by its budget. The use of standard retrievals only, would be the simplest and most economical.
DISCUSSION

COSTS OF DEVELOPING AND OPERATING THE FISARS SYSTEM

The FISARS System could be designed to make use of an on-line or off-line terminal. On-line retrievals are almost instantaneous. With this capability, terminals could be placed at many locations throughout the state. Hard copy terminals cost between $2000.00 and $2500.00. Portable ones are also available which allow use of the system at almost any location that has telephone facilities. Terminals could be used with the Tie Line network throughout the state, therefore there would be no additional telephone costs. GFP at the present time has a terminal at their main office in Pierre.

There are at least two computer facilities available which could potentially use the FISARS System. Both the state facility at Pierre and the facility at South Dakota State University in Brookings utilize VSAM accessing. Each facility offers its functions at varying rates (Table 1).

The Pierre facility utilizes an IBM 370-155 computer with 6 mega-bytes of storage. They have 3350 and 3330 double density disc drives which have 317 million and 200 million bytes of storage space respectively. Rental is presently $.07 a track (13,000 bytes) per month for on-line storage. The SDSU computer center utilizes 3340 disc drives which will hold 70 million bytes of storage. Current on-line storage cost is $.02 per 1000 bytes per month, but in the near future it will be lowered to $.01.
Table 1. Summary of cost estimates for creating and operating GIVEFISH and BIBFISH data bases at the computer facilities at Pierre, South Dakota and Brookings, South Dakota.

<table>
<thead>
<tr>
<th></th>
<th>Pierre</th>
<th>Brookings</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIVEFISH - Creating (1000 records or 10,000,000 bytes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferral of data</td>
<td>$5187.00</td>
<td></td>
</tr>
<tr>
<td>Keypunching and verifying</td>
<td>$1591.00</td>
<td></td>
</tr>
<tr>
<td>Building VSAM file</td>
<td>$100.00</td>
<td></td>
</tr>
<tr>
<td>GIVEFISH - Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-line</td>
<td>$646.00/yr</td>
<td>$1200.00/yr</td>
</tr>
<tr>
<td>Off-line</td>
<td>$360.00/yr*</td>
<td>$600.00/yr*</td>
</tr>
<tr>
<td>CPU Minute</td>
<td>$13-$17/min</td>
<td>$7.00/min</td>
</tr>
<tr>
<td>Updating</td>
<td>$100.00/yr</td>
<td>$100.00/yr</td>
</tr>
<tr>
<td>BIBFISH - Creating (5000 records or 5,000,000 bytes)</td>
<td>No estimate</td>
<td></td>
</tr>
<tr>
<td>Transferral of data</td>
<td>No estimate</td>
<td></td>
</tr>
<tr>
<td>Keypunching and verifying</td>
<td>No estimate</td>
<td></td>
</tr>
<tr>
<td>Building VSAM file</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>BIBFISH - Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-line</td>
<td>$325.00/yr</td>
<td>$603.00/yr</td>
</tr>
<tr>
<td>Updating</td>
<td>$25.00/yr</td>
<td>$25.00/yr</td>
</tr>
</tbody>
</table>

*Includes cost for BIBFISH and GIVEFISH
Cost of Building the BIFISH Data Base

The cost of recording the BIFISH reference material onto coding sheets is difficult to estimate because it is impossible to determine the quantity of reference material available. Much of the cost would depend on how actively old and new material was added to the database. It would probably be much less than the cost of recording data for the GIVEFISH database (Table 1) because the volume would be much less.

The projected 5000 records will occupy about 5,030,000 bytes (one byte is equal to one character). Storage costs would be about $132.00 per year at $.07 per tract at the Pierre facility, and $360.00 per year at SDSU (Table 1). A dummy 3000 records were tested and cost of building the VSAM file was less than $20.00. Projected costs of building a VSAM file of 5000 records at either computer facility would be $25.00 (Table 1).

Cost of Building the GIVEFISH Data Base

Storing Old Data

In the testing of the GIVEFISH database, seven years of data was stored from Region IV for each water. The data for each record varied in completeness due to the classification of each lake (permanent, semi-permanent, marginal and waterfowl) with permanent waters having the most complete information and waterfowl having the least. A total of 15 permanent, 22 semi-permanent, 91 marginal, 30 waterfowl and 7 unclassified lakes were recorded along with 5 streams. This gave a total of 170 water records stored. Time to
transfer this data to coding sheets was 27.6 days or 226.9 man-hours. At a rate of $3.57 per hour, cost of transferring this data to coding sheets was $773.15. This data was keypunched and verified, requiring 63 man-hours. At $4.15 per hour for keypunching and verifying this job amounted to $261.45.

There are 792 lakes in South Dakota (GFP Lake Inventory 1972, Unpublished, South Dakota Department of Game, Fish and Parks, Pierre, South Dakota) which potentially have records, but 237 are classified as "waterfowl lakes". Because "waterfowl lakes" typically have little or no information, the number of lakes having records may be less. In the Region IV test data, of the 103 waterfowl lakes, only 30 had records. Most of these waterfowl lakes do have accesses, therefore, they may warrant a record even though detailed information is not available.

Estimating the potential lotic environments which may have records is difficult because surveys have not been undertaken for many streams other than trout streams. An estimate of 124 was calculated by counting the rivers and streams with a substantial fisheries resource from the Stream Evaluation Map of South Dakota (U.S. Fish and Wildlife Service 1978). The lakes plus the rivers give 916 potential records or approximately 1000.

Using 1000 as an estimate of the total number of water records the statewide cost was extrapolated for transferring and keypunching the test data. It will take approximately 1300 man-hours to code 1000 records. At $4.50 per hour (hourly rate was increased
to account for inflation) this would total $5127.00 minus the $622.94 already spent (Table 1).

Keypunching and verifying would total 370.59 man-hours. At $5.00 per hour (hourly rate was increased to account for inflation) the cost would be $1591.00 minus the $261.45 already spent. The estimated total cost of building a database would be approximately $6778.00.

There are several bias's in this estimate. Regions with less water may spend more time in completing their lake surveys, therefore the average transferal time may be higher for some regions. Regions having more permanent or wildlife waters would affect the estimate since it requires more time to code permanent water than waterfowl waters. Bias may also occur in areas that have large quantities of stream data such as the Black Hills area. Since the test area (Region IV) was predominantly lakes and ponds with only 5 streams, no accurate estimate could be made for stream transferal time.

Cost of Building the VSAM File

With an estimated 1000 records at 10,000 bytes in size the file would increase the files to approximately 16,004,000 bytes. Much of the CPU (Computer Processing Unit) time and costs in building a VSAM file lies in building the alternate indexes. Building of the 170 test data records took 2.00 CPU minutes at a cost of $7.00. Extrapolating this for 1000 records the cost would be less than $100.00 (Table 1).
Updating Costs

GFP is continuously updating its records. Most of the work done involves test netting, shoreline seining and a few complete surveys. Over the past five years there has been an average of 62 water updates with a low of 58 and a high of 73.

The FISARS System will simplify this process. Transferring data to coding sheets will not be necessary since the coding sheets can be used directly. Therefore, the only additional cost will be keypunching, verifying and the rebuilding costs. This process would be done only once a year; after data for that year has been punched on computer cards. With an average of 62 record updates per year file rebuilding would be less than $100.00 per year. (Table 1).

Storage Costs

To operate on-line the GIVEFISH data base would require an estimated 10,004,000 bytes of storage space. The cost at the Pierre computer center would be about $636.00 per year, while charges at SDSU would be $100.00 per month or $1200.00 per year (Table 1).

One other alternative would be to operate the FISARS System off-line. This would require the rental of an off-line disc pack. The advantage would be economy. Off-line disc rental at Pierre is $30.00 per year at SDSU (Table 1). The disadvantage would be that retrievals would not be instantaneous but would be dependent upon how busy the computer facility was at the time a retrieval
was needed. Another disadvantage would be that there would be wasted space on a disc on which only 16,000,000 bytes (includes BIBFISH and GIVEFISH data bases) was stored. This extra space could be used by other GFP projects. If retrieval time is not the most important consideration and use of the system would not be heavy, operating off-line may be the logical alternative.

Since only the most up-to-date data would be stored on disc, the older information would be stored on tape. Tapes can be purchased for about $17.50 each and can store about 46,000,000 bytes of information. There is no storage cost for tapes, the only cost would be in actual CPU time used in retrieving.

OPERATING THE FISARS SYSTEM

Many of the problems in establishing GIVEFISH would be to acquire a reliable data base. Cost of doing this had been discussed. Most of this work could be done with the help of two or three summer temporaries. This job could be completed in one summer.

Maintaining the file or data base would not require a full time person. Since the initial keypunching and verifying could be contracted, the time keypunching and verifying updated data would be minimal. Major file revisions or updating would probably be done only once a year when a collection of data has been received. A secretary that was trained in keypunching could be in charge of file maintenance.

Cost of maintaining and developing the BIBFISH System is difficult to access as has already been discussed. Costs would depend on how
actively and intensely this area was pursued. The more intense the literature search, the more valuable the system would be. Large amounts of reference material has been compiled in specific areas. All of the Dingle-Johnson projects have been collected in a mineograph by GFP (1978 Unpublished, South Dakota Dept. of Game, Fish and Parks, Pierre, South Dakota). North Central Reservoirs Investigations have a similar summary of their work since 1964. Other institutions which have contributed work to the field of fisheries potentially have similar lists. Much time could be spent in transferring these references to BIBFISH coding sheets and completing the necessary subject codings. Again, use of summer temporaries may provide an economical method for building the initial data base. Successful maintenance of the BIBFISH System would then depend on the cooperation of the institutions working in the areas of fisheries to provide the person in charge of file maintenance with copies of their publications and completion reports on a yearly basis.

Field maps play an important role in the operation of the FISARS System (See 'Description of Coding Sheets'). GFP has been involved in an on-going lake mapping project. Although the maps created to date are not in a field map form, simple revisions would make them so. Addition of letter by number coordinates or in the case of rivers, the use of river mileage and the reduction in size to 21.5 X 25 cm (8 1/4 X 11 inches) sheets would make functional field maps. Future mapping should include these requirements. Smaller or shallower lakes, not proposed for contour mapping, should have maps drawn from aerial photos or U.S. Geological Survey topographic maps in order to provide descriptions of
important points of reference such as access areas, bench marks, and test net locations.

Only a minimal amount of additional work would be required of field people and managers to keep the FISARS System operational, and in many cases time would be saved. Most lake survey information has been completed and follow up work is routine such as testnetting and shoreline seining. This work would merely require the use of FISARS coding sheets instead of the present lake survey forms. These coding sheets could be kept in a file much as the lake survey forms are kept today.

The ability to retrieve from a record, areas that are not complete, would upgrade the present system and insure that water records are up to date and complete. At the present time there is little effort to complete lake survey information that was not completed in the initial surveys. A scan of the printout would reveal problem areas and these can be concentrated on and completed. Incomplete records would only degrade the efficiency and effectiveness of the FISARS System. It must be noted that each water record would occupy 10,000 bytes or characters whether all the information is there or not, therefore incomplete records are only wasting the space allocated for them.

Additional work would be required in certain other areas of the FISARS System. Field personal responsible for the lakes in a certain county or region must complete the following areas for yearly updates.

Knowing the species of fish occurring in a body of water can often be helpful. Often-times records list only the game species present.
Additional effort when routine shoreline siening is done could provide a specimen collection to be used in completing the section 'Fish Species Known to Occur' (Form E, Card 12).

Winterkill or summerkill is often an important factor used in lake management decision making. The frequency of kills is also essential for the classification scheme of South Dakota water, i.e. permanent, semi-permanent, marginal and waterfowl. Frequently in the test data this information was not present. A yearly record of winterkills must be made for each water and coded on Form K, Card 26. It is often difficult to estimate the severity of winterkill or summerkill in numbers or degrees of completeness but testnetting may help reinforce the estimate.

In order to provide essential information for budget planners Form L 'Water Resource Improvements, Recommendations and Finances' is to be completed yearly on waters where improvements are needed. Form M 'Access Facilities' should be completed for the same reason along with providing important information for access publications. Although information on Form L is more stable it should be checked for yearly changes or additions to keep it up to date. The GFP Lake Inventory contains much of this information but does not contain water front distance, area and cost estimates of maintenance, facilities and land investment. This information would have to be added. The GFP Lake Inventory is not complete with description of private accesses. A survey form could be sent to resort owners and other commercial facilities similar to Form M, excluding the cost estimates, to obtain this information.
Other areas that deserve special attention are water chemistry, fish stocking, commercial fishing and census data. When water samples are sent to a water analysis laboratory, results are returned in a form requiring additional transferal of data before it can be filed or stored. Asking the lab to use the prepared water chemistry sheet (Form D) would increase the efficiency and order of this process.

Fish stocking reports are published yearly by GFP but individual lake records often do not contain a complete record. Use of Form F as a fish stocking record for each water would provide a method of insuring this information is stored in the water record. This information could then be compiled and summarized at the end of each year and provide a printout which would eliminate the need for typing and hand calculating the Fish Stocking Report.

Form F also contains a yearly commercial fishing summary which is taken from the monthly commercial fishing reports. This would require transferring the totals to Form F from the monthly summaries, although this work would not be great in a county or regional basis. There is a problem using the monthly summaries when more than one capture method is used per page. It is impossible to distinguish between total catchage or numbers of a species for each method. Use of one capture method per page would alleviate this. If the work load warranted it, raw data could be analyzed by an additional computer program and compute and store all commercial fishing data, thereby eliminating all work except for the initial coding of raw data.
CAPABILITIES

The capabilities of the GIVEFISH and BIBFISH Systems are limitless. One of its most important attributes is its ability to save time. In this period of funding and personnel cuts, computers are becoming increasingly important in performing routine work more economically than hand calculating. Retrievals of a few seconds, which would take a worker several hours or even days to compile, not only saves time and money but also frees the worker to pursue other work.

This system would also create a systematic and orderly method of maintaining lake and river records. Standard retrievals of data not yet completed would ensure that records become complete and prevent unnecessary repetition of data. More efficient use could then be made of these files.

Some examples of how the system might be used are given below.

1. Currently when lake surveys are completed a full draft is typed and placed in the files. From this a Lake Survey Short Form must be completed and typed which is used in the lake management plans. Often times new surveys are not complete and data such as physical parameters are repeated, since they do not change. The FISARS System would eliminate this work and prevent the repetition of data. Standard retrievals would present this information in a printout which could be directly reproduced for these purposes. Both the complete record or a version similar to the present Lake Survey Short Form could be retrieved containing the newly compiled data
and the parameters that have not changed since the last survey.

2. The FISARS System could be used by management to provide instantaneous answers for management decisions. Retrievals of stocking records, test netting and shoreline seining result and severity of winterkill would be instrumental in planning next year's management. Quick and easy access to this data for each water would relieve some of the burden of this work.

3. The geographical distribution or the ecological conditions under which a given species of fish has been found may be quickly determined. Information of this nature is often necessary for developing and evaluating environmental impact statements or determining the need of endangered species.

4. People in research often are presented with the problem of reviewing past data which is useful in designing or planning projects. The FISARS System would provide them with quick access to this material and allow further manipulation of the data for statistical or other analysis. The BIBFISH System would also provide material for a literature review used in planning a research project. References could be found concerning a particular water in the state or a specific subject area.

5. Budget planning is a problem in fisheries resource management due to many factors. The FISARS System, by providing easier
access to the fisheries records, will simplify analysis and summaries of data necessary for budget planning, whether it be lake access improvement, population pressure or pinpointing areas needing the most attention. Although all portions of the FISARS System can be useful, Form L and M (Appendix A) may provide the most useful information for planning if correctly completed.

REDUCTION IN OPERATION COST AND COMPLETION OF THE FISARS SYSTEM

Perhaps the most costly portion of operating the GIVEFISH and BIBFISH System is on-line storage (Table 1). Therefore, the simplest method of decreasing costs would be reduction of the water record size, thereby reducing the total storage space used or by operating off-line.

One area might be that of 'Water Chemistry' (Form D). In the near future the South Dakota Department of Environmental Protection will assume the responsibility of monitoring water quality. They will utilize the STORET System (Nixon 1971) and could provide quick access to this data. Elimination of this information from the FISARS record would reduce it by 604,000 bytes for 1000 lake records.

The FISARS System, as it is designed now, reserves space for old test netting data (Form H and I - Appendix A) and for new data (Form N). Removal of old data in future years, storing this only on tape and utilizing the active file (disc storage) to contain only data analysed from Form N would reduce storage by 3,034,000 bytes.
Test data from Region IV indicated that age and growth data (Form J - Appendix A) was very limited and may not warrant the additional storage space, although much more data could be found by searching special studies done by GFP and other state institutions. Removal of this data would reduce the record size by 1,542,000 bytes.

A final area which could assist in the reduction of storage costs would be by decreasing the number of records. Careful selection of bodies of water to be stored would be one method. Water classified as waterfowl may be eliminated since little or no material is usually available on these waters. Another possibility would be to store the waterfowl lakes in a separate file utilizing a reduced record size listing only the most pertinent information such as; the physical parameters and the access descriptions.

Before the FISARS System is completely functional, several additional programs would have to be written to manipulate the GIVEFISH data base (Table 2). Only the GIVEFISH data base build program was written (Appendix H) to provide information in making cost estimates.

Should South Dakota Department of Game, Fish, and Parks decide to utilize the FISARS System these programs would have to be completed and debugged by a computer programmer. The cost of writing these programs would depend upon the extent of which the data base is to be manipulated as described in 'GIVEFISH Retrievals and Programs' (page 22). This would be a one time expenditure, therefore there would be no additional yearly expenditures other than those already discussed.
Table 2. Work to be completed before PISARS System is functional.

BIBFISH Data Base.

Compile and code reference material to produce a workable data base.

GIVEFISH Data Base

Complete coding and compiling of lake and stream survey data to produce a workable data base.

Write computer program from which retrievals can be made from data base.

Write computer program which would add, delete and update records to the data base.
LITERATURE CITED

APPENDIX A

BIBFISH Programs
IDENTIFICATION DIVISION.
PROGRAM-ID. BIBLIOGRAPHY-1.
AUTHOR - KRAMER.
REMARKS. THIS PROGRAM READS BIBLIOGRAPHIC CITATIONS FROM CARDS
AND WRITES THEM ON A TAPE FILE.
REMARKS. LENGTH OF CARD RECORDS CAN BE SHORTENED BY THE
FOLLOWING METHODS --
IF THE TITLE OCCUPIES ONLY ONE CARD THEN 'STOP-1'
(SEE DATA SHEET) IS PUNCHED '1' -- IF THE TITLE OCCUPIES
2 CARDS, 'STOP-2' IS PUNCHED '2' -- IF THE TITLE OCCUPIES
3 CARDS, NOTHING IS PUNCHED -- THIS ELIMINATES THE NEED OF
ADDING BLANK CARDS TO THE CARD DECK.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARO-FILE ASSIGN TO UR-2540R-S-CARDIN.
SELECT TAPE-FILE ASSIGN TO UR-2400-S-TAPE01.
SELECT NTAP-FILE ASSIGN TO UR-2400-S-TAPE02.
SELECT NEWTAP ASSIGN TO UR-2400-S-TAPE03.

DATA DIVISION.
FILE SECTION.
FD NEWTAP.
RECORDING MODE F, LABEL RECORDS ARE OMITTED, RECORD CONTAINS
560 CHARACTERS, BLOCK CONTAINS 1 RECORDS, DATA RECORD IS
TAPE-OUT.
01 TAPE-OUT PIC X(560).
FD NTAP-FILE.
RECORDING MODE F, LABEL RECORDS ARE OMITTED, RECORD CONTAINS
560 CHARACTERS, BLOCK CONTAINS 1 RECORDS, DATA RECORD IS
NTAP.
01 NTAP PIC X(560).
FD CARO-FILE.
LABEL RECORDS ARE OMITTED, RECORDING MODE F, DATA RECORDS
IS CARO-REC.
01 CARO-REC.
04 F-PART PIC X(79).
04 STOP-1 PIC X(1).
FD TAPE-FILE RECORDING MODE F, LABEL RECORDS ARE OMITTED, RECORD
CONTAINS 80 CHARACTERS, BLOCK CONTAINS 7 RECORDS, DATA
RECORD IS TAPE-REC.
01 TAPE-REC PIC X(80).
WORKING-STORAGE SECTION.
77 INCRD PIC 999.
77 BLANK-COUNTER PIC 9(9999) VALUE IS 1.

* FORMAT OF THE RECORD

01 TAPE-REC.
04 BIB-CODE PIC 9(5).
04 SUB-CODE.
05 SUB-CODE OCCURS 10 TIMES PIC X(5).
PROCEDURE DIVISION.
BEGIN.
OPEN INPUT CARD-FILE, OUTPUT TAPE-FILE.
READ-1. MOVE SPACES TO TAPE-RECORD.

******** DETERMINING TITLE SIZE

READ CARD-FILE AT END GO TO READ-2.
IF STOP-1 = 2 GO TO WRIT-2
ELSE
IF STOP-1 = 1 GO TO WRIT-1
ELSE
WRITE TAPE-RECORD FROM CARD-REC.
GO TO READ-1.

******** CHANGING 80 CHARACTER RECORDS TO 560 CHARACTER RECORDS

READ-2. CLOSE TAPE-FILE, OPEN INPUT NTAP-FILE, OUTPUT NEW TAPE.
READ-3. READ NTAP-FILE INTO TAPE-REC AT END GO TO EQJ.
IF BLANK-COUNTER 500 SUBTRACT 499 FROM BLANK-COUNTER.

******** FILLING BLANK ALTERNATE INDEXES WITH BINARY NUMBERS

PERFORM FILL-BLANK VARYING INCRO FROM 1 BY 1 UNTIL INCRO = 11.
WRITE TAPE-OUT FROM TAPE-REC.
GO TO READ-3.

FILL-BLANK. IF SUB-CODE(INCRO) = SPACES MOVE BLANK-COUNTER TO SUB-CODE(INCRO).
ADD 1 TO BLANK-COUNTER.
WRIT-2. WRITE TAPE-RECORD FROM CARD-REC.
MOVE SPACES TO TAPE-RECORD.
WRITE TAPE-RECORD.
GO TO READ-1.
WRIT-1. WRITE TAPE-RECORD FROM CARD-REC.
MOVE SPACES TO TAPE-RECORD.
WRITE TAPE-RECORD.
MOVE SPACES TO TAPE-RECORD.
WRITE TAPE-RECORD.
GO TO READ-1.
EOJ. CLOSE CARO-FILE, NTAP-FILE, NEWTAPE.
STOP RUN.

//GO.SYSOBOUT OD SYSOUT=A
//GO.TAPEO1 OD UNIT=TAPE,DISP=(NEW, PASS),
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=560),
 // OSNAME=&TAPEO1,
 // LABEL=1,NL, VOL=SER=MOE
//GO.TAPEO2 OD UNIT=TAPE,DISP=(OLD, PASS),
 // DCB=(RECFM=FB,LRECL=560,BLKSIZE=560),
 // OSNAME=&TAPEO1,
 // LABEL=1,NL, VOL=SER=MOE
//GO.TAPEO3 OD UNIT=TAPE,DISP=(OLD, PASS),
 // DCB=(RECFM=FB,LRECL=560,BLKSIZE=560),
 // OSNAME=&TAPEO1,
 // LABEL=1,NL, VOL=SER=MOE
//GO.PRINT OD SYSOUT=A
//GO.CARDIN OD *
// EXEC PGM=IOCAM5
//SYSPRINT ON SYSOUT=A
//XCRTCH DD VOL=SER=XCRTCH,UNIT=3340,DISP=OLD
//SYSIN DD *

/* ***
 * BIBLIOGRAPHY-2
 * AUTHOR - JOHNSON
 * THIS PROGRAM WILL READ RECORDS FROM A TAPE (BIBLIOGRAPHY-1) AND
 * CREATE A VSAM DISK FILE
 * ***/

DEFINE CLUSTER -
 (NAME(VSAM.CLUSTER.FISH) -
 FILE(XCRTCH) -
 RECORDSIZE(560 560) -
 VOLUME(XCRTCH) -
 KEYS(5 01) -
 UNIQUE) -
DATA INAME(VSAM.DATA.FISH) -
 RECORDS(5000) -
 INDEX(INAME(VSAM.INDEX.FISH))
// EXEC PGM=IOCAM5
//SYSPRINT ON SYSOUT=A
//XCRTCH DD VOL=SER=XCRTCH,UNIT=3340,DISP=OLD
//VSAMOUT DD DSN=VSAM.CLUSTER.FISH,DISP=OLD
//NEWTAPEx DD UNIT=TAPE,DISP=OLD,
// DCB=(RECFM=FB,RECL=560,BLKSIZE=560),
// DSNAM=TAPE03,
// LABEL=(NL),VOL=SER=MOE
//SYSIN DD *
PEPROC INFILE(NEWTAPEx) -
 OUTFIL(VSAMOUT)
DEFINE ALTERNATE(INDEX -
 (NAME(VSAM.ACLUSTR.FISH1) -
 RELATE(VSAM.CLUSTER.FISH) -
 RECORDSIZE(35 510) -
 FILE(XCRTCH) -
 VOLUME(XCRTCH) -
 KEYS(5 5) -
 UNIQUE) -
DATA (NAME(VSAM.ADATA.FISH1) -
 RECORDS(5000) -
 INDEX(INAME(VSAM.AINDEX.FISH1))
DEFINE PATH -
 (NAME(VSAM.PATH.FISH1) -
 PATHENTRY(VSAM.ACLUSTER.FISH1))
DEFINE ALTERNATE(INDEX -
 (NAME(VSAM.ACLUSTR.FISH2) -
 RELATE(VSAM.CLUSTER.FISH) -
 MODEL(VSAM.ACLUSTR.FISH) -
 FILE(XCRTCH) -
 KEYS(5 101) -
 DATA (NAME(VSAM.ADATA.FISH2) -
 INDEX(INAME(VSAM.AINDEX.FISH2))
DEFINE PATH -
 (NAME(VSAM.PATH.FISH2) -
 PATHENTRY(VSAM.ACLUSTER.FISH2))
DEFINE ALTERNATE(INDEX -
 (NAME(VSAM.ACLUSTR.FISH3) -
 RELATE(VSAM.CLUSTER.FISH) -
 MODEL(VSAM.ACLUSTR.FISH) -
 FILE(XCRTCH) -
 KEYS(5 101) -
 DATA (NAME(VSAM.ADATA.FISH3) -
 INDEX(INAME(VSAM.AINDEX.FISH3))
DEFINE PATH -
 (NAME(VSAM.PATH.FISH3) -
 PATHENTRY(VSAM.ACLUSTER.FISH3))
FILE(XCRTCH) -
KEYS(S 15)) -
DATA (NAME(VSAM,ADATA,FISH3)) -
INDEX(NAME(VSAM,AINDEX,FISH3)) -
DEFINE PATH -
(NAME(VSAM,PATH,FISH3) -
PATHENTRY(VSAM,ACLUSTER,FISH3)) -
DEFINE ALTERNATEINDEX -
(NAME(VSAM,ACLUSTER,FISH4) -
RELATE(VSAM,ACLUSTER,FISH) -
MODEL(VSAM,ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS(S 20)) -
DATA (NAME(VSAM,ADATA,FISH4)) -
INDEX(NAME(VSAM,AINDEX,FISH4)) -
DEFINE PATH -
(NAME(VSAM,PATH,FISH4) -
PATHENTRY(VSAM,ACLUSTER,FISH4)) -
DEFINE ALTERNATEINDEX -
(NAME(VSAM,ACLUSTER,FISH5) -
RELATE(VSAM,ACLUSTER,FISH) -
MODEL(VSAM,ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS(S 25)) -
DATA (NAME(VSAM,ADATA,FISH5)) -
INDEX(NAME(VSAM,AINDEX,FISH5)) -
DEFINE PATH -
(NAME(VSAM,PATH,FISH5) -
PATHENTRY(VSAM,ACLUSTER,FISH5)) -
DEFINE ALTERNATEINDEX -
(NAME(VSAM,ACLUSTER,FISH6) -
RELATE(VSAM,ACLUSTER,FISH) -
MODEL(VSAM,ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS(S 30)) -
DATA (NAME(VSAM,ADATA,FISH6)) -
INDEX(NAME(VSAM,AINDEX,FISH6)) -
DEFINE PATH -
(NAME(VSAM,PATH,FISH6) -
PATHENTRY(VSAM,ACLUSTER,FISH6)) -
DEFINE ALTERNATEINDEX -
(NAME(VSAM,ACLUSTER,FISH7) -
RELATE(VSAM,ACLUSTER,FISH) -
MODEL(VSAM,ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS(S 35)) -
DATA (NAME(VSAM,ADATA,FISH7)) -
INDEX(NAME(VSAM,AINDEX,FISH7)) -
DEFINE PATH -
(NAME(VSAM,PATH,FISH7) -
PATHENTRY(VSAM,ACLUSTER,FISH7)) -
DEFINE ALTERNATEINDEX -
(NAME(VSAM,ACLUSTER,FISH8) -
RELATE(VSAM,ACLUSTER,FISH) -
MODEL(VSAM,ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS(S 40)) -
DATA (NAME(VSAM,ADATA,FISH8)) -
INDEX(NAME(VSAM,AINDEX,FISH8)) -
DEFINE PATH -
(NAME(VSAM.PATH,FISH8) -
PATHENTRY(VSAM.ACLUSTER,FISH8))
DEFINE ALTERNATEINDEX -
(NAME(VSAM.ACLUSTER,FISH9) -
RELATIVE(VSAM.ACLUSTER,FISH) -
MODEL(VSAM.ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS((5 45)) -
DATA(NAME(VSAM.ADATA,FISH9)) -
INDEX(NAME(VSAM.AINDEX,FISH9))
DEFINE PATH -
(NAME(VSAM.PATH,FISH9) -
PATHENTRY(VSAM.ACLUSTER,FISH9))
DEFINE ALTERNATEINDEX -
(NAME(VSAM.ACLUSTER,FISH10) -
RELATIVE(VSAM.ACLUSTER,FISH) -
MODEL(VSAM.ACLUSTER,FISH1) -
FILE(XCRTCH) -
KEYS((5 50)) -
DATA(NAME(VSAM.ADATA,FISH10)) -
INDEX(NAME(VSAM.AINDEX,FISH10))
DEFINE PATH -
(NAME(VSAM.PATH,FISH10) -
PATHENTRY(VSAM.ACLUSTER,FISH10))
// EXEC PGM=IODAMS
//SYSPRINT DD SYSOUT=A
//XCRTOCH DD VOLSER=XCRTCH,UNIT=3340,DISP=OLD
//VSMOUT DD DSN=VSAM.CLUSTER.FISH,DISP=OLD
//FISH1 DD DSN=VSAM.ACLUSTER.FISH1,DISP=OLD
//FISH2 DD DSN=VSAM.ACLUSTER.FISH2,DISP=OLD
//FISH3 DD DSN=VSAM.ACLUSTER.FISH3,DISP=OLD
//FISH4 DD DSN=VSAM.ACLUSTER.FISH4,DISP=OLD
//FISH5 DD DSN=VSAM.ACLUSTER.FISH5,DISP=OLD
//FISH6 DD DSN=VSAM.ACLUSTER.FISH6,DISP=OLD
//FISH7 DD DSN=VSAM.ACLUSTER.FISH7,DISP=OLD
//FISH8 DD DSN=VSAM.ACLUSTER.FISH8,DISP=OLD
//FISH9 DD DSN=VSAM.ACLUSTER.FISH9,DISP=OLD
//FISH10 DD DSN=VSAM.ACLUSTER.FISH10,DISP=OLD
//SYSIN DD *
BLOINDEX -
INFILE(VSMOUT) -
OUTFILE(FISH1,FISH2,FISH3,FISH4,FISH5,FISH6,FISH7,FISH8,FISH9,FISH10) -
*/
IDENTIFICATION DIVISION.
PROGRAM-ID. BIBLIOGRAPHY-3.
AUTHOR. KRAMER.
REMARKS. THIS PROGRAM WILL RETRIEVE REFERENCES BY REQUESTING A SUBJECT CODE OR A RECORD CODE.
REMARKS. REQUESTS FOR REFERENCES CONCERNING A CERTAIN SUBJECT MAY BE RETRIEVED BY PUNCHING THE SUBJECT DESIRED IN THE FIRST 5 COLUMNS OF A CARD -- AN INDIVIDUAL RECORD RECORD CAN BE RETRIEVED IN A SIMILAR MANNER EXCEPT *RECORD* MUST BE PUNCHED IN COLUMN 6 TO 11.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO UR-2540R-S-CARDIN.
SELECT PRINT-FILE ASSIGN TO UR-1403-S-PRINT.
SELECT FISH ASSIGN TO FISHBIB
ORGANIZATION IS INDEXED ACCESS IS DYNAMIC
RECORD KEY IS BIB-CODE
ALTERNATE RECORD KEY IS BIB1 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB2 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB3 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB4 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB5 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB6 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB7 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB8 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB9 WITH DUPLICATES
ALTERNATE RECORD KEY IS BIB10 WITH DUPLICATES
FILE STATUS IS ERRAT.

DATA DIVISION.
FILE SECTION.
FD FISH
RECORD CONTAINS 560 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS REF.
01 REF.
 04 BIB-CODE PIC 9(5).
 04 BIB1 PIC 9(5).
 04 BIB2 PIC 9(5).
 04 BIB3 PIC 9(5).
 04 BIB4 PIC 9(5).
 04 BIB5 PIC 9(5).
 04 BIB6 PIC 9(5).
 04 BIB7 PIC 9(5).
 04 BIB8 PIC 9(5).
 04 BIB9 PIC 9(5).
 04 BIB10 PIC 9(5).
 04 FILLER PIC X(25).
 04 B-CODE-2 PIC 9(5).
 04 AU-THOR PIC X(50).
 04 YR PIC 9999.
04 FILLER PIC X(21).
04 B-CODE-3 PIC 9(5).
04 TITLE-1 PIC X(74).
04 STOPPER-1 PIC X(1).
04 B-CODE-4 PIC 9(5).
04 TITLE-2 PIC X(74).
04 STOPPER-2 PIC X(11).
04 B-CODE-5 PIC 9(5).
04 TITLE-3 PIC X(74).
04 FILLER PIC X(11).
04 B-CODE-6 PIC 9(5).
04 JOURNAL PIC X(75).
04 B-CODE-7 PIC 9(5).
04 VOLUME PIC X(10).
04 NUMB PIC X(10).
04 PAGES PIC X(10).
04 FILLER PIC X(45).
FD CARRO-FILE
LABEL RECORDS ARE OMITTED, RECORDING MODE F, DATA RECORDS IS CARRO-REC.
01 CARRO-REC.
04 SUB-SEARCH PIC 9(5).
04 BIB-SEARCH PIC X(6).
04 FILLER PIC X(69).
FD PRINT-FILE
LABEL RECORDS ARE OMITTED, RECORDING MODE F, DATA RECORDS IS PRINT-AREA.
01 PRINT-AREA PIC X(133).
WORKING-STOREAGE SECTION.
77 ERRAT PIC 99 VALUE ZERO.

* PRINTOUT FORMAT

01 PRINT-REP.
 04 FILLER PIC X(5) VALUE SPACES.
 04 BIBG PIC 9(5).
 04 FILLER PIC X(5) VALUE SPACES.
 04 SUB1 PIC ZZ9999.
 04 SUB2 PIC ZZ9999.
 04 SUB3 PIC ZZ9999.
 04 SUB4 PIC ZZ9999.
 04 SUB5 PIC ZZ9999.
 04 SUB6 PIC ZZ9999.
 04 SUB7 PIC ZZ9999.
 04 SUB8 PIC ZZ9999.
 04 SUB9 PIC ZZ9999.
 04 SUB10 PIC ZZ9999.
 04 FILLER PIC X(57) VALUE SPACES.
01 PRINT-REP-2.
 04 FILLER PIC X(5) VALUE SPACES.
 04 THOR PIC X(50).
 04 FILLER PIC X(10) VALUE SPACES.
 04 YEAR PIC 9(4).
 04 FILLER PIC X(63) VALUE SPACES.
01 PRINT-REP-3.
 04 FILLER PIC X(5) VALUE SPACES.
 04 TIT1-1 PIC X(74).
 04 FILLER PIC X(53) VALUE SPACES.
01 PRINT-REP-4.
 04 FILLER PIC X(5) VALUE SPACES.
PROCEDURE DIVISION.
OPEN INPUT FISH, CARD-FILE, OUTPUT PRINT-FILE.
IF ERRAT NOT = ZER0 DISPLAY 'ERROR ON OPEN' ERRAT
GO TO EOJ.

DETERMINING IF SUBJECT SEARCH OR A RECORD SEARCH

EAD-CARD.
READ CARD-FILE AT END GO TO EOJ.
IF BIB-SEARCH = 'RECORD' GO TO FIND-RECORD ELSE
MOVE SUB-SEARCH TO SEARCH-1.
WRITE PRINT-AREA FROM HEAD-1 AFTER ADVANCING 5 LINES.
MOVE SUB-SEARCH TO BIB1.
START FISH KEY IS = BIB1
INVALID KEY GO TO KEY-2.

SUBJECT SEARCH

EAD-DISK-1.
READ FISH NEXT RECORD AT END GO TO KEY-2.
IF ERRAT = 00 PERFORM WRITO, GO TO KEY-2.
IF ERRAT = 02 PERFORM WRITO, GO TO R01.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
D1. READ FISH NEXT RECORD AT END GO TO KEY-2.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
IF BIB1 NOT = SUB-SEARCH GO TO KEY-2
ELSE PERFORM WRITO.
GO TO R01.
EOJ-2.
MOVE SUB-SEARCH TO B1B2.
START FISH KEY IS = B1B2
INVALID KEY GO TO KEY-3.
READ FISH NEXT RECORD AT END GO TO KEY-3.
IF ERRAT = 00 PERFORM WRITO, GO TO KEY-3.
IF ERRAT = 02 PERFORM WRITO, GO TO R02.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
D2. READ FISH NEXT RECORD AT END GO TO KEY-3.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
IF B1B2 NOT = SUB-SEARCH GO TO KEY-3 ELSE PERFORM WRITO.
GO TO R02.

EY-3.
MOVE SUB-SEARCH TO B1B3.
START FISH KEY IS = B1B3
INVALID KEY GO TO KEY-4.
READ FISH NEXT RECORD AT END GO TO KEY-4.
IF ERRAT = 00 PERFORM WRITO, GO TO KEY-4.
IF ERRAT = 02 PERFORM WRITO, GO TO R03.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
D3. READ FISH NEXT RECORD AT END GO TO KEY-4.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
IF B1B3 NOT = SUB-SEARCH GO TO KEY-4 ELSE PERFORM WRITO.
GO TO R03.

EY-4.
MOVE SUB-SEARCH TO B1B4.
START FISH KEY IS = B1B4
INVALID KEY GO TO KEY-5.
READ FISH NEXT RECORD AT END GO TO KEY-5.
IF ERRAT = 00 PERFORM WRITO, GO TO KEY-5.
IF ERRAT = 02 PERFORM WRITO, GO TO R04.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
D4. READ FISH NEXT RECORD AT END GO TO KEY-5.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
IF B1B4 NOT = SUB-SEARCH GO TO KEY-5 ELSE PERFORM WRITO.
GO TO R04.

EY-5.
MOVE SUB-SEARCH TO B1B5.
START FISH KEY IS = B1B5
INVALID KEY GO TO KEY-6.
READ FISH NEXT RECORD AT END GO TO KEY-6.
IF ERRAT = 00 PERFORM WRITO, GO TO KEY-6.
IF ERRAT = 02 PERFORM WRITO, GO TO R05.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
D5. READ FISH NEXT RECORD AT END GO TO KEY-6.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT
GO TO EOJ.
IF B1B5 NOT = SUB-SEARCH GO TO KEY-6 ELSE PERFORM WRITO.
GO TO R05.

EY-6.
MOVE SUB-SEARCH TO BIB6.
START FISH KEY IS = BIB6
INVALID KEY GO TO KEY-7.
READ FISH NEXT RECORD AT END GO TO KEY-7.
IF ERRAT = 00 PERFORM WRITE, GO TO KEY-7.
IF ERRAT = 02 PERFORM WRITE, GO TO RD6.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
06. READ FISH NEXT RECORD AT END GO TO KEY-7.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
IF BIB6 NOT = SUB-SEARCH GO TO KEY-7
ELSE PERFORM WRITE.
GO TO RD6.
KEY-7.
MOVE SUB-SEARCH TO BIB7.
START FISH KEY IS = BIB7
INVALID KEY GO TO KEY-8.
READ FISH NEXT RECORD AT END GO TO KEY-8.
IF ERRAT = 00 PERFORM WRITE, GO TO KEY-8.
IF ERRAT = 02 PERFORM WRITE, GO TO RD7.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
17. READ FISH NEXT RECORD AT END GO TO KEY-8.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
IF BIB7 NOT = SUB-SEARCH GO TO KEY-8
ELSE PERFORM WRITE.
GO TO RD7.
KEY-8.
MOVE SUB-SEARCH TO BIB8.
START FISH KEY IS = BIB8
INVALID KEY GO TO KEY-9.
READ FISH NEXT RECORD AT END GO TO KEY-9.
IF ERRAT = 00 PERFORM WRITE, GO TO KEY-9.
IF ERRAT = 02 PERFORM WRITE, GO TO RD8.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
18. READ FISH NEXT RECORD AT END GO TO KEY-9.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
IF BIB8 NOT = SUB-SEARCH GO TO KEY-9
ELSE PERFORM WRITE.
GO TO RD8.
KEY-9.
MOVE SUB-SEARCH TO BIB9.
START FISH KEY IS = BIB9
INVALID KEY GO TO KEY-10.
READ FISH NEXT RECORD AT END GO TO KEY-10.
IF ERRAT = 00 PERFORM WRITE, GO TO KEY-10.
IF ERRAT = 02 PERFORM WRITE, GO TO RD9.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
9. READ FISH NEXT RECORD AT END GO TO KEY-10.
IF ERRAT GREATER THAN 02 DISPLAY 'UNSUCCESSFUL READ' ERRAT GO TO EOJ.
IF BIB9 NOT = SUB-SEARCH GO TO KEY-10
ELSE PERFORM WRITE.
GO TO RD9.
KEY-10.
MOVE SUB-SEARCH TO BIB10.
START FISH KEY IS = BIB10
INVALID KEY GO TO READ-CARD.
READ FISH NEXT RECORD AT END GO TO EOJ.
IF ERRAT = 00 PERFORM WRITE, GO TO READ-CARD.
IF ERRAT = 02 PERFORM WRITE, GO TO RO10.
IF ERRAT GREATER THAN 02 DISPLAY *UNSUCCESSFUL READ* ERRAT
GO TO EOJ.
RO10. READ FISH NEXT RECORD AT END GO TO READ-CARD.
IF ERRAT GREATER THAN 02 DISPLAY *UNSUCCESSFUL READ* ERRAT
GO TO EOJ.
IF BIB10 NOT = SUB-SEARCH GO TO RO10
ELSE PERFORM WRITE.
GO TO RO10.

* RECORD SEARCH

FIND-RECORD.
MOVE SUB-SEARCH TO SEARCH-2.
WRITE PRINT-AREA FROM HEAD-2 AFTER ADVANCING 5 LINES.
MOVE SUB-SEARCH TO B18-CODE.
READ FISH INVALID KEY GO TO READ-CARD.
PERFORM WRITE.
GO TO READ-CARD.

* RETRIEVAL PRINTOUT

WRITE.
MOVE B18-CODE TO BIBG.
MOVE BIB1 TO SUB1.
MOVE BIB2 TO SUB2.
MOVE BIB3 TO SUB3.
MOVE BIB4 TO SUB4.
MOVE BIB5 TO SUB5.
MOVE BIB6 TO SUB6.
MOVE BIB7 TO SUB7.
MOVE BIB8 TO SUB8.
MOVE BIB9 TO SUB9.
MOVE BIB10 TO SUB10.
WRITE PRINT-AREA FROM PRINT-REC AFTER ADVANCING 3 LINES.
MOVE AU-TOR TO THOR.
MOVE YR TO YEAR.
WRITE PRINT-AREA FROM PRINT-REC-2 AFTER ADVANCING 1 LINES.
MOVE TITLE-1 TO TITL-1.
WRITE PRINT-AREA FROM PRINT-REC-3 AFTER ADVANCING 1 LINES.
MOVE TITLE-2 TO TITL-2.
WRITE PRINT-AREA FROM PRINT-REC-4 AFTER ADVANCING 1 LINES.
MOVE TITLE-3 TO TITL-3.
WRITE PRINT-AREA FROM PRINT-REC-6 AFTER ADVANCING 1 LINES.
MOVE JOURNAL TO JOUR.
MOVE VOLUME TO VOL.
MOVE NUMB TO NUM.
MOVE PAGES TO PAG.
WRITE PRINT-AREA FROM PRINT-REC-5 AFTER ADVANCING 1 LINES.
EOJ. CLOSE FISH, PRINT-FILE, CARD-FILE.
STOP RUN.
//GO.FISHBIB DD DSN=VSAM.CLUSTER.FISH,DISP=OLD
//GO.FISHBIB1 DD DSN=VSAM.PATH.FISH1,DISP=OLD
//GO.FISHBIB2 DD DSN=VSAM.PATH.FISH2,DISP=OLD
//GO.FISHBIB3 DD DSN=VSAM.PATH.FISH3,DISP=OLD
//GO.FISHBIB4 DD DSN=VSAM.PATH.FISH4,DISP=OLD
//GO.FISHBIB5 DD DSN=VSAM.PATH.FISH5,DISP=OLD
//GO.FISHBIB6 DD DSN=VSAM.PATH.FISH6,DISP=OLD
//GO.FISHBIB7 DD DSN=VSAM.PATH.FISH7,DISP=OLD
//GO.FISHBIB8 DD DSN=VSAM.PATH.FISH8,DISP=OLD
//GO.FISHBIB9 DD DSN=VSAM.PATH.FISH9,DISP=OLD
//GO.FISHBIB10 DD DSN=VSAM.PATH.FISH10,DISP=OLD
//GO.CARDIN DD *
/*
EXEC COBUCLG
// COB.SYSIN OD
IDENTIFICATION DIVISION.
PROGRAM-ID. BIBLIOGRAPHY-1.
AUTHOR. KRAMER.
REMARKS. THIS PROGRAM WILL READ REFERENCES FROM 'BIBLIOGRAPHY-1'
AND USE THEM TO ADD OR UPDATE RECORDS ON THE
EXISTING VSAM FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE- COMPUTER. IBM-370.
OBJECT- COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT NEWWTAPE ASSIGN TO UT-2400-S-TAPE03.
SELECT FISH ASSIGN TO FISHBIB
ORGANIZATION IS INDEXED ACCESS IS RANDOM
RECORD KEY IS BIB-CODE
FILE STATUS IS ERRAT.
DATA DIVISION.
FILE SECTION.
FD FISH
RECORD CONTAINS 560 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS REF.
01 REF.
04 BIB-CODE PIC 9(5).
04 MAIN-REF PIC X(555).
FD NEWWTAPE
RECORDING MODE F, LABEL RECORDS ARE OMITTED, RECORD CONTAINS
560 CHARACTERS, BLOCK CONTAINS 1 RECORDS, DATA RECORD IS
NTAP.
01 CARO-REC.
04 ID-IN PIC 9(5).
04 NEW-REF PIC X(555).
WORKING-STORAGE SECTION.
77 ERRAT PIC 99 VALUE ZERO.
77 SAVE-THE-KEY PIC 9(5).
* INITIALIZING COUNTER FOR NUMBER OF RECORD UPDATES
* INITIALIZING COUNTER FOR NUMBER OF RECORD ADDITIONS
PROCEDURE DIVISION.
OPENS.
OPEN INPUT NEWWTAPE, I-O FISH.
IF ERRAT NOT = 0 DISPLAY 'ERROR ON OPEN' ERRAT GO TO EDJ.
READ-IN.
READ NEWWTAPE, AT END GO TO EDJ.
READ-DISK.
MOVE ID-IN TO BIB-CODE.
READ FISH INVALID KEY GO TO WRITE-NEW.
* UPDATE OR REWRITE AN EXISTING RECORD

REWRITE-OLD.
 MOVE CARD-REC TO REF.
 REWRITE REF INVALID KEY EXHIBIT NAMED 'INVALID WRITE'
 CARD-REC, SAVE-THE-KEY, GO TO READ-IN.
 ADD 1 TO UPDATE-COUNTER.
 GO TO READ-IN.

* ADD NEW RECORDS

WRITE-NEW.
 MOVE CARD-REC TO REF.
 WRITE REF INVALID KEY EXHIBIT NAMED 'INVALID WRITE'
 CARD-REC, SAVE-THE-KEY, GO TO READ-IN.
 ADD 1 TO ADD-COUNTER.
 GO TO READ-IN.

EOJ.
 CLOSE NEW TAPE, FISH.
 EXHIBIT NAMED UPDATE-COUNTER, ADD-COUNTER.
 STOP RUN.

/*
 //GO.SYSDBOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.FISHBIB DD DSN=VSAM.CLUSTER.FISH,DISP=OLD
 //GO.TAPE03 DD UNIT=TAPE,DISP=(OLD,PASS),
 //DCB=(RECFM=FB,RECL=560,BLKSIZE=560),
 //DSNAME=CTAPE03,
 //LABEL=(NL),VOL=SER=SHEP
 */
APPENDIX B

GIVEFISH Data Sheets
<table>
<thead>
<tr>
<th>LAKE CODE</th>
<th>SOURCE ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>5</td>
</tr>
</tbody>
</table>

LEGAL CLASSIFICATION

FORM A

<table>
<thead>
<tr>
<th>NAME OF WATER</th>
<th>REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37-38</td>
</tr>
</tbody>
</table>

RANGE/TWN/SECTION

Card 01

<table>
<thead>
<tr>
<th>RANGE/TWN/SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6 7-9 10-39</td>
</tr>
</tbody>
</table>

Card 02

<table>
<thead>
<tr>
<th>RANGE/TWN/SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 41 42-44 45-74</td>
</tr>
</tbody>
</table>

Card 02

<table>
<thead>
<tr>
<th>RANGE/TWN/SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6 7-9 10-39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RANGE/TWN/SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 41 42-44 45-74</td>
</tr>
</tbody>
</table>

Lake___________ Co___________
Description of General Water Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
</tr>
<tr>
<td>Primary Species Managed</td>
<td>Primary Species Managed</td>
<td>Primary Species Managed</td>
</tr>
<tr>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
</tr>
<tr>
<td>Primary Species Managed</td>
<td>Primary Species Managed</td>
<td>Primary Species Managed</td>
</tr>
<tr>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
<td>Date of Map Fieldwork</td>
</tr>
</tbody>
</table>

Dam Type and Location
- **Location**: [Location Description]
- **Date of Construction**: [Date]
- **Owner**: [Owner]
- **Spillway**: [Spillway Type]
- **Outlet Control**: [Outlet Control Type]
- **Surface Area and Depths**: [Surface Area and Depths]
- **Elevation**: [Elevation]
- **Average Depth**: [Average Depth]
- **Max Depth**: [Max Depth]
- **Litoral Depth**: [Litoral Depth]
- **Max Fluctuation**: [Max Fluctuation]
- **Annual Fluctuation**: [Annual Fluctuation]
- **Surface Area**: [Surface Area]
- **Surface Length**: [Surface Length]
- **Drainage (Drainage Area)**: [Drainage Area]

Water Quality
- **Water Temperature**: [Temperature]
- **Water Quality Indices**: [Indices]
- **Water Hardness**: [Hardness]
- **Water pH**: [pH]
- **Water Transparency**: [Transparency]
- **Water Color**: [Color]

Summary of Water Quality Assessments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size: [Size]</td>
<td>Watershed Size: [Size]</td>
<td>Watershed Size: [Size]</td>
</tr>
<tr>
<td>Enchanted: [Enchanted]</td>
<td>Enchanted: [Enchanted]</td>
<td>Enchanted: [Enchanted]</td>
</tr>
<tr>
<td>Location: [Location]</td>
<td>Location: [Location]</td>
<td>Location: [Location]</td>
</tr>
<tr>
<td>Date of Construction: [Date]</td>
<td>Date of Construction: [Date]</td>
<td>Date of Construction: [Date]</td>
</tr>
<tr>
<td>Owner: [Owner]</td>
<td>Owner: [Owner]</td>
<td>Owner: [Owner]</td>
</tr>
<tr>
<td>Spillway: [Spillway]</td>
<td>Spillway: [Spillway]</td>
<td>Spillway: [Spillway]</td>
</tr>
<tr>
<td>Outlet Control: [Outlet Control]</td>
<td>Outlet Control: [Outlet Control]</td>
<td>Outlet Control: [Outlet Control]</td>
</tr>
</tbody>
</table>

Note: The above table contains placeholder text and images. Actual data would replace these placeholders. The table structure is designed to capture various aspects of water quality assessment and management for a lakeshore ecosystem.
GENERAL WATER DESCRIPTION FORM C

<table>
<thead>
<tr>
<th>LAKE CODE</th>
<th>SOURCE I.D.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>5</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td>10 11</td>
<td></td>
</tr>
</tbody>
</table>

RIVER CLASSIFICATION

<table>
<thead>
<tr>
<th>Length (km or mi)</th>
<th>Total Channelized (km or mi)</th>
<th>Mean Width (m or ft)</th>
<th>Mean Depth (m or ft)</th>
<th>Normal High (cms or cfs)</th>
<th>Mean Annual (cms or cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAKE BOTTOM

- **SHOAL WATER SOILS**
 - Ledge
 - Boulder
 - Rubble
 - Gravel
 - Sand
 - Silt
 - Clay
 - Muck
 - Other

- **LAKE BOTTOM**
 - 23 24
 - 25 26
 - 27 28
 - 29 30
 - 31 32
 - 33 34
 - 35 36
 - 37 39
 - 39 40

WATER RESOURCE USE AND DEVELOPMENT

Fishing Water: Permanent and Semiperm.

- Water Resource Use: Municipal 2: Recreational 3: Power 4: All
- 5 Industrial 6: Irrigation 7: Other
- Card

Fishing Water: Marginal

- Card

GFP Water

- Right No.
- Dwellings
- Islands

WATERSHED DEVELOPMENT (%)

<table>
<thead>
<tr>
<th>Woodland</th>
<th>Wetlands</th>
<th>Pasture</th>
<th>Crop</th>
<th>Fishnest</th>
<th>Ungrazed Natural</th>
<th>Municipal</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 21 22</td>
<td>23 24 25</td>
<td>26 27 28</td>
<td>29 30 31</td>
<td>32 33 34 35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHORELINE DEVELOPMENT (%)

<table>
<thead>
<tr>
<th>Cottages</th>
<th>Resorts</th>
<th>Municipal</th>
<th>Pasture</th>
<th>Crop</th>
<th>Feednest</th>
<th>Woodland</th>
<th>Ungrazed Natural</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 37 38</td>
<td>39 40 41</td>
<td>42 43 44</td>
<td>45 46 47</td>
<td>48 49 50 51</td>
<td>52 53 54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INLETS AND OUTLETS

<table>
<thead>
<tr>
<th>Type</th>
<th>Barrier Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td></td>
<td>Width</td>
</tr>
</tbody>
</table>

Card

- 79 80
WATER CHEMISTRY FORM D

LAKE CODE SOURCE I.D.

1-4 5 6-9

Station location

TURBIDITY AND COLOR

- Secchi: []
- Color (LT:Light, DK:Dark, RD:Red, OR:Orange, YL:Yellow, BL:Blue, GR:Green, BR:Brown, GR:Gray): []
- Cause of color: []

TEMPERATURE AND DISSOLVED OXYGEN PROFILE

<table>
<thead>
<tr>
<th>Depth (m or ft)</th>
<th>Temp (C or F)</th>
<th>Diss Oxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-32</td>
<td>33-34</td>
<td>39-37</td>
</tr>
<tr>
<td>38-47</td>
<td>42-43</td>
<td>44-46</td>
</tr>
<tr>
<td>47-50</td>
<td>51-52</td>
<td>53-55</td>
</tr>
<tr>
<td>56-59</td>
<td>60-61</td>
<td>62-64</td>
</tr>
<tr>
<td>65-66</td>
<td>69-70</td>
<td>71-73</td>
</tr>
</tbody>
</table>

Limit of thermocline

WATER QUALITY

Field analysis

- Total Alkalinity: 13-15
- PTHH Alkalinity: 16-18
- MO Alkalinity: 19-21
- pH: 22-24
- CO2: 25-26
- Total Hardness: 27-30
- Conductivity: 31-34

<table>
<thead>
<tr>
<th>TS Solids</th>
<th>TD Solids</th>
<th>Ortho Phos</th>
<th>Total Phos</th>
<th>Chlorophyll A (mg/m^3)</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-38</td>
<td>39-42</td>
<td>43-45</td>
<td>45-46</td>
<td>49-51</td>
<td>52-54</td>
</tr>
</tbody>
</table>

Lab analysis

- Chloride Ion: 55-58
- Ammonia-Nitrogen: 59-62
- Nitrate Nitrogen: 63-66
- Organic N (Kjeld): 67-70
- Total Nitrogen: 71-74

Lake Code

...
<table>
<thead>
<tr>
<th>LAKE CODE</th>
<th>SOURCE ID</th>
<th>D C</th>
<th>ORGANISM ABUNDANCE AND SPAWNING HABITAT FORM E</th>
<th>RIVER INDEX</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>STANDING EMERGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Coverage</td>
<td></td>
<td></td>
<td>Depth of Growth (cm or ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SUBMERGED OR FLOATING LEAF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLOWING PLANTS AND PHYTOPLANKTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TURTLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FROGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SALAMANDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FISH SPECIES KNOWN TO OCCUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abundance *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Excellent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: Fair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4: Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EVALUATION OF SPAWNING AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Card</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abundance: 1: Rare, 2: Occasional, 3: Common, 4: Abundant, 5: Endangered
Fish Stocking and Removal Form F

Stocking

<table>
<thead>
<tr>
<th>Size</th>
<th>No.</th>
<th>Size</th>
<th>No.</th>
<th>Size</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-20</td>
<td>21-27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-42</td>
<td>43-49</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-53</td>
<td>54-60</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial Fishing

Methods

1. **Pocket Net**
2. **Hood Net**
3. **Open Seine**
4. **U-Shaped Net**
5. ** Gillnet**
6. **Trap**
7. **Weir**

Commercial Species

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51-53</td>
<td>54-57</td>
<td>21-27</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-42</td>
<td>43-49</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-53</td>
<td>54-60</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Game Species

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51-53</td>
<td>54-57</td>
<td>21-27</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-42</td>
<td>43-49</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-53</td>
<td>54-60</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lake Source Code: 1-4 5 6-9

Date: Card 1-4 79-80

Lake Source Code: _______ Co _________
Natural Reproduction Summary Form G

<table>
<thead>
<tr>
<th>LAKE CODE</th>
<th>SOURCE I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>0</td>
</tr>
<tr>
<td>5-9</td>
<td>0</td>
</tr>
</tbody>
</table>

Table A: Seine Measurement

<table>
<thead>
<tr>
<th>TOTAL PULLS</th>
<th>METHOD</th>
<th>TIME DURATION</th>
<th>SEINE MEASUREMENT</th>
<th>TOTAL DISTANCE</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-19</td>
<td>Tr•wl</td>
<td>hr min</td>
<td>m or ft</td>
<td>m or ft</td>
<td>m or ft</td>
</tr>
<tr>
<td>20</td>
<td>Seine</td>
<td>min</td>
<td>ft or in</td>
<td>ft or in</td>
<td>ft or in</td>
</tr>
</tbody>
</table>

Table B: Total No./Area

<table>
<thead>
<tr>
<th>SPECIES NUMBER</th>
<th>NO./AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>8-13</td>
</tr>
<tr>
<td>14-16</td>
<td>17-19</td>
</tr>
<tr>
<td>20-25</td>
<td>26-28</td>
</tr>
<tr>
<td>29-31</td>
<td>32-37</td>
</tr>
<tr>
<td>38-40</td>
<td>50-52</td>
</tr>
<tr>
<td>53-55</td>
<td>56-61</td>
</tr>
<tr>
<td>62-64</td>
<td>65-67</td>
</tr>
<tr>
<td>68-73</td>
<td>74-76</td>
</tr>
</tbody>
</table>

Table C: Card Numbers

- CARD 18
- CARD 18
- CARD 18
- CARD 18

Lake: __________________ **Co: _________**
Netting Summary Sheet Form H

Lake Code

<table>
<thead>
<tr>
<th>Lake Code</th>
<th>Source ID</th>
<th>Sets of Pulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>5</td>
<td>5-9</td>
</tr>
</tbody>
</table>

Method

- 1: seine
- 2: trawl
- 3: Gillnet
- 4: hoopnet
- 5: trammel net
- 6: trapping
- 7: electric stunning

Mesh Size

<table>
<thead>
<tr>
<th>Mesh Size</th>
<th>Dimension (cm or ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-17</td>
<td>16-20</td>
</tr>
</tbody>
</table>

Time Duration

<table>
<thead>
<tr>
<th>Time Duration</th>
<th>11a or 11b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days:Hours:Min</td>
<td>0:30</td>
</tr>
</tbody>
</table>

STD Error

<table>
<thead>
<tr>
<th>STD Error</th>
<th>Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Total Catch

- Number
- Weight (kg or lbs)
- % of Total

Mean Size

- CM or in
- Weight (kg or lbs)

Mean Catch / NFT

- Weight (kg or lbs)

STD Error

<table>
<thead>
<tr>
<th>STD Error</th>
<th>Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Lake: ________ Co: ________
LENGTH FREQUENCY FORM I

<table>
<thead>
<tr>
<th>LAKE</th>
<th>SOURCE</th>
<th>ID</th>
<th>SETS OR PULL</th>
<th>Methods</th>
<th>MESH SIZE</th>
<th>DIMENSION</th>
<th>TIME DURATION</th>
<th>HA OR AC</th>
<th>ID</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Seine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2: Trawl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3: Gillnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4: Halibut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5: Tramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6: Babytrap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION

<table>
<thead>
<tr>
<th>LENGTH FREQUENCY CODE AND NUMBER PER INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TL</th>
<th>1/2"</th>
<th>INCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TL</th>
<th>1"</th>
<th>INCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQUENCY CODE</th>
<th>TOTAL</th>
<th>CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Lake Co. _____
AGE AND GROWTH DISTRIBUTION

FORM J

MEAN TOTAL LENGTH AT AGE GROUP (CM OR IN)

<table>
<thead>
<tr>
<th>Sp</th>
<th>Size</th>
<th>Sample</th>
<th>O</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0-1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8-11</td>
<td>12-14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>No in Age</th>
<th>Fish Catch</th>
</tr>
</thead>
</table>

Lake ________ Co ________
APPENDIX C

BIBFISH Subject Index
<table>
<thead>
<tr>
<th>ANIMAL LIFE</th>
<th>CONSERVATION</th>
<th>CULTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>10001</td>
<td>Coldwater</td>
</tr>
<tr>
<td>Bass</td>
<td>10002</td>
<td>Culture Technique & Equipment</td>
</tr>
<tr>
<td>True Bass</td>
<td>10003</td>
<td>Feeds, Feeding & Nutrition</td>
</tr>
<tr>
<td>Catfish & Bullhead</td>
<td>10004</td>
<td>Warmwater</td>
</tr>
<tr>
<td>Darters</td>
<td>10005</td>
<td>General</td>
</tr>
<tr>
<td>Drum</td>
<td>10006</td>
<td></td>
</tr>
<tr>
<td>Eel</td>
<td>10007</td>
<td></td>
</tr>
<tr>
<td>Gar</td>
<td>10008</td>
<td></td>
</tr>
<tr>
<td>Lamprey</td>
<td>10009</td>
<td></td>
</tr>
<tr>
<td>Madtom</td>
<td>10010</td>
<td></td>
</tr>
<tr>
<td>Minnow</td>
<td>10011</td>
<td></td>
</tr>
<tr>
<td>Paddlefish</td>
<td>10012</td>
<td></td>
</tr>
<tr>
<td>Perch</td>
<td>10013</td>
<td></td>
</tr>
<tr>
<td>Pike</td>
<td>10014</td>
<td></td>
</tr>
<tr>
<td>Salmon</td>
<td>10015</td>
<td></td>
</tr>
<tr>
<td>Sculpin</td>
<td>10016</td>
<td></td>
</tr>
<tr>
<td>Shad</td>
<td>10017</td>
<td></td>
</tr>
<tr>
<td>Stickleback</td>
<td>10018</td>
<td></td>
</tr>
<tr>
<td>Sturgeon</td>
<td>10019</td>
<td></td>
</tr>
<tr>
<td>Suckers</td>
<td>10020</td>
<td></td>
</tr>
<tr>
<td>Sunfish</td>
<td>10021</td>
<td></td>
</tr>
<tr>
<td>Trout</td>
<td>10022</td>
<td></td>
</tr>
<tr>
<td>Walleye & Sauger</td>
<td>10023</td>
<td></td>
</tr>
<tr>
<td>Other FW Fishes</td>
<td>10024</td>
<td></td>
</tr>
<tr>
<td>Other Vertibrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibians & Reptiles</td>
<td>11001</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>11002</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>11003</td>
<td></td>
</tr>
<tr>
<td>Invertibrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td>12001</td>
<td></td>
</tr>
<tr>
<td>Insects</td>
<td>12002</td>
<td></td>
</tr>
<tr>
<td>Mollusk</td>
<td>12003</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>12004</td>
<td></td>
</tr>
<tr>
<td>PLANT LIFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae (See Limnology)</td>
<td>13001</td>
<td></td>
</tr>
<tr>
<td>Aquatic Macrophytes</td>
<td>13002</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>13003</td>
<td></td>
</tr>
<tr>
<td>Control (Not Herbicides)</td>
<td>13004</td>
<td></td>
</tr>
<tr>
<td>Identification & Keys</td>
<td>13005</td>
<td></td>
</tr>
<tr>
<td>BIOCIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticide</td>
<td>14001</td>
<td></td>
</tr>
<tr>
<td>Herbicide</td>
<td>14002</td>
<td></td>
</tr>
<tr>
<td>Piscicide</td>
<td>14003</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL FISHING</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA PROCESSING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISEASE, PARASITES & SICKNESS</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>ECOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAKES & RESERVOIRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE HISTORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>LITERATURE REVIEWS</td>
<td>26000</td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td>27001</td>
<td>Administrative & Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish Control & Removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Habitat Manipulation & Improvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harvest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laws & Regulations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stocking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General</td>
</tr>
<tr>
<td>PHYSIOLOGY & MORPHOLOGY</td>
<td>28000</td>
<td></td>
</tr>
<tr>
<td>POLLUTION</td>
<td>29001</td>
<td>Agricultural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industrial & Thermal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Municipal & Urban</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish Kills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General</td>
</tr>
<tr>
<td>POPULATIONS</td>
<td>30001</td>
<td>Inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recruitment & Structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standing Crop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survival & Mortality</td>
</tr>
<tr>
<td>RIVERS, STREAMS AND CREEKS</td>
<td>31000</td>
<td></td>
</tr>
<tr>
<td>SURVEY</td>
<td>32001</td>
<td>Creel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recreational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General</td>
</tr>
<tr>
<td>TECHNIQUES</td>
<td>33001</td>
<td>Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sampling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General</td>
</tr>
<tr>
<td>WATER RESOURCES</td>
<td>34001</td>
<td>Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lake & Stream Resoration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Watershed Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Use & Conservation</td>
</tr>
</tbody>
</table>
APPENDIX D

River Codes
<table>
<thead>
<tr>
<th>6800</th>
<th>Missouri R</th>
<th>7100</th>
<th>Grand R Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6900</td>
<td>Little Missouri R</td>
<td>7101</td>
<td>Sheep Pen Draw Cr</td>
</tr>
<tr>
<td>6901</td>
<td>Boxelder Cr</td>
<td>7102</td>
<td>Hay Cr</td>
</tr>
<tr>
<td>6902</td>
<td>Sheep Cr</td>
<td>7103</td>
<td>Jack Cr</td>
</tr>
<tr>
<td>6904</td>
<td>Coal Bank Cr</td>
<td>7104</td>
<td>Dry Cr</td>
</tr>
<tr>
<td>6905</td>
<td>Humblot Cr</td>
<td>7105</td>
<td>Campbell Cr</td>
</tr>
<tr>
<td>6907</td>
<td>Dogie Cr</td>
<td>7106</td>
<td>Middle Cr</td>
</tr>
<tr>
<td>6908</td>
<td>Kimble Cr</td>
<td>7107</td>
<td>Jones Cr</td>
</tr>
<tr>
<td>6909</td>
<td>Dry House Cr</td>
<td>7108</td>
<td>Clarks Fork Cr</td>
</tr>
<tr>
<td>6910</td>
<td>Gallup Cr</td>
<td>7109</td>
<td>Squaw Cr</td>
</tr>
<tr>
<td>6912</td>
<td>Wagon Cr</td>
<td>7110</td>
<td>Box Elder Cr</td>
</tr>
<tr>
<td>6913</td>
<td>Slick Cr</td>
<td>7111</td>
<td>Sheep Cr</td>
</tr>
<tr>
<td>6915</td>
<td>Plume Cr</td>
<td>7112</td>
<td>Deadman Cr</td>
</tr>
<tr>
<td>6917</td>
<td>Valley Cr</td>
<td>7113</td>
<td>Blue Blanket Cr</td>
</tr>
<tr>
<td>6919</td>
<td>Water Hole Cr</td>
<td>7114</td>
<td>Little Bear Cr</td>
</tr>
<tr>
<td>6921</td>
<td>Tie Cr</td>
<td>7115</td>
<td>Moreau R</td>
</tr>
<tr>
<td>6922</td>
<td>Forty-eight Mile Cr</td>
<td>7116</td>
<td>No Mouth Cr</td>
</tr>
<tr>
<td>6923</td>
<td>Beaver Dam Cr</td>
<td>7117</td>
<td>Du Charme Cr</td>
</tr>
<tr>
<td>6925</td>
<td>Black Foot Cr</td>
<td>7118</td>
<td>Virgin Cr</td>
</tr>
<tr>
<td>6950</td>
<td>Crow Head Cr</td>
<td>7119</td>
<td>Left Hand Bear Cr</td>
</tr>
<tr>
<td>6975</td>
<td>Spring Cr</td>
<td>7120</td>
<td>Marshall Cr</td>
</tr>
<tr>
<td>7025</td>
<td>Olson Cr</td>
<td>7121</td>
<td>Le Beau Cr</td>
</tr>
<tr>
<td>7050</td>
<td>Oak Cr</td>
<td>7122</td>
<td>Hokshela Cr</td>
</tr>
<tr>
<td>7100</td>
<td>Grand R</td>
<td>7123</td>
<td>Laundry Cr</td>
</tr>
<tr>
<td>7101</td>
<td>Claymore Cr</td>
<td>7124</td>
<td>Beaver Cr</td>
</tr>
<tr>
<td>7102</td>
<td>Snake Cr</td>
<td>7125</td>
<td>Handboy Cr</td>
</tr>
<tr>
<td>7103</td>
<td>Deep Bank Cr</td>
<td>7126</td>
<td>Vio Cr</td>
</tr>
<tr>
<td>7104</td>
<td>Little Oak Cr</td>
<td>7127</td>
<td>Johnson Cr</td>
</tr>
<tr>
<td>7105</td>
<td>High Bank Cr</td>
<td>7128</td>
<td></td>
</tr>
<tr>
<td>7106</td>
<td></td>
<td>7129</td>
<td></td>
</tr>
<tr>
<td>7107</td>
<td>Plum Cr</td>
<td>7130</td>
<td></td>
</tr>
<tr>
<td>7108</td>
<td>Rock Cr</td>
<td>7131</td>
<td></td>
</tr>
<tr>
<td>7110</td>
<td>Iron Dog Cr</td>
<td>7132</td>
<td></td>
</tr>
<tr>
<td>7111</td>
<td>Stink Cr</td>
<td>7133</td>
<td></td>
</tr>
<tr>
<td>7113</td>
<td>White Shirt Cr</td>
<td>7134</td>
<td></td>
</tr>
<tr>
<td>7114</td>
<td>Hump Cr</td>
<td>7135</td>
<td></td>
</tr>
<tr>
<td>7115</td>
<td>Firesteel Cr</td>
<td>7136</td>
<td></td>
</tr>
<tr>
<td>7116</td>
<td>Dirt Lodge Cr</td>
<td>7137</td>
<td></td>
</tr>
<tr>
<td>7117</td>
<td>Red Willow Cr</td>
<td>7138</td>
<td></td>
</tr>
<tr>
<td>7118</td>
<td>Louse Cr</td>
<td>7139</td>
<td></td>
</tr>
<tr>
<td>7119</td>
<td>Cottonwood Cr</td>
<td>7140</td>
<td></td>
</tr>
<tr>
<td>7121</td>
<td>Meadow Cr</td>
<td>7141</td>
<td></td>
</tr>
<tr>
<td>7122</td>
<td>Cedar Bay Cr</td>
<td>7142</td>
<td></td>
</tr>
<tr>
<td>7123</td>
<td>Black Horse Butte Cr</td>
<td>7143</td>
<td></td>
</tr>
<tr>
<td>7124</td>
<td>Coal Cr</td>
<td>7144</td>
<td></td>
</tr>
<tr>
<td>7126</td>
<td>Whitney Cr</td>
<td>7145</td>
<td></td>
</tr>
<tr>
<td>7127</td>
<td>Willow Cr</td>
<td>7146</td>
<td></td>
</tr>
<tr>
<td>7128</td>
<td>East Branch</td>
<td>7147</td>
<td></td>
</tr>
<tr>
<td>7129</td>
<td>West Branch</td>
<td>7148</td>
<td></td>
</tr>
<tr>
<td>7131</td>
<td>Thunderhawk Cr</td>
<td>7149</td>
<td></td>
</tr>
<tr>
<td>7300</td>
<td>Moreau R Cont.</td>
<td>7300</td>
<td>South Fork Moreau R Cont.</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7313</td>
<td>Swan Cr</td>
<td>7357</td>
<td>Sand Cr</td>
</tr>
<tr>
<td>7314</td>
<td>Jewett Cr</td>
<td>7358</td>
<td>North Sand Cr</td>
</tr>
<tr>
<td>7316</td>
<td>Whitehorse Cr</td>
<td>7359</td>
<td>South Sand Cr</td>
</tr>
<tr>
<td>7317</td>
<td>Little Moreau R</td>
<td>7370</td>
<td>Frog Cr</td>
</tr>
<tr>
<td>7318</td>
<td>Bull Cr</td>
<td>7371</td>
<td>Fourmile Cr</td>
</tr>
<tr>
<td>7319</td>
<td>Cottonwood Cr</td>
<td>7372</td>
<td>Battle Cr</td>
</tr>
<tr>
<td>7320</td>
<td>Goose Cr</td>
<td></td>
<td>Antelope Cr</td>
</tr>
<tr>
<td>7321</td>
<td>Redwater Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7322</td>
<td>Meadow Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7323</td>
<td>Green Grass Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7324</td>
<td>Red Earth Cr</td>
<td>7373</td>
<td>Alkalia Cr</td>
</tr>
<tr>
<td>7325</td>
<td>Bear Cr</td>
<td></td>
<td>Battle Cr</td>
</tr>
<tr>
<td>7326</td>
<td>Elm Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7327</td>
<td>Pretty Cr</td>
<td>7400</td>
<td>Swan Cr</td>
</tr>
<tr>
<td>7328</td>
<td>Irish Cr</td>
<td>7425</td>
<td>Four Bear Cr</td>
</tr>
<tr>
<td>7329</td>
<td>Ash Cr</td>
<td>7450</td>
<td>Buffalo Cr</td>
</tr>
<tr>
<td>7331</td>
<td>Sophia Cr</td>
<td>7475</td>
<td>Swift Bird Cr</td>
</tr>
<tr>
<td>7332</td>
<td>Thunder Butte Cr</td>
<td></td>
<td>Little Cheyenne Cr</td>
</tr>
<tr>
<td>7333</td>
<td>Beaver Trap Cr</td>
<td>7500</td>
<td>Stove Cr</td>
</tr>
<tr>
<td>7334</td>
<td>Knocker Cr</td>
<td>7525</td>
<td>Artichoke Cr</td>
</tr>
<tr>
<td>7335</td>
<td>Big Meadow Cr</td>
<td>7550</td>
<td>Willow Cr</td>
</tr>
<tr>
<td>7336</td>
<td>Knife Cr</td>
<td>7575</td>
<td>No Heart</td>
</tr>
<tr>
<td>7337</td>
<td>Flint Rock Cr</td>
<td>7600</td>
<td>Tall Prairie Chicken Cr</td>
</tr>
<tr>
<td>7338</td>
<td>Locate Cr</td>
<td>7625</td>
<td></td>
</tr>
<tr>
<td>7339</td>
<td>Badlands Cr</td>
<td>7650</td>
<td>Fox Cr</td>
</tr>
<tr>
<td>7340</td>
<td>Berry Cr</td>
<td></td>
<td>Cheyenne R</td>
</tr>
<tr>
<td>7341</td>
<td>Mud Cr</td>
<td>7700</td>
<td>Rousseau Cr</td>
</tr>
<tr>
<td>7342</td>
<td>Rabbit Cr</td>
<td>7701</td>
<td>East Branch</td>
</tr>
<tr>
<td>7343</td>
<td>Antelope Cr</td>
<td>7702</td>
<td>West Branch</td>
</tr>
<tr>
<td>7344</td>
<td>Deer Cr</td>
<td>7703</td>
<td>Oak Cr</td>
</tr>
<tr>
<td>7345</td>
<td>Flint Cr</td>
<td>7704</td>
<td>Hosapa Cr</td>
</tr>
<tr>
<td>7346</td>
<td>Lilly Cr</td>
<td>7705</td>
<td>Minneconjou Cr</td>
</tr>
<tr>
<td>7347</td>
<td>Starve Qui Cr</td>
<td>7706</td>
<td>Parade Cr</td>
</tr>
<tr>
<td>7348</td>
<td>Cabin Cr</td>
<td>7707</td>
<td>Abeer Cr</td>
</tr>
<tr>
<td>7349</td>
<td>Little Cedar Cr</td>
<td>7708</td>
<td>Sansarc Cr</td>
</tr>
<tr>
<td>7350</td>
<td>Brushy Cr</td>
<td>7709</td>
<td>Foster Cr</td>
</tr>
<tr>
<td>7351</td>
<td>Cottonwood Cr</td>
<td>7711</td>
<td>Rudy Cr</td>
</tr>
<tr>
<td>7352</td>
<td>Big Cedar Cr</td>
<td>7712</td>
<td>Hermaphrodite Cr</td>
</tr>
<tr>
<td>7353</td>
<td>Mud Cr</td>
<td>7713</td>
<td>Lone Tree Cr</td>
</tr>
<tr>
<td>7354</td>
<td>Ash Cr</td>
<td>7714</td>
<td>Big Cottonwood Cr</td>
</tr>
<tr>
<td>7355</td>
<td>North Fork Moreau R</td>
<td>7715</td>
<td>Little Cottonwood Cr</td>
</tr>
<tr>
<td>7356</td>
<td>Sheep Cr</td>
<td>7717</td>
<td>Deep Run Cr</td>
</tr>
<tr>
<td>7357</td>
<td>Sand Cr</td>
<td>7718</td>
<td>Snake Cr</td>
</tr>
<tr>
<td>7358</td>
<td>Cottonwood Cr</td>
<td>7719</td>
<td>Plum Cr</td>
</tr>
<tr>
<td>7359</td>
<td>Cow Boy Cr</td>
<td>7720</td>
<td>Cherry Cr</td>
</tr>
<tr>
<td>7360</td>
<td>Goose Cr</td>
<td></td>
<td>Ash Cr</td>
</tr>
<tr>
<td>7361</td>
<td>Duck Cr</td>
<td>7721</td>
<td>East Branch</td>
</tr>
<tr>
<td>7362</td>
<td>Snake Cr</td>
<td>7722</td>
<td>West Branch</td>
</tr>
<tr>
<td>7363</td>
<td>South Fork Moreau R</td>
<td>7723</td>
<td>Rattlesnake Cr</td>
</tr>
<tr>
<td>7364</td>
<td>Trail Cr</td>
<td>7724</td>
<td>Red Coat Cr</td>
</tr>
<tr>
<td>7365</td>
<td></td>
<td>7725</td>
<td>Red Scaffold Cr</td>
</tr>
<tr>
<td>7366</td>
<td></td>
<td>7726</td>
<td>Bever Cr</td>
</tr>
<tr>
<td>7367</td>
<td></td>
<td>7727</td>
<td>Spook Cr</td>
</tr>
<tr>
<td>7368</td>
<td></td>
<td>7728</td>
<td></td>
</tr>
<tr>
<td>7369</td>
<td></td>
<td>7729</td>
<td></td>
</tr>
<tr>
<td>7370</td>
<td></td>
<td>7730</td>
<td></td>
</tr>
<tr>
<td>River Name</td>
<td>River Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheyenne R Cont.</td>
<td>Bell Fourche R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Owl Cr</td>
<td>Owl Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Owl Cr</td>
<td>North Canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver Cr</td>
<td>Dry North Canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine Cr</td>
<td>Todd Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur Cr</td>
<td>Indian Cr Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp Cr</td>
<td>Johnson Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Fork Sulphur</td>
<td>Redwater Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonetree Cr</td>
<td>South Canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straighthead Cr</td>
<td>Meade Lateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull Cr</td>
<td>Dry Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver Cr</td>
<td>Wildcat Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spotted Bear Cr</td>
<td>Salt Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Bear Cr</td>
<td>Roundout Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narcelle Cr</td>
<td>Bull Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negro Cr</td>
<td>Slate Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Branch Narcel</td>
<td>Stinking Water Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash Cr</td>
<td>Maloney Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Timber Cr</td>
<td>Crow Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Cr</td>
<td>Boxelder Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squaw Cr</td>
<td>Redwater R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell Fourche R</td>
<td>Hay Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay Cr</td>
<td>Willow Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elm Cr</td>
<td>False Bottom Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Elm Cr</td>
<td>Polo Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Elm Cr</td>
<td>Miller Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighthmile Cr</td>
<td>Tetro Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud Elm Cr</td>
<td>Spearfish Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Cr</td>
<td>Little Spearfish Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalia Cr</td>
<td>Dry Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourmile Cr</td>
<td>East Spearfish Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Cr</td>
<td>Dead Ox Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear Bute Cr</td>
<td>Chicken Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanocher Cr</td>
<td>Crow Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulder Cr</td>
<td>Beaver Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Bit Cr</td>
<td>Middle Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow Cr Lateral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deer Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jug Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonetree Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitter Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hildebrand Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Indian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Indian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonetree Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottonwood Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitewood Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7751</td>
<td>Bell Fourche R Cont.</td>
<td>7751</td>
<td>Bell Fourche R Cont.</td>
</tr>
<tr>
<td>7829</td>
<td>Boxelder Cr Cont.</td>
<td>7829</td>
<td>Lame Johnny Cr Cont.</td>
</tr>
<tr>
<td>7835</td>
<td>Middle Boxelder Cr</td>
<td>7835</td>
<td>South Fork Lame J</td>
</tr>
<tr>
<td>7836</td>
<td>North Boxelder Cr</td>
<td>7836</td>
<td>North Fork Lame J</td>
</tr>
<tr>
<td>7838</td>
<td>Sage Cr</td>
<td>7838</td>
<td>Beaver Cr</td>
</tr>
<tr>
<td>7839</td>
<td>Beaver Cr</td>
<td>7839</td>
<td>Cold Spring Cr</td>
</tr>
<tr>
<td>7840</td>
<td>Bear Cr</td>
<td>7840</td>
<td>Elm Cr</td>
</tr>
<tr>
<td>7841</td>
<td>Rapid Cr</td>
<td>7841</td>
<td>Spring Cr</td>
</tr>
<tr>
<td>7842</td>
<td>Antelope Cr</td>
<td>7842</td>
<td>Fall R</td>
</tr>
<tr>
<td>7843</td>
<td>Dry Cr</td>
<td>7843</td>
<td>Cold Brook Cr</td>
</tr>
<tr>
<td>7844</td>
<td>Canyon Cr</td>
<td>7844</td>
<td>Cottonwood Springs</td>
</tr>
<tr>
<td>7845</td>
<td>Victoria Cr</td>
<td>7845</td>
<td>Horsehead Cr</td>
</tr>
<tr>
<td>7846</td>
<td>Prairie Cr</td>
<td>7846</td>
<td>Lone Well Cr</td>
</tr>
<tr>
<td>7847</td>
<td>Deer Cr</td>
<td>7847</td>
<td>Beef Cr</td>
</tr>
<tr>
<td>7848</td>
<td>Slate Cr</td>
<td>7848</td>
<td>Black Banks Cr</td>
</tr>
<tr>
<td>7849</td>
<td>East Fork Slate Cr</td>
<td>7849</td>
<td>Cheyenne R Cont.</td>
</tr>
<tr>
<td>7851</td>
<td>Castle Cr</td>
<td>7851</td>
<td>Dry Cr</td>
</tr>
<tr>
<td>7852</td>
<td>North Fork Castle</td>
<td>7852</td>
<td>Bridal Veil Springs</td>
</tr>
<tr>
<td>7853</td>
<td>South Fork Castle</td>
<td>7853</td>
<td>Cascade Cr</td>
</tr>
<tr>
<td>7854</td>
<td>Heely Cr</td>
<td>7854</td>
<td>Hat Cr</td>
</tr>
<tr>
<td>7855</td>
<td>Ditch Cr</td>
<td>7855</td>
<td>Bitter Cr</td>
</tr>
<tr>
<td>7856</td>
<td>Pole Cr</td>
<td>7856</td>
<td>Ash Cr</td>
</tr>
<tr>
<td>7857</td>
<td>West Grimlet Cr</td>
<td>7857</td>
<td>Piney Cr</td>
</tr>
<tr>
<td>7858</td>
<td>Silver Cr</td>
<td>7858</td>
<td>Long Hollow</td>
</tr>
<tr>
<td>7859</td>
<td>South Fork Rapid Cr</td>
<td>7859</td>
<td>Horse Cr</td>
</tr>
<tr>
<td>7860</td>
<td>North Fork Rapid Cr</td>
<td>7860</td>
<td>Hay Cr</td>
</tr>
<tr>
<td>7861</td>
<td>Spring Cr</td>
<td>7861</td>
<td>Plains Cr</td>
</tr>
<tr>
<td>7862</td>
<td>Rockerville Cr</td>
<td>7862</td>
<td>Duck Cr</td>
</tr>
<tr>
<td>7863</td>
<td>Newton Fork</td>
<td>7863</td>
<td>Mule Cr</td>
</tr>
<tr>
<td>7864</td>
<td>Negro Cr</td>
<td>7864</td>
<td>Long Branch Cr</td>
</tr>
<tr>
<td>7866</td>
<td>Indian Cr</td>
<td>7866</td>
<td>Short Branch Cr</td>
</tr>
<tr>
<td>7867</td>
<td>Battle Cr</td>
<td>7867</td>
<td>Plum Cr</td>
</tr>
<tr>
<td>7868</td>
<td>Murphy Cr</td>
<td>7868</td>
<td>Pleasant Valley Cr</td>
</tr>
<tr>
<td>7869</td>
<td>Billover Cr</td>
<td>7869</td>
<td>Hawkwright Cr</td>
</tr>
<tr>
<td>7870</td>
<td>Grace Coolidge Cr</td>
<td>7870</td>
<td>East Fork Hawkwright</td>
</tr>
<tr>
<td>7871</td>
<td>Spokane Cr</td>
<td>7871</td>
<td>Lightning Cr</td>
</tr>
<tr>
<td>7872</td>
<td>Bear Cr</td>
<td>7872</td>
<td>Hay Cr</td>
</tr>
<tr>
<td>7873</td>
<td>Iron Cr</td>
<td>7873</td>
<td>Fourmile Cr</td>
</tr>
<tr>
<td>7874</td>
<td>Grizzly Cr</td>
<td>7874</td>
<td>East Fork Hawkwright</td>
</tr>
<tr>
<td>7876</td>
<td>Brush Cr</td>
<td>7876</td>
<td>West Fork Hawkwright</td>
</tr>
<tr>
<td>7877</td>
<td>Cedar Cr</td>
<td>7877</td>
<td>Cottonwood Cr</td>
</tr>
<tr>
<td>7878</td>
<td>Red Shirt Cr</td>
<td>7878</td>
<td>Coal Cr</td>
</tr>
<tr>
<td>7879</td>
<td>French Cr</td>
<td>7879</td>
<td>Fiddle Cr</td>
</tr>
<tr>
<td>7880</td>
<td>South Fork French</td>
<td>7880</td>
<td>Alum Cr</td>
</tr>
<tr>
<td>7881</td>
<td>Dry Cr</td>
<td>7881</td>
<td>Dry Cr</td>
</tr>
<tr>
<td>7882</td>
<td>Pass Cr</td>
<td>7882</td>
<td>Driftwood Cr</td>
</tr>
<tr>
<td>7883</td>
<td>Little Squaw Cr</td>
<td>7883</td>
<td>Moss Agate Cr</td>
</tr>
<tr>
<td>7884</td>
<td>Squaw-Humper Cr</td>
<td>7884</td>
<td>Griffis Canal</td>
</tr>
<tr>
<td>7885</td>
<td>Cottonwood Cr</td>
<td>7885</td>
<td>Tubbs Cr</td>
</tr>
<tr>
<td>7886</td>
<td>Lame Johnny Cr</td>
<td>7886</td>
<td>Beaver Cr</td>
</tr>
<tr>
<td>7887</td>
<td>Flynn Cr</td>
<td>7887</td>
<td>Pass Cr</td>
</tr>
</tbody>
</table>
Cottonwood Cr Cont. 8137 South Fork Bad R Cont. 8210 White Willow Cr 8700
Pass Cr Cont. 8142 White Water Cr 8701 Brady Cr 8702
Coon Cr 8143 Big Buffalo Cr 8702 Franklin Cr 8703
Dugout Cr 8150 Dry Run Cr 8703 Grindstone Cr 8704
Bear Spring Cr 8175 Moccasin Cr 8704 North Fork Bad R 8704
Lone Tree Cr 8225 Mexican Cr 8705 South Fork Bad R 8705
Line Cr 8236 Dead Mans Cr 8706 South Fork Bad R 8706
Whoopup Cr 8242 Dirty Women's Cr 8707 South Fork Bad R 8707
Stockade Beaver Cr 8250 Poeno Cr 8708
Beaver Cr 8256 Medicine Knoll Cr 8708
Agency Cr 8263 Stockade Beaver Cr 8709
Sully Cr 8268 South Medicine Cr 8709
Okobojo Cr 8272 North Medicine Cr 8709
Spring Cr 8275 Walter Lake Drainage 8709
Chanter Cr 8425 Fort George Cr 8709
Bad R 8436 Chapelle Cr 8709
Willow Cr 8450 South Chapelle Cr 8709
Powell Cr 8475 Cedar Cr 8709
Stranger Cr 8500 Missouri R Cont. 8709
Ash Cr 8506 Medicine Cr 8709
War Cr 8512 Nail Cr 8709
Lance Cr 8525 North Fork Medicine Cr 8709
Tomahawk Cr 8550 Crow Cr 8709
Plum Cr 8575 Smith Cr 8709
Cottonwood Cr 8600 Jones Lake Drainage 8709
Herd Camp Cr 8620 East Fork Smith Cr 8709
White Clay Cr 8625 Elm Cr 8709
Dry Cr 8636 West Fork Elm Cr 8709
Big Prairie Cr 8642 American Cr 8709
Little Prairie Dog Cr 8643 American Crow Cr 8709
Mitchell Cr 8644 Big Cr 8709
Mule Cr 8647 Medicine Cr 8709
Brave Bull Cr 8648 Short Cr 8709
Indian Cr 8650 South Medicine Cr 8709
Squaw Cr 8675 Walter Lake Drainage 8709
Buzzard Cr 8680 Missouri R Cont. 8709
Little Buffalo Cr 8710 Medicine Cr 8709
White Willow Cr 8711
Crow Cr 8712 Medicine Cr 8709
Little Buffalo Cr 8714
White R 8709

<table>
<thead>
<tr>
<th>Line 1</th>
<th>Line 2</th>
<th>Line 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8700</td>
<td>White R Cont.</td>
<td>8700</td>
</tr>
<tr>
<td>8715</td>
<td>Cottonwood Cr</td>
<td>8773</td>
</tr>
<tr>
<td>8716</td>
<td>Little Dog Cr</td>
<td>8774</td>
</tr>
<tr>
<td>8717</td>
<td>Sedlano Cr</td>
<td>8775</td>
</tr>
<tr>
<td>8718</td>
<td>Oak Cr</td>
<td>8777</td>
</tr>
<tr>
<td>8719</td>
<td>Butte Cr</td>
<td>8778</td>
</tr>
<tr>
<td>8720</td>
<td>White Horse Cr</td>
<td>8779</td>
</tr>
<tr>
<td>8721</td>
<td>Williams Cr</td>
<td>8780</td>
</tr>
<tr>
<td>8722</td>
<td>Louis Cr</td>
<td>8781</td>
</tr>
<tr>
<td>8723</td>
<td>Squaw Cr</td>
<td>8782</td>
</tr>
<tr>
<td>8724</td>
<td>White Thunder Cr</td>
<td>8783</td>
</tr>
<tr>
<td>8726</td>
<td>Bull Cr</td>
<td>8784</td>
</tr>
<tr>
<td>8727</td>
<td>Kaiser Cr</td>
<td>8785</td>
</tr>
<tr>
<td>8728</td>
<td>Spring Cr</td>
<td>8786</td>
</tr>
<tr>
<td>8729</td>
<td>Johnny Cr</td>
<td>8787</td>
</tr>
<tr>
<td>8730</td>
<td>Hay Cr</td>
<td>8789</td>
</tr>
<tr>
<td>8731</td>
<td>Horse Cr</td>
<td>8790</td>
</tr>
<tr>
<td>8732</td>
<td>Ash Cr</td>
<td>8791</td>
</tr>
<tr>
<td>8735</td>
<td>Little White R</td>
<td>8792</td>
</tr>
<tr>
<td>8736</td>
<td>Pine Cr</td>
<td>8793</td>
</tr>
<tr>
<td>8737</td>
<td>North Branch Pine Cr</td>
<td>8794</td>
</tr>
<tr>
<td>8738</td>
<td>South Branch Pine Cr</td>
<td>8795</td>
</tr>
<tr>
<td>8739</td>
<td>Horse Cr</td>
<td>8796</td>
</tr>
<tr>
<td>8740</td>
<td>Horse Head Cr</td>
<td>8797</td>
</tr>
<tr>
<td>8742</td>
<td>Cut Meat Cr</td>
<td>8798</td>
</tr>
<tr>
<td>8743</td>
<td>Phister Cr</td>
<td>8799</td>
</tr>
<tr>
<td>8744</td>
<td>Upper Cut Meat Cr</td>
<td>8801</td>
</tr>
<tr>
<td>8745</td>
<td>Ti-Shena-Ze Cr</td>
<td>8802</td>
</tr>
<tr>
<td>8746</td>
<td>Soldier Cr</td>
<td>8803</td>
</tr>
<tr>
<td>8747</td>
<td>Rosebud Cr</td>
<td>8804</td>
</tr>
<tr>
<td>8748</td>
<td>Stinking Water Cr</td>
<td>8805</td>
</tr>
<tr>
<td>8751</td>
<td>Cottonwood Cr</td>
<td>8806</td>
</tr>
<tr>
<td>8752</td>
<td>O'Donald Cr</td>
<td>8807</td>
</tr>
<tr>
<td>8753</td>
<td>Butch Cr</td>
<td>8808</td>
</tr>
<tr>
<td>8754</td>
<td>Round-up Cr</td>
<td>8809</td>
</tr>
<tr>
<td>8755</td>
<td>Cedar Cr</td>
<td>8810</td>
</tr>
<tr>
<td>8756</td>
<td>Yukmi Cr</td>
<td>8811</td>
</tr>
<tr>
<td>8757</td>
<td>Runs Close Cr</td>
<td>8812</td>
</tr>
<tr>
<td>8758</td>
<td>Larvie Cr</td>
<td>8813</td>
</tr>
<tr>
<td>8759</td>
<td>Black Pipe Cr</td>
<td>8814</td>
</tr>
<tr>
<td>8760</td>
<td>Porcupine Cr</td>
<td>8815</td>
</tr>
<tr>
<td>8761</td>
<td>Simms Cr</td>
<td>8816</td>
</tr>
<tr>
<td>8762</td>
<td>Paulmyer Cr</td>
<td>8817</td>
</tr>
<tr>
<td>8763</td>
<td>Corn Cr</td>
<td>8818</td>
</tr>
<tr>
<td>8765</td>
<td>Plum Cr</td>
<td>8819</td>
</tr>
<tr>
<td>8766</td>
<td>Deep Cr</td>
<td>8820</td>
</tr>
<tr>
<td>8767</td>
<td>Red Stone Cr</td>
<td>8821</td>
</tr>
<tr>
<td>8768</td>
<td>Nancy Harris Cr</td>
<td>8822</td>
</tr>
<tr>
<td>8769</td>
<td>Pass Cr</td>
<td>8823</td>
</tr>
<tr>
<td>8770</td>
<td>Pearson Cr</td>
<td>8824</td>
</tr>
<tr>
<td>8771</td>
<td>Settin Up Cr</td>
<td>8825</td>
</tr>
<tr>
<td>Watercourse Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri R Cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri R Cent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keya Paha R Cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lone Tree Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalia Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emanuel Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snatch Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marne Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mud Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonetree Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Branch Lonetree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plum Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N Branch Dry Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Branch Dry Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twelvemile Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pony Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Fork Twelvemile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffee Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N Fork Twelvemile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pierre Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enemy Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firesteel Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Branch Firesteel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morris Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jim Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redstone Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsh Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Fork Pearl Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Fork Pearl Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cain Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoney Run Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shue Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foster Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Cr (L Dudley)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri R Cont.</td>
<td>9900</td>
<td>James R Cont.</td>
</tr>
<tr>
<td>:-----------------:</td>
<td>:----:</td>
<td>:-----------------:</td>
</tr>
<tr>
<td>Turtle Cr</td>
<td>9910</td>
<td>Bryant Cr</td>
</tr>
<tr>
<td>Medicine Cr</td>
<td>9920</td>
<td>Campbell Cr</td>
</tr>
<tr>
<td>Gooder Cr</td>
<td>9930</td>
<td>Wolf Cr</td>
</tr>
<tr>
<td>N Wolf Cr</td>
<td>9940</td>
<td>Skeafer Cr</td>
</tr>
<tr>
<td>Ree Cr</td>
<td>9950</td>
<td>Great Cr</td>
</tr>
<tr>
<td>Little Wolf Cr</td>
<td>9960</td>
<td>Little Turtle</td>
</tr>
<tr>
<td>Snake Cr</td>
<td>9990</td>
<td>Nixom R</td>
</tr>
<tr>
<td>Dove Cr</td>
<td>9998</td>
<td>Peach Cr</td>
</tr>
<tr>
<td>Perry Cr</td>
<td>9999</td>
<td>Mud Cr</td>
</tr>
<tr>
<td>Pickeral Cr</td>
<td>9997</td>
<td>Pickeral Cr</td>
</tr>
<tr>
<td>Antelope Cr</td>
<td>9996</td>
<td>Antelope Cr</td>
</tr>
<tr>
<td>Moccasin Cr</td>
<td>9995</td>
<td>Moccasin Cr</td>
</tr>
<tr>
<td>Foot Cr</td>
<td>9994</td>
<td>Foot Cr</td>
</tr>
<tr>
<td>Crow Creek Drain Ditch</td>
<td>9993</td>
<td>Crow Creek Drain Ditch</td>
</tr>
<tr>
<td>Elm. R</td>
<td>9992</td>
<td>Elm. R</td>
</tr>
<tr>
<td>Willow Cr</td>
<td>9991</td>
<td>Willow Cr</td>
</tr>
<tr>
<td>Maple R</td>
<td>9990</td>
<td>Maple R</td>
</tr>
<tr>
<td>Dry Branch</td>
<td>9989</td>
<td>Dry Branch</td>
</tr>
<tr>
<td>Dry Run</td>
<td>9988</td>
<td>Dry Run</td>
</tr>
<tr>
<td>Vermillion R</td>
<td>9987</td>
<td>Vermillion R</td>
</tr>
<tr>
<td>Yankton Clay Cr Ditch</td>
<td>9986</td>
<td>Yankton Clay Cr Ditch</td>
</tr>
<tr>
<td>Clay Cr Ditch</td>
<td>9985</td>
<td>Clay Cr Ditch</td>
</tr>
<tr>
<td>Turkey Cr</td>
<td>9984</td>
<td>Turkey Cr</td>
</tr>
<tr>
<td>Clay Cr</td>
<td>9983</td>
<td>Clay Cr</td>
</tr>
<tr>
<td>Baptist Cr</td>
<td>9982</td>
<td>Baptist Cr</td>
</tr>
<tr>
<td>Frog Cr</td>
<td>9981</td>
<td>Frog Cr</td>
</tr>
<tr>
<td>Ash Cr</td>
<td>9980</td>
<td>Ash Cr</td>
</tr>
<tr>
<td>Turkey Ridge Cr</td>
<td>9979</td>
<td>Turkey Ridge Cr</td>
</tr>
<tr>
<td>Long Cr</td>
<td>9978</td>
<td>Long Cr</td>
</tr>
<tr>
<td>Haram Cr</td>
<td>9977</td>
<td>Haram Cr</td>
</tr>
<tr>
<td>Saddlerock Cr</td>
<td>9976</td>
<td>Saddlerock Cr</td>
</tr>
<tr>
<td>Snake Cr</td>
<td>9975</td>
<td>Snake Cr</td>
</tr>
<tr>
<td>Camp Cr</td>
<td>9974</td>
<td>Camp Cr</td>
</tr>
<tr>
<td>Elec Cr</td>
<td>9973</td>
<td>Elec Cr</td>
</tr>
<tr>
<td>W Fork Vermillion R</td>
<td>9972</td>
<td>W Fork Vermillion R</td>
</tr>
<tr>
<td>E Fork Vermillion R</td>
<td>9971</td>
<td>E Fork Vermillion R</td>
</tr>
<tr>
<td>Little Vermillion R</td>
<td>9970</td>
<td>Little Vermillion R</td>
</tr>
<tr>
<td>Big Sioux R</td>
<td>9969</td>
<td>Big Sioux R</td>
</tr>
<tr>
<td>Brule Cr</td>
<td>9968</td>
<td>Brule Cr</td>
</tr>
<tr>
<td>Union Cr</td>
<td>9967</td>
<td>Union Cr</td>
</tr>
<tr>
<td>W Union Cr</td>
<td>9966</td>
<td>W Union Cr</td>
</tr>
<tr>
<td>Jorgenson R</td>
<td>9963</td>
<td>Jorgenson R</td>
</tr>
<tr>
<td>Wetstone R</td>
<td>9962</td>
<td>Wetstone R</td>
</tr>
<tr>
<td>N Fork Wetstone R</td>
<td>9961</td>
<td>N Fork Wetstone R</td>
</tr>
<tr>
<td>S Fork Wetstone R</td>
<td>9960</td>
<td>S Fork Wetstone R</td>
</tr>
<tr>
<td>Yellow Bank R</td>
<td>9958</td>
<td>Yellow Bank R</td>
</tr>
<tr>
<td>N Fork Yellow Bank R</td>
<td>9956</td>
<td>N Fork Yellow Bank R</td>
</tr>
<tr>
<td>S Fork Yellow Bank R</td>
<td>9954</td>
<td>S Fork Yellow Bank R</td>
</tr>
</tbody>
</table>

- Missouri R Cont. - James R Cont. - Turtle Cr - Bryant Cr - Medicine Cr - Campbell Cr - Gooder Cr - Wolf Cr - N Wolf Cr - Skeafer Cr - Great Cr - Ree Cr - Little Wolf Cr - Little Turtle Cr - Snake Cr - Nixon R - Dove Cr - Perry Cr - Mud Cr - Pickeral Cr - Antelope Cr - Moccasin Cr - Foot Cr - Crow Creek Drain Ditch - Crow Creek Drain Ditch - Elm. R - Willow Cr - Maple R - Dry Branch - Dry Run - Vermillion R - Yankton Clay Cr Ditch - Clay Cr Ditch - Turkey Cr - Clay Cr - Baptist Cr - Frog Cr - Ash Cr - Turkey Ridge Cr - Long Cr - Haram Cr - Saddlerock Cr - Snake Cr - Camp Cr - Elec Cr - W Fork Vermillion R - E Fork Vermillion R - Little Vermillion R - Big Sioux R - Brule Cr - Union Cr - W Union Cr - Big Sioux R Cont. - Union Cr Cont. - E Union Cr - Pattee Cr - Beaver Cr - S Fork Beaver Cr - Ninemile Cr - Spring Cr - Beaver Cr - Split Rock Cr - W Pipestone Cr - Pipestone Cr - Skunk Cr - Wall Lake Drainage - Willow Cr - Grass Lake Drainage - W Branch Skunk Cr - Clear Lake Drainage - Silver Cr - Brookfield Cr - Bachelor Cr - Squaw Cr - Flandreau Cr - Mid Cr - Spring Cr - Medary Cr - Deer Cr - Six Mile Cr - N. Deer Cr - Peg Monkey Run - Bullhead Run - Hidewood Cr - L. Poisett Drainage - Stray Horse Cr - Willow Cr - Mad Cr - Gravel Cr - Mahoney Cr - Sco Cr - Lonesome Lake Drainage - Minnesota R - Little Minnesota R - Jorgenson R - Seiche Hollow Cr - Wetstone R - N Fork Wetstone R - S Fork Wetstone R - Yellow Bank R - N Fork Yellow Bank R - S Fork Yellow Bank R - W Branch Lac Qui Parle R
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0070</td>
<td>Minnesota R Cont.</td>
</tr>
<tr>
<td>0082</td>
<td>W Branch Lac Qui Parle R</td>
</tr>
<tr>
<td>0083</td>
<td>Lost Cr</td>
</tr>
<tr>
<td>0084</td>
<td>Crow Timber Cr</td>
</tr>
<tr>
<td>0086</td>
<td>Monighan Cr</td>
</tr>
<tr>
<td>0087</td>
<td>Gary Cr</td>
</tr>
<tr>
<td>0088</td>
<td>Florida Cr</td>
</tr>
<tr>
<td>0090</td>
<td>Bois de Sioux R</td>
</tr>
<tr>
<td>0091</td>
<td>Cottonwood Slough Drainage</td>
</tr>
<tr>
<td>0092</td>
<td>Dry Run</td>
</tr>
<tr>
<td>0093</td>
<td>Jim Cr</td>
</tr>
<tr>
<td>0094</td>
<td>Wild Rice Cr</td>
</tr>
<tr>
<td>0096</td>
<td>La Belle Cr</td>
</tr>
<tr>
<td>0097</td>
<td>Short Foot Cr</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Drainages</td>
</tr>
<tr>
<td>0052</td>
<td>Wild Rice Cr. (Marshall Co)</td>
</tr>
<tr>
<td>0059</td>
<td>Hegna Cr. Impassable Marsh (Roberts Co)</td>
</tr>
<tr>
<td>0058</td>
<td>Goodwill Cr Impassable Marsh (Roberts Co)</td>
</tr>
<tr>
<td>0046</td>
<td>Bates Cr Rush L.-S. Waubay (Day Co)</td>
</tr>
<tr>
<td>0047</td>
<td>Webster Sewage Ditch-S. Waubay (Day Co)</td>
</tr>
<tr>
<td>0048</td>
<td>Grenville Cr.-Pickerel L. N Waubay (Day Co)</td>
</tr>
<tr>
<td>0049</td>
<td>Owens Cr.-Bluedog L. (Day Co)</td>
</tr>
<tr>
<td>0053</td>
<td>Dolph Cr.-L. Norden (Hamlin)</td>
</tr>
<tr>
<td>0051</td>
<td>Battle Cr.-L. Campbell (Brookings Co)</td>
</tr>
<tr>
<td>0060</td>
<td>Preachers Run-S. Scatterwood L. (Faulk Co)</td>
</tr>
<tr>
<td>0055</td>
<td>Hiddenwood Cr. (Walworth Co)</td>
</tr>
</tbody>
</table>
APPENDIX E

Lake Codes
Aurora
1001 Wilmarth
1002 Fraizer
1003 Fish
1004 Crystal
1005 Hanson's
1006 Stickney (old)
1007 Jail Pond (Kids Pond)
1008 Platte
1009 Stoddard
1010 White
1011 Crystal, East
1012 Maine
1013 Nelson or Stockney (new)
1014 Patton
1015 Luxemborg
1016 Pleasant

Bennett Cont.
1117 LaCreek Refuge Pool #7
1118 " " " #8
1119 " " " #9
1120 " " " #10
1121 " " " #11

Bon Homme
1201 Henry (Scotland)
1202 Tyndall (Kids Pond)
1203 Clear
1204 Klousek
1205 W. Bucholy
1206 M. Bucholy
1207 Ehresward
1208 Schafer

Beadle
0401 Staum
0402 Ravine
0403 Byron
0404 Stoney Run
0405 Cavour
0406 Mud and Spring
0407 Newcomer
0408 Tschetter
0409 Wall
0410 Berger
0411 Bergstrom
0412 Cowboy Park
0413 James River Dam
0414 James Diversion
0415 Perkins

Brookings
0601 Goldsmith
0602 Oak
0603 Hendricks
0604 Sinai
0605 Campbell
0606 Oakwood, E.
0607 Oakwood, N
0608 Johnson Pond (Interstate)
0609 Mitchell

Brown
0301 Tacoma Park
0302 Lord
0303 Highland (Keuchle)
0304 Frederick City
0305 Elm River #1
0306 " " #2
0307 " " #4

Bennett
1101 Allen
1102 Sharman
1103 Allam
1104 Jacquot
1105 L. White River Dam
1106 Cedar Creek #1
1107 " " #2
1108 " " #3
1109 Bad Hair
1110 LaCreek Refuge Pool #1
1111 " " " #2
1112 " " " #3
1114 " " " #4
1115 " " " #5
1116 " " " #6

Brule
1301 Wanalain .
1302 Sharping
1303 Wells
1304 Jones
1305 Sixteen
1306 Pazour
Bruel Cont.
1307 Red
1308 Highland
1309 Silver
1310 Mud
1311 American
1312 Sobek
1313 Coven
1314 Austin
1315 Norse
1316 Willow

Buffalo
1401 Bedashosha
1402 Cook
1403 Ingerson

Butte
1501 Orman
1502 Newell
1503 Newell City Dam
1504 Belle Fourche TWLA

Campbell
1601 Matze
1602 Sand
1603 Chester (Boor)
1604 Campbell
1605 Pocasse
1606 Salt
1607 East Flat
1608 Flat
1609 McClarem

Charles Mix
1701 Andes, S.
1713 Andes, Center
1714 Andes, N.
1702 Dante
1703 Geddes
1704 Academy
1705 Dowd
1706 Platte
1707 Wagner
1708 Red
1709 Bovee
1710 Koupal
1711 George
1712 Song Hawk

Clark
1801 Willow
1802 Antelope
1803 Antelope (Kids Pond)
1804 Bailey
1805 Clear (Carson's)
1806 Fordham
1807 Logan (Paine)
1808 Round
1809 Mud
1810 Reid
1811 Lone Tree
1812 Todd
1817 Swan
1818 Blackrush

Clay
1901 Burbank

Codington
0501 Kampeska Pit, W.
0502 Kampeska
0503 Pelican
0504 Punished Woman
0505 Round
0506 Still (Twin)
0507 Bramble Pond
0508 Grass
0509 Long
0510 Nicholson
0511 Dry
0512 Horseshoe
0513 Horseshoe 2E.
0514 Cottonwood
0515 Kings
0516 Warren
0517 Medicine
0518 McKilligan's
0519 Richland
0520 Stink
0521 Sasse Slough
0522 McKilligan's, W.
0523 Kampeska Pit, E.

Corson
2001 Keller's
2002 McGee
2003 Mallard
2004 Trail City
2005 Morristown, W.
Corson Cont.
2006 Morristown, E.
2007 Pudwell
2008 McIntosh, D.
2009 McIntosh, W.
2010 Tatanka
2011 Spring
2012 Deuel
2013 Bohle

Day Cont.
2201 Amsden
2202 Pickeral
2203 Deuel
2204 Minnewasta
2205 Blue Dog
2206 Enemy Swim
2207 Antelope
2208 Horseshoe
2209 Lonesome
2210 Lynn
2211 Sweetwater
2212 Waubay, N.
2213 Waubay, S.
2214 Rush, N. and S.
2215 Campbell Slough
2216 Bitter
2217 Hillda Brands
2218 Dug eagle
2219 Hazleton
2220 Anderson
2221 Nutley
2222 Nutley, E.
2223 Stink

Custer
2101 Stockade
2102 Center
2103 Bismark
2104 Legion
2105 Sylvan
2106 Glenn Erin
2107 Biltmore
2108 Butler
2109 Custer Municipal
2110 Pilgrim
2111 Newton Fork
2112 Grace Coolridge Lowheads

Day
2201 Amsden
2202 Pickeral
2203 Deuel
2204 Minnewasta
2205 Blue Dog
2206 Enemy Swim
2207 Antelope
2208 Horseshoe
2209 Lonesome
2210 Lynn
2211 Sweetwater
2212 Waubay, N.
2213 Waubay, S.
2214 Rush, N. and S.
2215 Campbell Slough
2216 Bitter
2217 Hillda Brands
2218 Cotteau, S.
2219 Coots
2220 Anderson
2221 Nutley
2222 Nutley, E.
2223 Stink

Davison
0801 Mitchell

Day
2201 Amsden
2202 Pickeral
2203 Deuel
2204 Minnewasta
2205 Blue Dog
2206 Enemy Swim
2207 Antelope
2208 Horseshoe
2209 Lonesome
2210 Lynn
2211 Sweetwater
2212 Waubay, N.
2213 Waubay, S.
2214 Rush, N. and S.
2215 Campbell Slough
2216 Bitter
2217 Hillda Brands
2218 Cotteau, S.
2219 Coots
2220 Anderson
2221 Nutley
2222 Nutley, E.
2223 Stink

Dewey
2401 Peach
2402 Moreau #2
2403 Moreau #1
2404 Lantry
2405 Glen French #1
2406 Glen French #2
2407 Eagle Butte
2408 Dewbarry
2409 Adams
2410 Rockcowen
2411 Isabel
2412 Goose Creek
2413 Jewett
2414 White Horse
2415 Moreau #3
2416 Timber
2417 Owl Creek
2418 Firesteel (Ike)
Douglas
2501 Corsica
2502 Armour (Kids Pond)
2503 Simpson

Edmunds
2601 Bowdle Hosmer
2602 Loyalton (Stafford)
2603 Mina
2604 Rosette
2605 Picton
2606 Scatterwood N.
2607 Kraft
2608 Grass
2609 Alkali

Fall River
2701 Angostura
2702 Edgemont
2703 Cold Brook
2704 Sherberth
2705 Limestone Butte
2706 Cottonwood Springs
2707 Williams
2708 Fiddle Creek
2709 Bochart
2710 Ebersol
2711 Bowyer
2712 Crow
2713 Sandoz
2714 Ellison
2715 Otto's
2716 White
2717 Ray
2718 Sides Dam
2719 Coffeen
2720 Vandenberg
2721 South Indian #1
2722 Pioneer #1
2723 Pioneer #2
2724 Fire Dam
2725 Dukes Dam

Faulk
2801 Hamak
2802 Cresbard
2803 Voegler
2804 Latham
2805 Faulkton
2806 Gerkin Refuges

Faulk Cont.
2807 Zell
2808 Scatterwood S.

Grant
2901 Summit
2902 Albert
2903 Parley (Kids POND)
2904 Labolt
2905 Crooked (Tray)
2906 Stockholm
2907 Twin
2908 Blue Cloud Abbey
2909 Big Stone
2910 Lonesome
2911 Lonetree
2912 Black Slough
2913 Black Slough E.
2914 Hagen Slough

Gregory
3001 Berry
3002 Burke
3003 Bonesteel
3004 Dixon (Burch)
3005 Fairfax
3006 Herrick (Spendor)
3007 Star
3008 Ponca (Indian)
3009 Johnson
3010 Jerred
3011 Dalton
3012 Bulow

Haakon
3101 Kroetchc
3102 Ottumwa
3103 Sunshine
3104 Waggoner

Hamlin
3201 Poinsett
3202 Norden
3203 John
3204 Florence
3205 Clear
3206 Mary
3207 Marsh
3208 Dry
3209 Five Ponds
3211 Saarenson Pond
Hand
3301 Louise
3302 Dako-tah
3303 Rosehill
3304 Crystal (Kids Pond)
3305 Johnston
3306 Jones
3307 Pearl
3308 Spring
3309 Wall

Hanson
3401 Fulton
3402 Hanson
3403 Ethan
3404 Eli
3405 Long
3406 Spring
3407 Twin, N.
3408 Twin, S.
3409 Hanson Quarry

Harding
3501 Gardner
3502 Antelope Range
3503 Rabbit Creek
3504 Ledger, W.
3505 Ledger, E.
3506 Vessey
3507 Robinson
3508 Jacobi

Hughes
3601 Woodruff
3602 Swanson
3603 Arikara

Hutchinson
3701 Menno
3702 Dimock
3703 Silver
3704 Tripp

Hyde
3801 Chapelle
3802 Boehm
3803 Quirk
3804 Peno
3805 Stephan
3806 Rezac

Jackson
3901 Kadoka
3902 Bashen
3903 Belvedere
3904 Freeman
3905 Andrews
3906 Cottonwood Range
3907 Brook #1
3908 Wheeler #1
3909 Wheeler #2

Jerauld
4001 Crow
4002 Magic Mirror
4003 Long
4004 Cottonwood
4006 Crist
4007 Noltensmeir
4008 Haugland
4009 McDonald
4010 Nelson
4011 Nesmith
4012 Velverndate

Jones
4101 Murdo
4102 Okaton
4103 Draper
4104 Murdo R. R.
4105 Richland Wildlife

Kingsbury
4201 Agnew
4202 Spirit
4203 Cherry, N.
4204 Plum (Cherry, S.)
4205 Osceola
4206 Iroquois
4207 Henry
4208 Albert
4209 Thistad
4210 Badger
4211 Arlington
4212 Thomson
4213 Preston
4214 Whitewood
<table>
<thead>
<tr>
<th>Kingsbury Cont.</th>
<th>McCook</th>
</tr>
</thead>
<tbody>
<tr>
<td>4215 Spring</td>
<td>4601 Bollinger</td>
</tr>
<tr>
<td>4215 Mud</td>
<td>4602 Vermillion</td>
</tr>
<tr>
<td>4217 Brush (Twin)</td>
<td>4603 Janssen</td>
</tr>
<tr>
<td>4218 Spring, E.</td>
<td>4604 Lions</td>
</tr>
<tr>
<td>4219 District 35</td>
<td>4605 McCullough</td>
</tr>
<tr>
<td>4220 Silver</td>
<td>4606 Island</td>
</tr>
<tr>
<td>4230 Brush (Twin)</td>
<td>4607 Tuschens</td>
</tr>
<tr>
<td>4230 Spring, E.</td>
<td>4608 Eli Hofer</td>
</tr>
<tr>
<td>Lake</td>
<td>4609 Schimmels</td>
</tr>
<tr>
<td>4301 Green</td>
<td>4610 Gross</td>
</tr>
<tr>
<td>4302 Herman</td>
<td>4611 Baureles (Schulz)</td>
</tr>
<tr>
<td>4303 Brant</td>
<td>4612 Forsch</td>
</tr>
<tr>
<td>4304 Madison</td>
<td>4613 Lehrams</td>
</tr>
<tr>
<td>4305 Badus</td>
<td></td>
</tr>
<tr>
<td>4306 Long</td>
<td></td>
</tr>
<tr>
<td>4307 Milwaukee</td>
<td></td>
</tr>
<tr>
<td>4308 Mud</td>
<td></td>
</tr>
<tr>
<td>4309 Winfred</td>
<td></td>
</tr>
<tr>
<td>4310 Henry</td>
<td></td>
</tr>
<tr>
<td>4311 George</td>
<td></td>
</tr>
<tr>
<td>4312 Winfred, S.</td>
<td></td>
</tr>
<tr>
<td>4313 Round</td>
<td></td>
</tr>
<tr>
<td>Lawrence</td>
<td></td>
</tr>
<tr>
<td>0901 Iron Creek</td>
<td></td>
</tr>
<tr>
<td>0902 Roubaix</td>
<td></td>
</tr>
<tr>
<td>0903 Reausaw</td>
<td></td>
</tr>
<tr>
<td>0904 Mirror</td>
<td></td>
</tr>
<tr>
<td>0905 Coxes</td>
<td></td>
</tr>
<tr>
<td>0906 Dalton</td>
<td></td>
</tr>
<tr>
<td>0907 Columbia</td>
<td></td>
</tr>
<tr>
<td>0908 Strawberry Hill</td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td></td>
</tr>
<tr>
<td>4401 Alvin</td>
<td></td>
</tr>
<tr>
<td>4402 Lakota</td>
<td></td>
</tr>
<tr>
<td>Lyman</td>
<td></td>
</tr>
<tr>
<td>4501 Brakke</td>
<td></td>
</tr>
<tr>
<td>4502 Byre</td>
<td></td>
</tr>
<tr>
<td>4503 Pate</td>
<td></td>
</tr>
<tr>
<td>4504 Knutson</td>
<td></td>
</tr>
<tr>
<td>4505 Larson</td>
<td></td>
</tr>
<tr>
<td>4506 Reliance</td>
<td></td>
</tr>
<tr>
<td>4507 Dybing</td>
<td></td>
</tr>
<tr>
<td>4508 Fénenga</td>
<td></td>
</tr>
<tr>
<td>4509 Hafner</td>
<td></td>
</tr>
<tr>
<td>4510 Jackson</td>
<td></td>
</tr>
<tr>
<td>4512 Sweeney</td>
<td></td>
</tr>
<tr>
<td>4513 Antelope Allotment</td>
<td></td>
</tr>
<tr>
<td>4514 Kennebec</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McPherson</th>
</tr>
</thead>
<tbody>
<tr>
<td>4701 Eureka #1</td>
</tr>
<tr>
<td>4702 Leola</td>
</tr>
<tr>
<td>4703 Hillview</td>
</tr>
<tr>
<td>4704 Wetonka (Compton)</td>
</tr>
<tr>
<td>4705 Wolff</td>
</tr>
<tr>
<td>4706 Little Eureka #2</td>
</tr>
<tr>
<td>4707 Rau</td>
</tr>
<tr>
<td>4708 Long</td>
</tr>
<tr>
<td>4709 Twin</td>
</tr>
<tr>
<td>4710 Neupel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marshall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4801 Red Iron, N.</td>
</tr>
<tr>
<td>4802 Red Iron, S.</td>
</tr>
<tr>
<td>4803 Cottonwood</td>
</tr>
<tr>
<td>4804 Hickman</td>
</tr>
<tr>
<td>4805 Abraham</td>
</tr>
<tr>
<td>4806 Almos</td>
</tr>
<tr>
<td>4807 Bullhead</td>
</tr>
<tr>
<td>4808 Crystal</td>
</tr>
<tr>
<td>4809 Dumarce</td>
</tr>
<tr>
<td>4810 Emma</td>
</tr>
<tr>
<td>4811 Flat</td>
</tr>
<tr>
<td>4812 Fort, S.</td>
</tr>
<tr>
<td>4813 Four Mile</td>
</tr>
<tr>
<td>4814 Goodbird</td>
</tr>
<tr>
<td>4815 Grays (Grey)</td>
</tr>
<tr>
<td>4816 High</td>
</tr>
<tr>
<td>4817 Hills</td>
</tr>
<tr>
<td>4818 Hoop</td>
</tr>
<tr>
<td>4819 Horseshoe</td>
</tr>
<tr>
<td>4820 Isabella (S. Clear)</td>
</tr>
<tr>
<td>4821 Island</td>
</tr>
<tr>
<td>4822 Long</td>
</tr>
<tr>
<td>4823 Martha</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>4824 Mud</td>
</tr>
<tr>
<td>4826 Sarah</td>
</tr>
<tr>
<td>4827 Simons</td>
</tr>
<tr>
<td>4830 Two Island</td>
</tr>
<tr>
<td>4832 Clear</td>
</tr>
<tr>
<td>4834 Buffalo, S.</td>
</tr>
<tr>
<td>4836 Lost</td>
</tr>
<tr>
<td>4839 Stink</td>
</tr>
<tr>
<td>4841 Goodbird, N.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miner Cont.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5103 Chain (Twins)</td>
</tr>
<tr>
<td>5104 Silver, S.</td>
</tr>
<tr>
<td>5105 Morris</td>
</tr>
<tr>
<td>5106 Bitter</td>
</tr>
<tr>
<td>5107 Silver</td>
</tr>
<tr>
<td>5108 Belview</td>
</tr>
<tr>
<td>5110 Long</td>
</tr>
<tr>
<td>5111 Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minnehaha</th>
</tr>
</thead>
<tbody>
<tr>
<td>5201 Flandreau</td>
</tr>
<tr>
<td>5202 Poison</td>
</tr>
<tr>
<td>5203 Allen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moody</th>
</tr>
</thead>
<tbody>
<tr>
<td>5201 Flandreau</td>
</tr>
<tr>
<td>5202 Poison</td>
</tr>
<tr>
<td>5203 Allen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pennington</th>
</tr>
</thead>
<tbody>
<tr>
<td>5201 Flandreau</td>
</tr>
<tr>
<td>5202 Poison</td>
</tr>
<tr>
<td>5203 Allen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellette</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001 White River (Putranek)</td>
</tr>
<tr>
<td>5002 Dice</td>
</tr>
<tr>
<td>5003 Rohloff</td>
</tr>
<tr>
<td>5004 Sinclair</td>
</tr>
<tr>
<td>5005 Blackpipe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellette</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001 White River (Putranek)</td>
</tr>
<tr>
<td>5002 Dice</td>
</tr>
<tr>
<td>5003 Rohloff</td>
</tr>
<tr>
<td>5004 Sinclair</td>
</tr>
<tr>
<td>5005 Blackpipe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miner</th>
</tr>
</thead>
<tbody>
<tr>
<td>5101 Twin</td>
</tr>
<tr>
<td>5102 Carthage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miner</th>
</tr>
</thead>
<tbody>
<tr>
<td>5101 Twin</td>
</tr>
<tr>
<td>5102 Carthage</td>
</tr>
<tr>
<td>Pennington Cont.</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>0219 Hamann</td>
</tr>
<tr>
<td>0220 Hoffman</td>
</tr>
<tr>
<td>0221 Horsethief</td>
</tr>
<tr>
<td>0222 Kellam</td>
</tr>
<tr>
<td>0223 Mako Sica</td>
</tr>
<tr>
<td>0224 Newton Fork</td>
</tr>
<tr>
<td>0225 Pierce</td>
</tr>
<tr>
<td>0226 Quinn, N.</td>
</tr>
<tr>
<td>0227 Quinn, S.</td>
</tr>
<tr>
<td>0228 Rapid City Dam</td>
</tr>
<tr>
<td>0229 Schulte</td>
</tr>
<tr>
<td>0230 Shyne</td>
</tr>
<tr>
<td>0231 Sinykin</td>
</tr>
<tr>
<td>0232 Smith</td>
</tr>
<tr>
<td>0233 Table 71</td>
</tr>
<tr>
<td>0234 Tennyson</td>
</tr>
<tr>
<td>0235 Teuber</td>
</tr>
<tr>
<td>0236 USDA Trout Dam</td>
</tr>
<tr>
<td>0237 Victoria</td>
</tr>
<tr>
<td>0238 Wall (New)</td>
</tr>
<tr>
<td>0239 White</td>
</tr>
<tr>
<td>0240 Conata #2</td>
</tr>
<tr>
<td>0241 Hanlon</td>
</tr>
<tr>
<td>0242 Imly</td>
</tr>
<tr>
<td>0243 Johnson</td>
</tr>
<tr>
<td>0244 Koopman</td>
</tr>
<tr>
<td>0245 Owanka</td>
</tr>
<tr>
<td>0246 Richardson</td>
</tr>
<tr>
<td>0247 Rush</td>
</tr>
<tr>
<td>0248 Scanlon</td>
</tr>
<tr>
<td>0249 Schroeder</td>
</tr>
<tr>
<td>0250 Big Foot</td>
</tr>
<tr>
<td>0251 Fike Pond</td>
</tr>
<tr>
<td>0252 Missle Allotment</td>
</tr>
<tr>
<td>0253 N. White Water</td>
</tr>
<tr>
<td>0254 Haynes</td>
</tr>
<tr>
<td>0255 Roosevelt Pond</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Perkins</td>
</tr>
<tr>
<td>5301 Shadehill</td>
</tr>
<tr>
<td>5302 Lemmon State</td>
</tr>
<tr>
<td>5303 Vobedja</td>
</tr>
<tr>
<td>5304 Flat Creek</td>
</tr>
<tr>
<td>5305 Sorum</td>
</tr>
<tr>
<td>5306 Coal Springs</td>
</tr>
<tr>
<td>5307 Johnson</td>
</tr>
<tr>
<td>5308 Owen</td>
</tr>
<tr>
<td>5309 Cole</td>
</tr>
<tr>
<td>5310 Ada</td>
</tr>
<tr>
<td>5311 Jensen</td>
</tr>
</tbody>
</table>
Shannon
6501 Oglala Res.
6502 White Clay
6503 Kyle
6504 Derby
6505 Wolf Creek
6506 Big Alkali
6507 Pine Ridge

Todd
6601 Boarding School
6602 Dog
6603 Mission
6604 Hidden Timber
6605 White
6606 Beads Creek
6607 Rosebud
6608 Ghost Hawk
6609 Sharps
6610 Chases Woman
6611 Spotted Tail
6612 Eagle Feather

Todd Cont.
6613 Iron Wood
6614 Swift Bear
6615 Heifer
6616 Enemy Woman
6617 Omaha Boy
6618 Mervin Colombe

Spink
5701 Dudley
5702 Twin
5703 Cottonwood
5704 Redfield
5705 Timber Creek
5706 Mirage
5707 Turtle
5708 Northville
5709 Bierman (Mansfield)

Stanley
5801 Red Plum
5802 Hayes
5803 Trout Pond
5804 50-50 Allotment

Sully
5901 Cottonwood
5902 Sully
5903 Fuller
5904 Okobojo
5905 Mindt
5906 Post
5907 Stone
5908 Walker
5909 Fisher
5910 Troy

Turner
6101 Swan
6102 Mud
6103 Marion

Union
6201 McCook
6202 Norwegian
6203 Sargent (Nison)
6204 Cole

Walworth
6301 Hiddenwood
6302 Spring
6303 Molsstad
6304 Swan

Washabaugh
6701 May
6702 Dithmer
6703 Poor Bear
Yankton
 0701 Marindahl
 0702 Beaver (State)
 0703 Westside
 0705 Yankton (Cottonwood)

Ziebach
 6401 Bednor
 6402 Glad Valley
 6403 Matter
 6404 Miller
 6405 Trent
 6406 Buffalo
 6407 Rattle Snake

Mainstem Reservoirs
 1610 Oahe
 1611 Oahe Tailwaters
 1612 Sharpe
 1613 Sharpe Tailwaters
 1614 Frances Case
 1615 Francis Case Tailwaters
 1616 Missouri R. To Running W.
 1617 Lewis and Clark
 1618 Lewis and Clark Tailwaters
 1619 Missouri R. to Sioux City
APPENDIX F

Organism Codes
FISH
MASTER SPECIES LIST

Petromyzontidae
1. Ichthyomyzon unicuspis - silver lamprey

Acipenseridae
2. Saaphirhynchus platorynchus - pallid sturgeon
3. S. albus - shovelnose sturgeon
4.

Polyodontidae
5. Polyodon spathula - paddlefish

Lepisosteidae
6. Lepisosteus platostomus - shortnose gar
7. L. osseus - longnose gar

Amiidae
8. Amia calva - bowfin

Anguillidae
9. Anguilla rostrata - American eel

Clupeidae
10. Alosa chrysochloris - skipjack herring
11. Dorosoma cepedianum - grizzard shad
12.
13.

Hiodontidae
14. Hiodon alosoides - goldeye
15. H. tergisus - mooneye

Salmonidae
16. Salmo trutta - brown trout
17. S. gairdnerii - rainbow trout
18. Salvelinus fontinalis - brook trout
19. S. namycush - lake trout
20. Oncorhynchus nerka - kokanee
21. O. kisutch - coho salmon
22. Prosopium gemmiferum - Bonneville cisco
23. Coregonus clupeaformis - Lake whitefish
24.
25.
26.
27.
28.

Osmeridae
29. Osmerus mordax - rainbow smelt

Umbriidae
30. Umbra limi - central mudminnow

Esocidae
31. Esox lucius - northern pike
32. Esox masquinongy - muskie
33.
34.
Cyprinidae

35. Ctenopharyngodon idella - grass carp
36. *Cyprinus carpio* - carp
37. *Carassius auratus* - goldfish
38. *Notemigonus crysoleucas* - golden shiner
39. *S. atromaculatus* - creekchub
41. *Phoxinus eos* - northern redbelly dace
42. *P. ncogaeus* - finescale dace
43. *Couesius plumeus* - lake chub
44. *Hybopsis gracilis* - flathead chub
46. *H. storeriana* - silver chub
47. *H. meeki* - sicklefin chub
48. *Noemis biguttatus* - hornyhead chub
49. *Rhinichthys atratulus* - blacknose dace
50. *R. cataractae* - longnose dace
51. *Phenacobius mirabilis* - suckermouth minnow
52. *Notropis atherinoides* - emerald shiner
53. *N. rubellus* - rosyface shiner
54. *N. shumardi* - silverband shiner
55. *N. cornutus* - common shiner
56. *N. heterodon* - blackchin shiner
57. *N. hudsonius* - spottail shiner
58. *N. blennius* - river shiner
59. *N. dorsalis* - bigmouth shiner
60. *N. lutrensis* - red shiner
61. *N. stramineus* - sand shiner
62. *N. topeka* - Topeka shiner
63. *N. heterolepis* - blacknose shiner
64. *Hybognathus hankinsoni* - brassy minnow
65. *H. placitus* - plains minnow
66. *H. nuchalis* - silvery minnow
67. *Pimephales notatus* - bluntnose minnow
68. *P. promelas* - fathead minnow
69. *Campostoma anomalum* - stoneroller
70.
71.
72.
73.
74.
75. minnow

Catostomidae

76. *Cycleptus elongatus* - blue sucker
77. *Ictiobus cyprinellus* - bigmouth buffalo
78. *I. bubalus* - smallmouth buffalo
79. *I. niger* - black buffalo
80. *C. carpio* - river carpsucker
81. *Hypentelium nigricans* - northern hog sucker
Castostomidae Cont.

83. Morostoma erythrum - golden redhorse
84. M. Macrolepidotum - shorthead redhorse
85. Catostomus commersoni - white sucker
86. C. catostomus - longnose sucker
87. C. platyrhunchus - mountain sucker
88. Buffalo
89. Sucker

Ictaluride

91. Ictalurus melas - black bullhead
92. I. nebulosus - brown bullhead
93. I. natalis - yellow bullhead
94. I. punctatus - channel catfish
95. I. furcatus - blue catfish
96. Noturus gyrinus - tadpole madtom
97. N. exilis - slender madtom
98. Pylodictis olivaris - flathead catfish
99. Noturus flavus - Stonecat

100.
101.

Percopsis omiscomaycus - trout-perch

Gadidae

103. Lota lota - burbot

Cyprinodontidae

104. Fundulus diaphanus - banded killifish
105. F. kansae - plains killifish
106. F. sciadicus - plains topminnow
107.

Gasterosteidae

108. Culaea inconstans - brook stickleback

Percichthyidae

109. Morone chrysops - white bass
110.
111.

Centrarchidae

112. Micropterus dolomieu - smallmouth bass
113. M. salmoides - largemouth bass
114. Lepomis cyanellus - green sunfish
115. L. gibbosus - pumpkinseed
116. L. macrochirus - bluegill
117. L. humilis - orangespotted sunfish
118. Ambloplites rupestris - rock bass
119. Pomoxis annularis - white crappie
120. P. nigromaculatus - black crappie
121.
122. Crappie
123. Sunfish
AQUATIC MACROPHYTES

Family Poaceae (Gramineae)
1. Alopecurus Foxtail
2. Beckmannia Slough grass
3. Spartina Cordgrass
4. Glyceria Mannagrass
5. Phragmites Plume reed grass
6. Leersia Rice cut-grass
7. Phalaris Reed canary grass
8. Zizania Wild rice

Family Cyperaceae
9. Carox Sedge
10. Cyperus Nut sedge
11. Eleocharis Spike rush
12. Scirpus Roundstem bullrush
13. Scirpus Bullrush

Family Juncaceae
14. Juncus Rush

Family Lemnaceae
15. Lemma Duckweed

Family Araceae
16. Acorus Sweetflag

Family Hydrocharitaceae
17. Elodea (Anacharis) Waterweed
18. Vallisneria Wild celery

Family Najadaceae
19. Najas
20. Potamogeten Narrowleaf pondweed (Sago and curlyleaf)
21. Potamogeten Variableleaf pondweed (Floating leaf)
22. Ruppia Widgeon grass

Family Typhaceae
23. Typha Cattail

Family Sparganaceae
24. Sparganium Burreed

Family Alismataceae
25. Alisma Water plantain

Family Ceratophyllaceae
26. Ceratophyllum Coontail
Family Compositae
27. Bidens Beggers lice

Family Haloragidaceae
28. Myriophyllum Water millfoil

Family Nymphaeae
29. Nuphar Yellow water lily
30. Nymphaea White water lily

Family Polygonaceae
31. Polygonum Smartweed

Family Ranunculaceae
32. Ranunculus Crowfoot

Family Cruciferae
33. Nasturtium Water cress
APPENDIX G

Management And Access Recommendations
FISH MANAGEMENT

1. Control - Biological
2. Control - Chemical
3. Control - Physical
4. Forage - Increase
5. Intro other food organism
6. Mapping
7. Special regulations
8. Special study
9. Species change (Stocking)
10. Stocking - Decrease
11. Stocking - Increase
12. Stocking size change
13. Survey

HABITAT MANAGEMENT

20. Aerate to prevent fishkill
21. Deep water siphon
22. Dredging
23. Fertilization
24. Fish barrier - Install
25. Fish barrier - Remove
26. Fish structure - Install
27. Nursery areas - Improve
28. Nutrient control
29. Pollution abatement
30. Repair dam or dike
31. Spawning improvement
32. Waterlevel - Lower
33. Waterlevel - Raise
34. Waterlevel - Stabilize
35. Vegetation control - Algae
36. Vegetation control - Macrophytes
37. Menage for waterfowl

SHORE MANAGEMENT

40. Access - Acquire
41. Access - Improve
42. Access - Limit
43. Clearing - Obstructions
44. Fencing
45. Plantings
46. Sodiment control
47. Shore stabilization
48. Shore vegetation cover
49. Watershed restoration
50. Limit livestock access
60. Other
ACCESS RECOMMENDATIONS

1. Acquire land access
2. Camping pads
3. Change house
4. Docks
5. Electricity
6. Fencing
7. Fireplaces
8. Garbage cans
9. Lights
10. Parking areas
11. Picnic tables
12. Posting
13. Ramp - Concrete
14. Ramp - Double-wide
15. Ramp - Gravel or dirt
16. Ramp - Steel
17. Roads - All weather
18. Roads - Internal
19. Roads - Gravel
20. Sewer dump
21. Shelters
22. Showers
23. Swimming beach
24. Trails - Hiking
25. Trails - Snowmobile
26. Tree planting
27. Toilets - Flush
28. Toilets - Primitive
29. Weed control
30. Well
APPENDIX H

GIVEFISH Build Program
IDENTIFICATION DIVISION.
PROGRAM-IC: GIVEFISH BUILD PROGRAM.
REMARKS: GIVEFISH BUILDS GIVEFISH DATA BASE.
AUTHOR: WARREN HOWLAND.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER: IBM-370.
OBJECT-COMPUTER: IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TAPEIN-FILE ASSIGN TO OA-2314-S-TAPEIN.
SELECT TAPEOUT-FILE ASSIGN TO OA-2314-S-TAPEOUT.
SELECT TEMP-FILE ASSIGN TO OA-2314-S-TEMP.
SELECT SORT-FILE ASSIGN TO OA-2314-S-SORTTEMP.
DATA DIVISION.
FILE SECTION.
FD TAPEIN-FILE.
RECORDING MODE F, RECORD CONTAINS 80 CHARACTERS.
LABEL RECORDS ARE OMITTED, DATA RECORD IS TAPEIN-REC.
TAPEIN-REC.
C2 LAKE-CODE-IN PIC X(4).
C2 CARD-INFO-IN PIC X(74).
C2 CARD-CODE-IN PIC X(2).
SORT-FILE.
DATA RECORD IS SORT-REC.
SORT-REC.
C2 SORT-LAKE-CODE PIC X(4).
C2 SORT-CARD-INFO PIC X(74).
C2 SORT-CARD-CODE PIC X(2).
TAPEOUT-FILE.
RECORDING MODE F, LABEL RECORDS ARE OMITTED.
RECORD CONTAINS 9292 CHARACTERS, BLOCK CONTAINS 1 RECORDS.
DATA RECORD IS TAPEOUT-RECORD.
TAPEOUT-RECORD.
PIC X(9292).
TEMP-FILE.
RECORDING MODE F, LABEL RECORDS ARE OMITTED.
RECORD CONTAINS 80 CHARACTERS, BLOCK CONTAINS 10 RECORDS.
DATA RECORDS ARE CARD-1-INPUT, CARD-2-INPUT, CARD-3-INPUT,
CARD-4-INPUT, CARD-5-INPUT, CARD-6-INPUT, CARD-7-INPUT,
CARD-8-INPUT, CARD-9-INPUT, CARD-10-INPUT, CARD-11-INPUT,
CARD-12-INPUT, CARD-13-INPUT, CARD-14-INPUT, CARD-15-INPUT,
CARD-16-INPUT, CARD-17-INPUT, CARD-18-INPUT, CARD-19-INPUT,
CARD-20-INPUT, CARD-21-INPUT, CARD-22-INPUT, CARD-23-INPUT,
CARD-24-INPUT, CARD-25-INPUT, CARD-26-INPUT, CARD-27-INPUT,
CARD-28-INPUT, CARD-29-INPUT, CARD-30-INPUT, CARD-31-INPUT,
CARD-32-INPUT, CARD-33-INPUT, CARD-34-INPUT, CARD-35-INPUT,
TEMP-REC.
PIC X(4).
C2 FILLER PIC X(174).
C2 CARD-1-INPUT.
C2 LAKE-CODE PIC 9(5).
C2 SOURCE-1 PIC 9(5).
C2 DATE-1 PIC X(16).
C2 DATA-1 PIC X(22).
C2 FILLER PIC X(46).
C2 CARD-NUMBER PIC 99.
C2 CARD-2-INPUT.
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>000590</td>
<td>C2 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000600</td>
<td>C2 DATA-2</td>
<td>PIC X(70)</td>
</tr>
<tr>
<td>000610</td>
<td>O2 FILLER</td>
<td>PIC X(4)</td>
</tr>
<tr>
<td>000620</td>
<td>O2 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>000630</td>
<td>01 CARD-3-INPUT.</td>
<td></td>
</tr>
<tr>
<td>000640</td>
<td>O2 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000650</td>
<td>O2 SOURCE-3</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>000660</td>
<td>C2 UNITS</td>
<td>PIC X</td>
</tr>
<tr>
<td>000670</td>
<td>C2 ACTION-CODE</td>
<td>PIC X</td>
</tr>
<tr>
<td>000680</td>
<td>O2 RIVER-3</td>
<td></td>
</tr>
<tr>
<td>000685</td>
<td>03 RIVER-3-CATA</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000690</td>
<td>O2 DATE-3</td>
<td>PIC 9(6)</td>
</tr>
<tr>
<td>000700</td>
<td>O2 DATA-3</td>
<td>PIC X(4)</td>
</tr>
<tr>
<td>000710</td>
<td>O2 SPECIES-3</td>
<td></td>
</tr>
<tr>
<td>000715</td>
<td>C3 SPECIES-3-DATA</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000720</td>
<td>C2 DRAINAGE-3</td>
<td></td>
</tr>
<tr>
<td>000725</td>
<td>03 DRAINAGE-3-CATA</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000730</td>
<td>O2 MAP-DATE-3</td>
<td>PIC X(4)</td>
</tr>
<tr>
<td>000740</td>
<td>O2 POPULATE-3</td>
<td></td>
</tr>
<tr>
<td>000745</td>
<td>03 POPULATE-3-CATA</td>
<td>PIC 9(6)</td>
</tr>
<tr>
<td>000750</td>
<td>O2 FILLER</td>
<td>PIC X(5)</td>
</tr>
<tr>
<td>000760</td>
<td>O2 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>000770</td>
<td>01 CARD-4-INPUT.</td>
<td></td>
</tr>
<tr>
<td>000780</td>
<td>O2 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000790</td>
<td>O2 TYPE-4</td>
<td>PIC X</td>
</tr>
<tr>
<td>000800</td>
<td>O2 LOCATION-4</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000810</td>
<td>O2 CONST-DATE-4</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000820</td>
<td>C2 SPILLWAY-4</td>
<td>PIC X</td>
</tr>
<tr>
<td>000830</td>
<td>O2 WIDTH-4</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>000840</td>
<td>C2 OWNER-4</td>
<td>PIC Xx</td>
</tr>
<tr>
<td>000850</td>
<td>O2 PLAN-ESTIM</td>
<td>PIC X</td>
</tr>
<tr>
<td>000860</td>
<td>O2 AREA-4</td>
<td>PIC 9(7)</td>
</tr>
<tr>
<td>000870</td>
<td>O2 MEANDERED</td>
<td>PIC 9(6)</td>
</tr>
<tr>
<td>000880</td>
<td>O2 LITTORAL</td>
<td>PIC 9(6)</td>
</tr>
<tr>
<td>000890</td>
<td>O2 PERCENT-LT</td>
<td>PIC Xx</td>
</tr>
<tr>
<td>000900</td>
<td>O2 MAX-DEPTH-4</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000910</td>
<td>O2 AVE-DEPTH-4</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000920</td>
<td>C2 BENCHMARK</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000930</td>
<td>O2 ANN-FLUC-HIGH</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000940</td>
<td>O2 ANN-FLUC-LOW</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000950</td>
<td>O2 LT-FLUC-HIGH</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000960</td>
<td>O2 LT-FLUC-LOW</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>000970</td>
<td>O2 ELEVATION-4</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>000980</td>
<td>O2 WATERSHED-4</td>
<td>PIC 9(1)</td>
</tr>
<tr>
<td>000990</td>
<td>O2 CARD-5-INPUT.</td>
<td></td>
</tr>
<tr>
<td>01000</td>
<td>O1 CARD-5-INPUT.</td>
<td></td>
</tr>
<tr>
<td>01010</td>
<td>O2 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>01020</td>
<td>O2 UNITS</td>
<td>PIC X</td>
</tr>
<tr>
<td>01030</td>
<td>O2 ACTION-CODE</td>
<td>PIC X</td>
</tr>
<tr>
<td>01040</td>
<td>O2 SOURCE-5</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>01050</td>
<td>O2 RIVER-5</td>
<td>PIC 9(1)</td>
</tr>
<tr>
<td>01055</td>
<td>O2 RIVER-2-5</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>01060</td>
<td>C2 DATE-5</td>
<td>PIC X(6)</td>
</tr>
<tr>
<td>01070</td>
<td>O2 LENGTH-5</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>01080</td>
<td>O2 CHANNEL-5</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>01090</td>
<td>O2 WIDTH-5</td>
<td>PIC Xx</td>
</tr>
<tr>
<td>01100</td>
<td>C2 DEPTH-5</td>
<td>PIC 9(12)</td>
</tr>
<tr>
<td>01110</td>
<td>C2 NORMAL-HIGH</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>01120</td>
<td>O2 MEAN-ANNUAL</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>01130</td>
<td>C2 POOL-WATER</td>
<td>PIC X(14)</td>
</tr>
</tbody>
</table>
001140 O2 AVE-GRADIENT PIC 9999.
001150 C2 STABLE-BANK PIC XX.
001160 C2 FILLER PIC X(12).
001170 O2 CARD-NUMBER PIC 99.
001180 O1 CARD-8-INPUT.
 001190 O2 LAKE-CODE PIC 9(4).
 001200 O2 BOTTOM-STRATA PIC X(36).
 001210 O2 FISHING-WATER1 CCCURS 3 TIMES.
 001215 O3 FISHING-WATER1-DATA PIC 9(6).
 001220 O2 FISHING-WATER2 CCCURS 3 TIMES.
 001225 O3 FISHING-WATER2-DATA PIC 9(5).
 001230 O2 FILLER PIC X(15).
 001240 O2 CARD-NUMBER PIC 99.
 001250 O1 CARD-7-INPUT.
 001260 O2 LAKE-CODE PIC 9(4).
 001270 O2 RESOURCE-USE PIC 9(4).
 001280 O2 WATER-RIGHT PIC 9(6).
 001290 O2 DWELLINGS PIC 9(3).
 001300 C2 ISLANDS PIC XX.
 001310 O2 DEVELOPMENT PIC X(24).
 001320 O2 FILLER PIC X(25).
 001330 O2 CARD-NUMBER PIC 99.
 001340 O1 CARD-8-INPUT.
 001350 O2 LAKE-CODE PIC 9(4).
 001360 O2 TYPE-8 PIC X(2).
 001370 C2 NAME-8 PIC X(10).
 001380 C2 LOCATION-8 PIC 9(3).
 001390 O2 DEPTH-8 PIC X(4).
 001400 O2 HIGH-8 PIC 9(5).
 001410 O2 ANNUAL-8 PIC 9(5).
 001420 O2 BOTTOM-8 PIC XX.
 001430 O2 FILLER PIC X(43).
 001440 O2 CARD-NUMBER PIC 99.
 001450 O1 CARD-9-INPUT.
 001460 O2 LAKE-CODE PIC 9(4).
 001470 O2 SOURCE-9 PIC 9(5).
 001480 O2 UNITS PIC X.
 001490 O2 ACTION-CODE PIC X.
 001500 O2 DATE-9 PIC X(6).
 001510 O2 LOCATION-9 PIC 9(3).
 001520 C2 SECHI PIC 9(1).
 001530 O2 COLOR PIC X(5).
 001540 O2 TEMP-OXY CCCURS 5 TIMES.
 001550 O3 DEPTH-9 PIC 9(3)V9.
 001560 O3 TEMP PIC XX.
 001570 O3 DISS-OXY PIC 9(2)V9.
 001580 O2 FILLER PIC X(5).
 001590 O2 CARD-NUMBER PIC 99.
 001600 O1 CARD-10-INPUT.
 001610 O2 LAKE-CODE PIC 9(4).
 001620 O2 THERMO-LOW PIC 9(3)V9.
 001630 O2 THERMO-HIGH PIC 9(3)V9.
 001640 C2 ALKALINITY CCCURS 3 TIMES.
 001645 O3 ALKALINITY-DATA PIC 9(3).
 001650 O2 PH-10 PIC 9(2)V9.
 001660 O2 CC2 PIC XX.
 001670 O2 MARONESS PIC 9(4).
 001672 O2 CONDUCTIVITY PIC 9(4).
 001674 C2 SOLIDS CCCURS 2 TIMES.
 001677 O3 SOLIDS-DATA PIC 9(4).

...
<table>
<thead>
<tr>
<th>Field Code</th>
<th>Field Description</th>
<th>Occurrence Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>001680</td>
<td>02 PHOS-DATA</td>
<td>OCCURS 2 TIMES</td>
</tr>
<tr>
<td>001685</td>
<td>03 PHOS-OATA</td>
<td>PIC 9V99</td>
</tr>
<tr>
<td>001690</td>
<td>02 CHLOROPHYLL- DATA</td>
<td>CCCURS 2 TIMES</td>
</tr>
<tr>
<td>001695</td>
<td>03 CHLOROPHYLL-OATA</td>
<td>PIC 91(3)</td>
</tr>
<tr>
<td>001700</td>
<td>02 CHLORIDE-ION</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>001710</td>
<td>02 NITROGEN</td>
<td>CCCURS 4 TIMES</td>
</tr>
<tr>
<td>001715</td>
<td>03 NITROGEN-OATA</td>
<td>PIC 99V99</td>
</tr>
<tr>
<td>001720</td>
<td>02 DATE-IC</td>
<td>PIC X(4)</td>
</tr>
<tr>
<td>001730</td>
<td>02 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>001740 01</td>
<td>01 CARD-11-INPUT</td>
<td></td>
</tr>
<tr>
<td>001750</td>
<td>02 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>001760</td>
<td>02 SOURCE-11</td>
<td>PIC 91(3)</td>
</tr>
<tr>
<td>001770</td>
<td>02 ACTION-CODE</td>
<td>PIC X</td>
</tr>
<tr>
<td>001780</td>
<td>C2 RIVER-11</td>
<td>CCCURS 2 TIMES</td>
</tr>
<tr>
<td>001785</td>
<td>03 RIVER-11-OATA</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>001790</td>
<td>02 DATE-11</td>
<td>PIC X(6)</td>
</tr>
<tr>
<td>001800</td>
<td>02 COVERAGE-1</td>
<td>PIC XX</td>
</tr>
<tr>
<td>001810</td>
<td>02 STANDING-EMERG</td>
<td>CCCURS 5 TIMES</td>
</tr>
<tr>
<td>001820</td>
<td>03 SPECIES1-11</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>001830</td>
<td>03 ABUND1-11</td>
<td>PIC X</td>
</tr>
<tr>
<td>001840</td>
<td>02 COVERAGE-2</td>
<td>PIC XX</td>
</tr>
<tr>
<td>001850</td>
<td>02 GROWTH-11</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>001860</td>
<td>02 SUBMERGED</td>
<td>OCCURS 5 TIMES</td>
</tr>
<tr>
<td>001870</td>
<td>03 SPECIES2-11</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>001880</td>
<td>03 ABUND2-11</td>
<td>PIC X</td>
</tr>
<tr>
<td>001890</td>
<td>02 OTHER-LIFE</td>
<td>PIC X(9)</td>
</tr>
<tr>
<td>001900</td>
<td>02 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>001910 01</td>
<td>01 CARD-12-INPUT</td>
<td></td>
</tr>
<tr>
<td>001920</td>
<td>C2 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>001930</td>
<td>C2 SPECIES-12</td>
<td>OCCURS 18 TIMES</td>
</tr>
<tr>
<td>001940</td>
<td>03 SPECIES1-12</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>001950</td>
<td>03 ABUND1-12</td>
<td>PIC X</td>
</tr>
<tr>
<td>001960</td>
<td>02 FILLER</td>
<td>PIC XX</td>
</tr>
<tr>
<td>001970</td>
<td>02 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>001980 01</td>
<td>01 CARD-13-INPUT</td>
<td></td>
</tr>
<tr>
<td>001990</td>
<td>02 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>002000</td>
<td>02 SPAWNING-AREA</td>
<td>OCCURS 5 TIMES</td>
</tr>
<tr>
<td>002010</td>
<td>03 SPECIES-13</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>002020</td>
<td>03 EVALUATION</td>
<td>PIC X</td>
</tr>
<tr>
<td>002030</td>
<td>03 LOCATION-13</td>
<td>OCCURS 3 TIMES</td>
</tr>
<tr>
<td>002040</td>
<td>02 FILLER</td>
<td>PIC X(9)</td>
</tr>
<tr>
<td>002050</td>
<td>02 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>002060 01</td>
<td>01 CARD-14-INPUT</td>
<td></td>
</tr>
<tr>
<td>002070</td>
<td>02 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>002080</td>
<td>02 SOURCE-14</td>
<td>PIC 9(5)</td>
</tr>
<tr>
<td>002090</td>
<td>02 UNITS</td>
<td>PIC X</td>
</tr>
<tr>
<td>002100</td>
<td>02 ACTION-CODE</td>
<td>PIC X</td>
</tr>
<tr>
<td>002110</td>
<td>02 DATE-14</td>
<td>PIC X(6)</td>
</tr>
<tr>
<td>002120</td>
<td>02 STOCKING</td>
<td>CCCURS 4 TIMES</td>
</tr>
<tr>
<td>002130</td>
<td>03 SPECIES-14</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>002140</td>
<td>03 NUMBER-14</td>
<td>PIC 9(7)</td>
</tr>
<tr>
<td>002150</td>
<td>03 SIZE-14</td>
<td>PIC X</td>
</tr>
<tr>
<td>002160</td>
<td>02 FILLER</td>
<td>PIC X(17)</td>
</tr>
<tr>
<td>002170</td>
<td>02 CARD-NUMBER</td>
<td>PIC 99</td>
</tr>
<tr>
<td>002180 01</td>
<td>01 CARD-15-INPUT</td>
<td></td>
</tr>
<tr>
<td>002190</td>
<td>02 LAKE-CODE</td>
<td>PIC 9(4)</td>
</tr>
<tr>
<td>002200</td>
<td>02 METHOD</td>
<td>PIC X</td>
</tr>
<tr>
<td>002210</td>
<td>02 MAULS</td>
<td>PIC 9(3)</td>
</tr>
<tr>
<td>002220</td>
<td>C2 COMMERCIAL</td>
<td>CCCURS 6 TIMES</td>
</tr>
<tr>
<td>002230</td>
<td>03 SPECIES-15</td>
<td>PIC 9(3)</td>
</tr>
</tbody>
</table>
002240 03 WEIGHT-15 PIC 9(6).
002250 02 FILLER PIC X14).
002260 C2 YEAR-15 PIC XX.
002270 02 CARD-NUMBER PIC 99.
002280 01 CARD-16-INPUT. PIC 9(4).
002290 02 LAKE-CODE PIC 9(4).
002300 C2 COMM-16 CCCURS 2 TIMES.
002310 03 SPECIES1-16 PIC 9(3).
002320 03 WEIGHT1-16 PIC 9(6).
002330 02 GAME1-16 CCCURS 5 TIMES.
002340 03 SPECIES2-16 PIC 9(3).
002350 03 NUMBER2-16 PIC 9(4).
002360 C2 GAME2-16 CCCURS 2 TIMES.
002370 03 SPECIES3-16 PIC 9(3).
002380 03 NUMBER3-16 PIC 9(6).
002390 C2 FILLER PIC X.
002400 02 YEAR-16 PIC XX.
002410 02 CARD-NUMBER PIC 99.
002420 01 CARD-17-INP.
002430 02 LAKE-CODE PIC 9(4).
002440 02 SOURCE-17 PIC 9(5).
002450 02 UNITS PIC X.
002460 02 ACTION-CODE PIC X.
002470 02 DATE-17 PIC X(6).
002480 02 PULLS-17 PIC X(6).
002490 02 LENGTH-17 PIC 9(3).
002500 C2 DEPTH-17 PIC XX.
002510 02 MESH-17 PIC 9V9(3).
002520 02 DISTANCE-17 PIC 9(4).
002530 02 AREA-17 PIC 9(3) V9.
002540 02 FILLER PIC X(38).
002550 02 CARD-NUMBER PIC 99.
002560 01 CARD-18-INP.
002570 02 LAKE-CODE PIC 9(4).
002580 02 DATA-18 CCCURS 6 TIMES.
002590 03 SPECIES-18 PIC 9(3).
002600 03 NUMBER-18 PIC 9(6).
002610 03 FILLER PIC X(13).
002620 02 FILLER-2 PIC XX.
002630 02 CARD-NUMBER PIC 99.
002640 01 CARD-19-INP.
002650 02 LAKE-CODE PIC 9(4).
002660 02 SOURCE-19 PIC 9(5).
002670 02 METHOD-19 PIC XXX.
002680 02 MESH-19 PIC 9V9(3).
002690 02 LENGTH-19 PIC 9V9.
002700 02 HEIGHT-19 PIC 9V9.
002720 02 DURATION-19 PIC X(6).
002730 02 AREA-19 PIC 9V9.
002740 02 UNITS-19 PIC X.
002750 02 ACTION-CODE PIC X.
002760 02 DATE-15 PIC X(16).
002770 02 FILLER PIC X(35).
002780 02 CARD-NUMBER PIC 99.
002790 01 CARD-20-INP.
002800 02 LAKE-CODE PIC 9(4).
002810 02 SPECIES-20 PIC 9(3).
002820 02 TOTAL-20 PIC 9(5).
002830 02 PCT-NUM-20 PIC XX.
003420 02 DATA-26 PIC X(21).
003430 02 SPECIES-26 OCCURS 4 TIMES.
003435 03 SPECIES-26-OATA PIC 9(13).
003440 02 FILLER PIC X(28).
003450 02 CARD-NUMBER PIC 99.
003460 01 CARD-27-INPUT.
003470 02 LAKE-CODE PIC 9(4).
003480 02 ACCURACY-27 PIC X.
003490 02 SOURCE-27 PIC 9(4).
003500 02 DATE-27 PIC X(6).
003510 02 HOURS-27 PIC 9(6).
003520 02 AVE-OAY-27 PIC 99V9.
003530 C2 WEIGHT-27 PIC 9(6).
003540 02 NUMBER-27 PIC 9(6).
003550 02 FILLER PIC X(42).
003560 02 CARD-NUMBER PIC 99.
003570 01 CARD-28-INPUT.
003580 02 LAKE-CODE PIC 9(4).
003590 02 DATA-28 OCCURS 8 TIMES.
003600 03 SPECIES-28 PIC 9(3).
003610 03 CATCH-HR-28 PIC 9(3).
003620 03 WT-HR-28 PIC 9V99.
003630 02 FILLER PIC XX.
003640 02 CARD-NUMBER PIC 99.
003650 01 CARD-29-INPUT.
003660 02 LAKE-CODE PIC 9(4).
003670 02 SOURCE-29 PIC 9(5).
003690 02 DATE-29 PIC X(6).
003700 02 HOURS-29 PIC 9(6).
003710 02 ACTIVS-29 OCCURS 11 TIMES.
003715 03 ACTIVS-29-OATA PIC 9(4).
003720 02 FILLER PIC X(13).
003730 02 CARD-NUMBER PIC 99.
003740 01 CARD-30-INPUT.
003750 02 LAKE-CODE PIC 9(4).
003760 02 SOURCE-30 PIC 9(5).
003770 02 ACTION-CODE PIC X.
003780 02 DATE-30 PIC X(6).
003790 02 RECS-30 PIC X(8).
003800 02 FILLER PIC X(54).
003810 02 CARD-NUMBER PIC 99.
003820 01 CARD-31-INPLT.
003830 02 LAKE-CODE PIC 9(4).
003840 02 DATA-31 OCCURS 2 TIMES.
003850 03 REC-31 PIC X.
003860 03 SPECIES3-31 PIC 9(3).
003870 03 SPECIES3-31 PIC 9(3).
003880 03 BENEFIT-31 PIC 9(6).
003890 03 YEAR-COMPLETE PIC X.
003900 03 COST-31 PIC 9(6).
003910 02 FILLER PIC X(28).
003920 02 YEAR-31 PIC X.
003930 02 CARD-NUMBER PIC 99.
003940 01 CARD-32-INPUT.
003950 02 LAKE-CODE PIC 9(4).
003960 02 DATA-32 OCCURS 2 TIMES.
003970 03 LOCATION-32 PIC 9(3).
003980 03 REC-32 PIC X.
003990 03 BENEFIT-32 PIC 9(6).
004000 03 COST-32 PIC 9(5).
004010 03 REC2-32 PIC XX.
004020 03 BENEFIT2-32 PIC 9(6).
004030 03 COST2-32 PIC 9(5).
004040 02 FILLER PIC X(14).
004050 02 YEAR-32 PIC XX.
004060 02 CARD-NUMBER PIC 99.
004070 01 CARD-33-INPUT.
004080 02 LAKE-CODE PIC 9(4).
004090 02 CARD-33-INFO PIC X(74).
004100 02 CARD-NUMBER PIC 99.
004110 01 CARD-34-INPUT.
004120 02 LAKE-CODE PIC 9(4).
004130 02 SOURCE-34 PIC 9(5).
004140 02 UNITS-34 PIC X.
004150 02 ACTION-CODE-34 PIC X.
004160 02 DATE-34 PIC X(16).
004170 02 FILLER PIC X(16).
004180 02 CARD-NUMBER PIC 99.
004190 01 CARD-35-INPUT.
004200 02 LAKE-CODE PIC 9(6).
004210 02 LOCATION-35 PIC 9(3).
004220 02 NAME-35 PIC X(15).
004230 02 FACILITIES-35 PIC X(25).
004240 02 WATERFRONT-35 PIC 9(6).
004250 02 AREA-35 PIC 9(6).
004260 02 MAINTENANCE-35 PIC 9(6).
004270 02 FACIL-35 PIC 9(6).
004280 02 INVEST-35 PIC 9(6).
004290 02 YEAR-35 PIC XX.
004300 02 FILLER PIC X.
004310 02 CARD-NUMBER PIC 99.
004320 WORKING-STORAGE SECTION.
004330 77 CLO-LAKE-CODE PIC 9(4).
004335 77 ISUB PIC 99.
004335 77 JSUB PIC 99.
004340 01 TAPEOUT-REC.
004350 02 CARD-1-NUM PIC 9.
004360 02 CARD-1-DATA OCCURS 1 TIMES.
004370 03 SOURCE-1 PIC S9(5) COMP-3.
004380 03 DATE-1 PIC X(16).
004390 03 DATA-1 PIC X(22).
004400 02 CARD-2-NUM PIC 9.
004410 02 CARD-2-DATA OCCURS 2 TIMES.
004415 03 DATA-2 PIC X(70).
004420 02 CARD-3-NUM PIC 9.
004430 02 CARD-3-DATA OCCURS 1 TIMES.
004440 03 SOURCE-3 PIC S9(5) COMP-3.
004450 03 RIVER-3 OCCURS 2 TIMES.
004455 04 RIVER-3-DATA PIC S9(3) COMP-3.
004460 03 DATE-3 PIC S9(6) COMP-3.
004470 03 DATA-3 PIC X(4).
004480 03 SPECIES-3 OCCURS 4 TIMES.
004485 04 SPECIES-3-DATA PIC S9(3) COMP-3.
004490 03 DRAINAGE-3 OCCURS 3 TIMES.
004495 04 DRAINAGE-3-DATA PIC S9(4) COMP-3.
004500 03 MAP-DATE-3 PIC S9(4) COMP-3.
004510 03 POPULATE-3 OCCURS 3 TIMES.
004515 04 POPULATE-3-DATA PIC S9(6) COMP-3.
004520 02 CARD-4-NUM PIC 9.
004530 02 CARD-4-DATA OCCURS 1 TIMES.
<table>
<thead>
<tr>
<th>Field</th>
<th>PIC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>004540</td>
<td>03 TYPE-4</td>
<td>PIC X.</td>
</tr>
<tr>
<td>004550</td>
<td>03 LOCATION-4</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004560</td>
<td>03 CONST-DATE-4</td>
<td>PIC X(4).</td>
</tr>
<tr>
<td>004570</td>
<td>03 SPILLWAY-4</td>
<td>PIC X.</td>
</tr>
<tr>
<td>004580</td>
<td>03 WIDTH-4</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>004590</td>
<td>03 OWNER-4</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>004600</td>
<td>03 PLAN-ESTIM</td>
<td>PIC X.</td>
</tr>
<tr>
<td>004610</td>
<td>03 AREA-4</td>
<td>PIC S9(9) COMP-3.</td>
</tr>
<tr>
<td>004620</td>
<td>03 MEANDERED</td>
<td>PIC S9(6) COMP-3.</td>
</tr>
<tr>
<td>004630</td>
<td>03 LITTORAL</td>
<td>PIC S9(6) COMP-3.</td>
</tr>
<tr>
<td>004640</td>
<td>03 PERCENT-LIT</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>004650</td>
<td>03 MAX-DEPTH-4</td>
<td>PIC S9(4) COMP-3.</td>
</tr>
<tr>
<td>004660</td>
<td>03 AVE-DEPTH-4</td>
<td>PIC S9(4) COMP-3.</td>
</tr>
<tr>
<td>004670</td>
<td>03 BENCHMARK</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004680</td>
<td>03 ANN-FLUC-HIGH</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004690</td>
<td>03 ANN-FLUC-LOW</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004700</td>
<td>03 LT-FLUC-HIGH</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004710</td>
<td>03 LT-FLUC-LOW</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004720</td>
<td>03 ELEVATION-4</td>
<td>PIC S9(4) COMP-3.</td>
</tr>
<tr>
<td>004730</td>
<td>03 WATERShed-4</td>
<td>PIC S5(1) V9(12) COMP-3.</td>
</tr>
<tr>
<td>004740</td>
<td>02 CARO-5-NUm</td>
<td>PIC 9.</td>
</tr>
<tr>
<td>004750</td>
<td>02 CARO-5-DATA</td>
<td>OCCURS 1 TIMES.</td>
</tr>
<tr>
<td>004760</td>
<td>03 SOURCE-5</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>004770</td>
<td>03 RIVER1-5</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004779</td>
<td>03 RIVER2-5</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004780</td>
<td>03 DATE-5</td>
<td>PIC X(16).</td>
</tr>
<tr>
<td>004790</td>
<td>03 LENGTH-5</td>
<td>PIC S9(5) V9 COMP-3.</td>
</tr>
<tr>
<td>004800</td>
<td>03 CHANNEL-5</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004810</td>
<td>03 WIDTH-5</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>004820</td>
<td>03 DEPTH-5</td>
<td>PIC S9(2) V9 COMP-3.</td>
</tr>
<tr>
<td>004830</td>
<td>03 NORMAL-HIGH</td>
<td>PIC S5(5) COMP-3.</td>
</tr>
<tr>
<td>004840</td>
<td>03 MEAN-ANNUAL</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>004850</td>
<td>03 POOL-WATER</td>
<td>PIC X(16).</td>
</tr>
<tr>
<td>004860</td>
<td>03 AVE-GRADIENT</td>
<td>PIC S9(2) V9 COMP-3.</td>
</tr>
<tr>
<td>004870</td>
<td>03 STABLE-BANK</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>004880</td>
<td>02 CARO-6-NUm</td>
<td>PIC 9.</td>
</tr>
<tr>
<td>004890</td>
<td>02 CARO-6-DATA</td>
<td>OCCURS 1 TIMES.</td>
</tr>
<tr>
<td>004900</td>
<td>03 BOTTOM-STRATA</td>
<td>PIC X(36).</td>
</tr>
<tr>
<td>004910</td>
<td>03 FISHING-WATER1</td>
<td>OCCURS 3 TIMES.</td>
</tr>
<tr>
<td>004915</td>
<td>04 FISHING-WATER1-DATA</td>
<td>PIC S9(6) COMP-3.</td>
</tr>
<tr>
<td>004920</td>
<td>03 FISHING-WATER2</td>
<td>OCCURS 3 TIMES.</td>
</tr>
<tr>
<td>004925</td>
<td>04 FISHING-WATER2-DATA</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>004930</td>
<td>02 CARO-7-NUm</td>
<td>PIC 9.</td>
</tr>
<tr>
<td>004940</td>
<td>02 CARO-7-DATA</td>
<td>OCCURS 1 TIMES.</td>
</tr>
<tr>
<td>004950</td>
<td>03 RESOURCE-USE</td>
<td>PIC S9(4) COMP-3.</td>
</tr>
<tr>
<td>004960</td>
<td>03 WATER-RIGHT</td>
<td>PIC S9(6) COMP-3.</td>
</tr>
<tr>
<td>004970</td>
<td>03 DWELLINGS</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>004980</td>
<td>03 ISLANDS</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>004990</td>
<td>03 DEVELOPMENT</td>
<td>PIC X(34).</td>
</tr>
<tr>
<td>005000</td>
<td>02 CARO-8-NUm</td>
<td>PIC 9.</td>
</tr>
<tr>
<td>005010</td>
<td>02 CARO-8-DATA</td>
<td>OCCURS 5 TIMES.</td>
</tr>
<tr>
<td>005020</td>
<td>03 TYPE-8</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>005030</td>
<td>03 NAME-8</td>
<td>PIC X(10).</td>
</tr>
<tr>
<td>005040</td>
<td>03 LOCATION-8</td>
<td>PIC S9(3) COMP-3.</td>
</tr>
<tr>
<td>005050</td>
<td>03 DEPTH-8</td>
<td>PIC X(4).</td>
</tr>
<tr>
<td>005060</td>
<td>03 HIGH-8</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>005070</td>
<td>03 ANNUAL-8</td>
<td>PIC S9(5) COMP-3.</td>
</tr>
<tr>
<td>005080</td>
<td>03 BOTTOM-8</td>
<td>PIC XX.</td>
</tr>
<tr>
<td>005090</td>
<td>02 CARO-9-NUm</td>
<td>PIC 9.</td>
</tr>
<tr>
<td>005100</td>
<td>02 CARO-9-DATA</td>
<td>OCCURS 4 TIMES.</td>
</tr>
</tbody>
</table>
005110 03 SOURCE-9 PIC S9(5) COMP-3.
005120 03 DATE-9 PIC X(6).
005130 03 LOCATION-9 PIC S9(3) COMP-3.
005140 03 SECCHI PIC S9(2)9V COMP-3.
005150 03 COLOR PIC X(5).
005160 03 TEMP-OXY OCCURS 5 TIMES.
005170 04 DEPTH-9 PIC S9(3)9V COMP-3.
005180 04 TEMP PIC XX.
005190 04 DISS-OXY PIC S9(2)9V COMP-3.
005200 02 CARD-10-NUM PIC 9.
005210 02 CARD-10-DATA OCCURS 4 TIMES.
005220 03 THERMO-LOW PIC S9(3)9V COMP-3.
005230 03 THERMO-HIGH PIC S9(3)9V COMP-3.
005240 03 ALKALINITY OCCURS 3 TIMES.
005245 04 ALKALINITY-DATA PIC S9(3) COMP-3.
005250 03 PH-1O PIC S9(2)9V COMP-3.
005260 03 CD2 PIC XX.
005270 03 HARDNESS PIC S9(4) COMP-3.
005280 03 CONDUCTIVITY PIC S9(4) COMP-3.
005290 03 SOLIDS OCCURS 2 TIMES.
005295 04 SOLIDS-DATA PIC S9(4) COMP-3.
005300 03 PHOS OCCURS 2 TIMES.
005305 04 PHOS-DATA PIC S9V9(2) COMP-3.
005310 03 CHLOROPHYLL OCCURS 2 TIMES.
005315 04 CHLOROPHYLL-DATA PIC S9(3) COMP-3.
005320 03 CHLORIDE-ICN PIC S9(4) COMP-3.
005330 03 NITROGEN OCCURS 4 TIMES.
005335 04 NITROGEN-DATA PIC S9V9(3) COMP-3.
005340 03 DATE-10 PIC X(4).
005350 02 CARD-11-NUM PIC 9.
005360 02 CARD-11-DATA OCCURS 1 TIMES.
005370 03 SOURCE-11 PIC S9(5) COMP-3.
005380 03 RIVER-11 OCCURS 2 TIMES.
005385 04 RIVER-11-DATA PIC S9(3) COMP-3.
005390 03 DATE-11 PIC X(6).
005400 03 COVERAGE-1 PIC XX.
005410 03 STANDING-EMERG OCCURS 5 TIMES.
005420 04 SPECIES-11 PIC S9(3) COMP-3.
005430 04 ABUND1-11 PIC X.
005440 03 COVERAGE-2 PIC XX.
005450 03 GROWTH-11 PIC S9(3) COMP-3.
005460 03 SUBMERGED OCCURS 5 TIMES.
005470 04 SPECIES2-11 PIC S9(3) COMP-3.
005480 04 ABUND2-11 PIC X.
005490 03 OTHER-LIFE PIC X(9).
005500 02 CARD-12-NUM PIC 9.
005510 02 CARD-12-DATA OCCURS 4 TIMES.
005520 03 SPECIES-12 OCCURS 18 TIMES.
005530 04 SPECIES-1-12 PIC S9(3) COMP-3.
005540 04 ABUND1-12 PIC X.
005550 02 CARD-13-NUM PIC 9.
005560 02 CARD-13-DATA OCCURS 1 TIMES.
005570 03 SPawning-AREA OCCURS 5 TIMES.
005580 04 SPECIES-13 PIC S9(3) COMP-3.
005590 04 EVALUATION PIC X.
005600 04 LOCATION-13 OCCURS 3 TIMES PIC S9(3) COMP-3.
005610 02 CARD-14-NUM PIC 9.
005620 02 CARD-14-DATA OCCURS 1 TIMES.
005625 03 SOURCE-14 PIC S9(5) COMP-3.
005630 03 DATE-14 PIC X(6).
005640 03 STOCKING OCCURS 4 TIMES.
005650 04 SPECIES-14 PIC S9(3) COMP-3.
005660 04 NUMBER-14 PIC S9(7) COMP-3.
005670 04 SIZE-14 PIC X.
005680 02 CARD-15-NUM PIC 9.
005690 02 CARD-15-DATA OCCURS 2 TIMES.
005700 03 METHOD PIC X.
005710 03 HAULS PIC S9(3) COMP-3.
005720 03 COMMERCIAL OCCURS 6 TIMES.
005730 04 SPECIES-15 PIC S9(3) COMP-3.
005740 04 WEIGHT-15 PIC S9(6) COMP-3.
005750 03 YEAR-15 PIC XX.
005760 02 CARD-16-NUM PIC 9.
005770 02 CARD-16-DATA OCCURS 2 TIMES.
005780 03 COMM-16 OCCURS 2 TIMES.
005790 04 SPECIES1-16 PIC S9(3) COMP-3.
005800 04 WEIGHT1-16 PIC S9(6) COMP-3.
005810 03 GAME1-16 OCCURS 5 TIMES.
005820 04 SPECIES2-16 PIC S9(3) COMP-3.
005830 04 NUMBER2-16 PIC S9(4) COMP-3.
005840 03 GAME2-16 OCCURS 2 TIMES.
005850 04 SPECIES3-16 PIC S9(3) COMP-3.
005860 04 NUMBER3-16 PIC S9(6) COMP-3.
005870 03 YEAR-16 PIC XX.
005880 02 CARD-17-NUM PIC 9.
005890 02 CARD-17-DATA OCCURS 1 TIMES.
005900 03 SOURCE-17 PIC S9(5) COMP-3.
005910 03 DATE-17 PIC X(6).
005920 03 PULLS-17 PIC X(6).
005930 03 LENGTH-17 PIC S9(3) COMP-3.
005940 03 DEPTH-17 PIC XX.
005950 03 MESH-17 PIC S9W9(3) COMP-3.
005960 03 DISTANCE-17 PIC S9(4) COMP-3.
005970 03 AREA-17 PIC S9W9(3) COMP-3.
005980 03 NET-17 PIC X(6).
005990 02 CARD-18-DATA OCCURS 5 TIMES.
006000 03 DATA-18 OCCURS 6 TIMES.
006010 04 SPECIES-18 PIC S9(3) COMP-3.
006020 04 NUMBER-18 PIC S9(6) COMP-3.
006030 02 CARD-19-NUM PIC 9.
006040 02 CARD-19-DATA OCCURS 4 TIMES.
006050 03 SOURCE-19 PIC S9(5) COMP-3.
006060 03 METHOD-19 PIC X(3).
006070 03 MESH-19 PIC S9(2)V9(3) COMP-3.
006080 03 LENGTH-19 PIC S9(2)V9 COMP-3.
006090 03 HEIGHT-19 PIC S9(2)V9 COMP-3.
006100 03 WIDTH-19 PIC S9(2)V9 COMP-3.
006110 03 DURATION-19 PIC X(6).
006120 03 AREA-19 PIC S9W9(3) COMP-3.
006130 03 DATE-19 PIC X(6).
006140 02 CARD-20-NUM PIC 99.
006150 02 CARD-20-DATA OCCURS 40 TIMES.
006160 03 SPECIES-20 PIC S9(3) COMP-3.
006170 03 TOTAL-20 PIC S9(5) COMP-3.
006180 03 PCT-NUM-20 PIC XX.
006190 03 TOTAL-WT-20 PIC S9(5)V9 COMP-3.
006200 03 PCT-WT-20 PIC XX.
006210 03 MEAN-LENGTH-20 PIC S9(3)V9 COMP-3.
006220 03 MEAN-WT-20 PIC S9(2)V9(3) COMP-3.
006230 03 NET-NUM-20 PIC S9(4) COMP-3.
006240 03 NET-WT-20 PIC S9(4)V9 COMP-3.
006290 03 YEAR-20 PIC XX.
006300 02 CARD-21-NUM PIC 9.
006310 02 CARD-21-DATA OCCURS 2 TIMES.
006320 03 SOURCE-21 PIC S9(5) COMP-3.
006330 03 METHOD-21 PIC X(3).
006340 03 MESH-21 PIC S9(2)X9(3) COMP-3.
006350 03 LENGTH-21 PIC S9(2)V9 COMP-3.
006360 03 HEIGHT-21 PIC S9(2)V9 COMP-3.
006370 03 WIDTH-21 PIC S9(2)V9 COMP-3.
006380 03 DURATION-21 PIC X(6).
006390 03 AREA-21 PIC S9(2)V9 COMP-3.
006400 03 DATE-21 PIC X(6).
006410 02 CARD-22-NUM PIC 99.
006420 02 CARD-22-DATA OCCURS 10 TIMES.
006430 03 SPECIES-22 PIC S9(3) COMP-3.
006440 03 DATA-22 PIC X(65).
006450 03 TOTAL-22 PIC S9(3) COMP-3.
006460 03 YEAR-22 PIC XX.
006470 02 CARD-23-NUM PIC 9.
006480 02 CARD-23-DATA OCCURS 2 TIMES.
006490 03 SOURCE-23 PIC S9(5) COMP-3.
006500 03 DATE-23 PIC X(6).
006510 02 CARD-24-NUM PIC 99.
006520 02 CARD-24-DATA OCCURS 16 TIMES.
006530 03 SPECIES-24 PIC S9(3) COMP-3.
006540 03 SIZE-24 PIC S9(4) COMP-3.
006550 03 SAMPLE-24 PIC S9(3) COMP-3.
006560 03 AGE-GROUP-24 OCCURS 9 TIMES.
006565 04 AGE-GROUP-24-DATA PIC S9(3)V9 COMP-3.
006570 02 CARD-25-NUM PIC 99.
006580 02 CARD-25-DATA OCCURS 16 TIMES.
006590 03 AGE-GROUP-25 PIC X(36).
006600 02 CARD-26-NUM PIC 9.
006610 02 CARD-26-DATA OCCURS 1 TIMES.
006620 03 DATE-26 PIC X(6).
006630 03 DATA-26 PIC X(121).
006640 03 SPECIES-26 OCCURS 4 TIMES.
006645 04 SPECIES-26-DATA PIC S9(3) COMP-3.
006650 02 CARD-27-NUM PIC 9.
006660 02 CARD-27-DATA OCCURS 1 TIMES.
006670 03 ACCURACY-27 PIC X.
006680 03 SOURCE-27 PIC S9(4) COMP-3.
006690 03 DATE-27 PIC X(16).
006700 03 HOURS-27 PIC S9(6) COMP-3.
006710 03 AVE-DAY-27 PIC S9(2)V9 COMP-3.
006720 03 WEIGHT-27 PIC S9(6) COMP-3.
006730 03 NUMBER-27 PIC S9(6) COMP-3.
006740 02 CARD-28-NUM PIC 9.
006750 02 CARD-28-DATA OCCURS 1 TIMES.
006760 03 DATA-28 OCCURS 8 TIMES.
006770 04 SPECIES-28 PIC S9(3) COMP-3.
006780 04 CATCH-HR-28 PIC S9(3) COMP-3.
006790 04 WT-HR-28 PIC S9V9(2) COMP-3.
006800 02 CARD-29-NUM PIC 9.
006810 02 CARD-29-DATA OCCURS 1 TIMES.
006820 03 SOURCE-29 PIC S9(5) COMP-3.
006830 03 DATE-29 PIC X(16).
006840 03 HOURS-29 PIC S9(6) COMP-3.
006850 03 ACTIVS-29 OCCURS 11 TIMES.
006855 04 ACTIVS-29-DATA PIC S9(4) COMP-3.
006860 02 CARO-30-NUM PIC 9.
006870 02 CARO-36-CATA PICCUCRS 2 TIMES.
006880 03 SOURCE-30 PIC S9(5) COMP-3.
006890 03 DATE-30 PIC X16).
006900 03 REC3-30 PIC X18).
006910 02 CARO-31-NUM PIC 9.
006920 02 CARO-31-CATA PICCUCRS 6 TIMES.
006930 03 DATA-31 OCCURS 2 TIMES.
006940 04 REC-31 PIC xx.
006950 04 SPECIES1-31 PIC S9(3) COMP-3.
006960 04 SPECIES2-31 PIC S9(3) COMP-3.
006970 04 BENEFIT-31 PIC S9(6) COMP-3.
006980 04 YEAR-COMPLETE PIC xx.
006990 04 COST-31 PIC S9(6) COMP-3.
006995 03 YEAR-31 PIC xx.
007000 02 CARO-32-NUM PIC 9.
007010 C2 CARO-32-CATA PICCUCRS 6 TIMES.
007020 03 DATA-32 OCCURS 2 TIMES.
007030 04 LOCATION-32 PIC S9(3) COMP-3.
007040 04 REC-32 PIC xx.
007050 04 BENEFIT-32 PIC S9(6) COMP-3.
007060 04 COST-32 PIC S9(5) COMP-3.
007070 04 REC2-32 PIC xx.
007080 04 BENEFIT2-32 PIC S9(6) COMP-3.
007090 04 COST2-32 PIC S9(5) COMP-3.
007100 03 YEAR-32 PIC xx.
007110 02 CARO-33-NUM PIC 9.
007120 02 CARO-33-DATA PICCUCRS 2 TIMES.
007125 03 CARO-33-INFO PIC X174).
007130 02 CARO-34-NUM PIC 9.
007140 02 CARO-34-CATA PICCUCRS 7 TIMES.
007150 03 SOURCE-34 PIC S9(5) COMP-3.
007160 03 DATE-34 PIC X16).
007170 02 CARO-35-NUM PIC 99.
007180 02 CARO-35-DATA PICCUCRS 49 TIMES.
007190 03 LOCATION-35 PIC S9(3) COMP-3.
007200 03 NAME-35 PIC X15).
007210 03 FACILITIES-35 PIC X125).
007220 03 WATERFRONT-35 PIC S9(6) COMP-3.
007230 03 AREA-35 PIC S9(4) COMP-3.
007240 03 MAINTENANCE-35 PIC S9(6) COMP-3.
007250 03 FACIL-35 PIC S9(6) COMP-3.
007260 03 INVEST-35 PIC S9(6) COMP-3.
007270 03 YEAR-35 PIC XX.
007280 PROCEDURE DIVISION.
007290 SORT-DATA SECTION.
007300 SORT SORT-FILE
007310 ASCENDING KEY SORT-LAKE-CODE
007320 ASCENDING KEY SORT-CARD-CODE
007330 INPUT PROCEDURE SORT-PREP
007340 GIVING TEMP-FILE.
007350 BUILD-RECORD.
007360 OPEN INPUT TEMP-FILE OUTPUT TAPEOUT-FILE.
007365 MOVE SPACES TO TAPEOUT-REC.
007370 READ TEMP-FILE.
007380 MOVE TEMP-LAKE-CODE TO OLD-LAKE-CODE.
007390 GO TO BRANCH.
007400 READ-TAPE.
007410 READ TEMP-FILE AT END GO TO NO-MORE-DATA.
007420 IF TEMP-LAKE-CODE IS NOT EQUAL TO OLD-LAKE-CODE PERFORM
007430 WRITE-LAKE-RECORD.
007435 BRANCH.

007440 GO TO CAR0-1, CAR0-2, CAR0-3, CAR0-4, CAR0-5, CAR0-6, CAR0-7,
007450 CAR0-8, CAR0-9, CAR0-10, CAR0-11, CAR0-12, CAR0-13, CAR0-14,
007460 CAR0-15, CAR0-16, CAR0-17, CAR0-18, CAR0-19, CAR0-20, CAR0-21,
007470 CAR0-22, CAR0-23, CAR0-24, CAR0-25, CAR0-26, CAR0-27, CAR0-28,
007480 CAR0-29, CAR0-30, CAR0-31, CAR0-32, CAR0-33, CAR0-34, CAR0-35,
007490 DEPENDING ON TEMP-CARD-CODE.
007500 DISPLAY *BAD RECORD—LAKE CODE *, TEMP-LAKE-CODE, *
007510 *, CAR0 CODE *, TEMP-CARD-CODE *
007520 GO TO READ-TAPE.
007530 CAR0-1.
007540 IF CAR0-1-NUM IS NOT NUMERIC COMPUTE CAR0-1-NUM = 0.
007550 IF CAR0-1-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
007560 GO TO READ-TAPE.
007580 COMPUTE CAR0-1-NUM = CAR0-1-NUM + 1.
007590 MOVE CORRESPONDING CAR0-1-INPUT TO CAR0-1-DATA(CAR0-1-NUM).
007600 GO TO READ-TAPE.
007610 CAR0-2.
007620 IF CAR0-2-NUM IS NOT NUMERIC COMPUTE CAR0-2-NUM = 0.
007630 IF CAR0-2-NUM IS GREATER THAN 1 PERFORM CAR0-ERROR
007640 GO TO READ-TAPE.
007660 COMPUTE CAR0-2-NUM = CAR0-2-NUM + 1.
007670 MOVE CORRESPONDING CAR0-2-INPUT TO CAR0-2-DATA(CAR0-2-NUM).
007680 GO TO READ-TAPE.
007690 CAR0-3.
007700 IF CAR0-3-NUM IS NOT NUMERIC COMPUTE CAR0-3-NUM = 0.
007710 IF CAR0-3-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
007720 GO TO READ-TAPE.
007730 COMPUTE CAR0-3-NUM = CAR0-3-NUM + 1.
007740 PERFORM MOVE-CARD-3.
007750 GO TO READ-TAPE.
007760 CAR0-4.
007770 IF CAR0-4-NUM IS NOT NUMERIC COMPUTE CAR0-4-NUM = 0.
007780 IF CAR0-4-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
007790 GO TO READ-TAPE.
007800 COMPUTE CAR0-4-NUM = CAR0-4-NUM + 1.
007810 MOVE CORRESPONDING CAR0-4-INPUT TO CAR0-4-DATA(CAR0-4-NUM).
007820 GO TO READ-TAPE.
007830 CAR0-5.
007840 IF CAR0-5-NUM IS NOT NUMERIC COMPUTE CAR0-5-NUM = 0.
007850 IF CAR0-5-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
007860 GO TO READ-TAPE.
007870 COMPUTE CAR0-5-NUM = CAR0-5-NUM + 1.
007880 MOVE CORRESPONDING CAR0-5-INPUT TO CAR0-5-DATA(CAR0-5-NUM).
007890 GO TO READ-TAPE.
007900 CAR0-6.
007910 IF CAR0-6-NUM IS NOT NUMERIC COMPUTE CAR0-6-NUM = 0.
007920 IF CAR0-6-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
007930 GO TO READ-TAPE.
007940 COMPUTE CAR0-6-NUM = CAR0-6-NUM + 1.
007950 PERFORM MOVE-CARD-6.
007960 GO TO READ-TAPE.
007970 CAR0-7.
007980 IF CAR0-7-NUM IS NOT NUMERIC COMPUTE CAR0-7-NUM = 0.
007990 IF CAR0-7-NUM IS GREATER THAN 0 PERFORM CAR0-ERROR
008000 GO TO READ-TAPE.
008010 COMPUTE CAR0-7-NUM = CAR0-7-NUM + 1.
008020 MOVE CORRESPONDING CAR0-7-INPUT TO CAR0-7-DATA(CAR0-7-NUM).
008030 GO TO READ-TAPE.
008040 CARD-8.
008050 IF CARD-8-NUM IS NOT NUMERIC COMPUTE CARD-8-NUM = 0.
008060 IF CARD-8-NUM IS GREATER THAN 4 PERFORM CARD-ERROR
008070 GO TO READ-TAPE.
008080 COMPUTE CARD-8-NUM = CARD-8-NUM + 1.
008090 MOVE CORRESPONDING CARD-8-INPUT TO CARD-8-DATA(CARD-8-NUM)
008100 GO TO READ-TAPE.
008110 CARD-9.
008120 IF CARD-9-NUM IS NOT NUMERIC COMPUTE CARD-9-NUM = 0.
008130 IF CARD-9-NUM IS GREATER THAN 3 PERFORM CARD-ERROR
008140 GO TO READ-TAPE.
008150 COMPUTE CARD-9-NUM = CARD-9-NUM + 1.
008160 PERFORM MOVE-CARD-9.
008170 GO TO READ-TAPE.
008180 CARD-10.
008190 IF CARD-10-NUM IS NOT NUMERIC COMPUTE CARD-10-NUM = 0.
008200 IF CARD-10-NUM IS GREATER THAN 3 PERFORM CARD-ERROR
008210 GO TO READ-TAPE.
008220 COMPUTE CARD-10-NUM = CARD-10-NUM + 1.
008230 PERFORM MOVE-CARD-10.
008240 GO TO READ-TAPE.
008250 CARD-11.
008260 IF CARD-11-NUM IS NOT NUMERIC COMPUTE CARD-11-NUM = 0.
008270 IF CARD-11-NUM IS GREATER THAN 0 PERFORM CARD-ERROR
008280 GO TO READ-TAPE.
008290 COMPUTE CARD-11-NUM = CARD-11-NUM + 1.
008300 PERFORM MOVE-CARD-11.
008310 GO TO READ-TAPE.
008320 CARD-12.
008330 IF CARD-12-NUM IS NOT NUMERIC COMPUTE CARD-12-NUM = 0.
008340 IF CARD-12-NUM IS GREATER THAN 3 PERFORM CARD-ERROR
008350 GO TO READ-TAPE.
008360 COMPUTE CARD-12-NUM = CARD-12-NUM + 1.
008370 PERFORM MOVE-CARD-12.
008380 GO TO READ-TAPE.
008390 CARD-13.
008400 IF CARD-13-NUM IS NOT NUMERIC COMPUTE CARD-13-NUM = 0.
008410 IF CARD-13-NUM IS GREATER THAN 0 PERFORM CARD-ERROR
008420 GO TO READ-TAPE.
008440 PERFORM MOVE-CARD-13.
008450 GO TO READ-TAPE.
008460 CARD-14.
008470 IF CARD-14-NUM IS NOT NUMERIC COMPUTE CARD-14-NUM = 0.
008480 IF CARD-14-NUM IS GREATER THAN 0 PERFORM CARD-ERROR
008490 GO TO READ-TAPE.
008500 COMPUTE CARD-14-NUM = CARD-14-NUM + 1.
008510 PERFORM MOVE-CARD-14.
008520 GO TO READ-TAPE.
008530 CARD-15.
008540 IF CARD-15-NUM IS NOT NUMERIC COMPUTE CARD-15-NUM = 0.
008550 IF CARD-15-NUM IS GREATER THAN 1 PERFORM CARD-ERROR
008560 GO TO READ-TAPE.
008580 PERFORM MOVE-CARD-15.
008590 GO TO READ-TAPE.
008600 CARD-16.
008610 IF CARD-16-NUM IS NOT NUMERIC COMPUTE CARD-16-NUM = 0.
008620 IF CAR0-16-NUM IS GREATER THAN 1 PERFORM CARD-ERROR
008630 GO TO READ-TAPE.
008640 COMPUTE CARD-16-NUM = CARD-16-NUM + 1.
008650 PERFORM MOVE-CARD-16.
008660 GO TO READ-TAPE.
008670 CARD-17.
008680 IF CARD-17-NUM IS NOT NUMERIC COMPUTE CARD-17-NUM = 0.
008690 IF CARD-17-NUM IS GREATER THAN 0 PERFORM CARD-ERROR
008700 GO TO READ-TAPE.
008710 COMPUTE CARD-17-NUM = CARD-17-NUM + 1.
008720 MOVE CORRESPONDING CARD-17-INPUT TO CARD-17-DATA(CARD-17-NUM).
008730 GO TO READ-TAPE.
008740 CARD-18.
008750 IF CARD-18-NUM IS NOT NUMERIC COMPUTE CARD-18-NUM = 0.
008760 IF CARD-18-NUM IS GREATER THAN 4 PERFORM CARD-ERROR
008770 GO TO READ-TAPE.
008790 PERFORM MOVE-CARD-18.
008800 GO TO READ-TAPE.
008810 CARD-19.
008820 IF CARD-19-NUM IS NOT NUMERIC COMPUTE CARD-19-NUM = 0.
008830 IF CARD-19-NUM IS GREATER THAN 3 PERFORM CARD-ERROR
008840 GO TO READ-TAPE.
008870 GO TO READ-TAPE.
008880 CARD-20.
008890 IF CARD-20-NUM IS NOT NUMERIC COMPUTE CARD-20-NUM = 0.
008900 IF CARD-20-NUM IS GREATER THAN 39 PERFORM CARD-ERROR
008910 GO TO READ-TAPE.
008920 COMPUTE CARD-20-NUM = CARD-20-NUM + 1.
008930 MOVE CORRESPONDING CARD-20-INPUT TO CARD-20-DATA(CARD-20-NUM).
008940 GO TO READ-TAPE.
008950 CARD-21.
008960 IF CARD-21-NUM IS NOT NUMERIC COMPUTE CARD-21-NUM = 0.
008970 IF CARD-21-NUM IS GREATER THAN 1 PERFORM CARD-ERROR
008980 GO TO READ-TAPE.
008990 COMPUTE CARD-21-NUM = CARD-21-NUM + 1.
009000 MOVE CORRESPONDING CARD-21-INPUT TO CARD-21-DATA(CARD-21-NUM).
009010 GO TO READ-TAPE.
009020 CARD-22.
009030 IF CARD-22-NUM IS NOT NUMERIC COMPUTE CARD-22-NUM = 0.
009040 IF CARD-22-NUM IS GREATER THAN 39 PERFORM CARD-ERROR
009050 GO TO READ-TAPE.
009070 MOVE CORRESPONDING CARD-22-INPUT TO CARD-22-DATA(CARD-22-NUM).
009080 GO TO READ-TAPE.
009090 CARD-23.
009100 IF CARD-23-NUM IS NOT NUMERIC COMPUTE CARD-23-NUM = 0.
009110 IF CARD-23-NUM IS GREATER THAN 1 PERFORM CARD-ERROR
009120 GO TO READ-TAPE.
009130 COMPUTE CARD-23-NUM = CARD-23-NUM + 1.
009140 MOVE CORRESPONDING CARD-23-INPUT TO CARD-23-DATA(CARD-23-NUM).
009150 GO TO READ-TAPE.
009160 CARD-24.
009170 IF CARD-24-NUM IS NOT NUMERIC COMPUTE CARD-24-NUM = 0.
009180 IF CARD-24-NUM IS GREATER THAN 15 PERFORM CARD-ERROR
009190 GO TO READ-TAPE.
009200 COMPUTE CARD-24-NUM = CARD-24-NUM + 1.
009210 PERFORM MOVE-CARD-24.
GO TO READ-TAPE.

IF CARD-25-NUM IS NOT NUMERIC COMPUTE CARD-25-NUM = 0.

IF CARD-25-NUM IS GREATER THAN 15 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-25-NUM = CARD-25-NUM + 1.

MOVE CORRESPONDING CARD-25-INPUT TO CARD-25-DATA(CARD-25-NUM).

GO TO READ-TAPE.

IF CARD-26-NUM IS NOT NUMERIC COMPUTE CARD-26-NUM = 0.

IF CARD-26-NUM IS GREATER THAN 0 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-26-NUM = CARD-26-NUM + 1.

PERFORM MOVE-CARD-26.

GO TO READ-TAPE.

IF CARD-27-NUM IS NOT NUMERIC COMPUTE CARD-27-NUM = 0.

IF CARD-27-NUM IS GREATER THAN 0 PERFORM CARD-ERROR

GO TO READ-TAPE.

GO TO READ-TAPE.

IF CARD-28-NUM IS NOT NUMERIC COMPUTE CARD-28-NUM = 0.

IF CARD-28-NUM IS GREATER THAN 7 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-28-NUM = CARD-28-NUM + 1.

PERFORM MOVE-CARD-28.

GO TO READ-TAPE.

IF CARD-29-NUM IS NOT NUMERIC COMPUTE CARD-29-NUM = 0.

IF CARD-29-NUM IS GREATER THAN 0 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-29-NUM = CARD-29-NUM + 1.

PERFORM MOVE-CARD-29.

GO TO READ-TAPE.

IF CARD-30-NUM IS NOT NUMERIC COMPUTE CARD-30-NUM = 0.

IF CARD-30-NUM IS GREATER THAN 1 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-30-NUM = CARD-30-NUM + 1.

MOVE CORRESPONDING CARD-30-INPUT TO CARD-30-DATA(CARD-30-NUM).

GO TO READ-TAPE.

IF CARD-31-NUM IS NOT NUMERIC COMPUTE CARD-31-NUM = 0.

IF CARD-31-NUM IS GREATER THAN 5 PERFORM CARD-ERROR

GO TO READ-TAPE.

COMPUTE CARD-31-NUM = CARD-31-NUM + 1.

PERFORM MOVE-CARD-31.

GO TO READ-TAPE.

IF CARD-32-NUM IS NOT NUMERIC COMPUTE CARD-32-NUM = 0.

IF CARD-32-NUM IS GREATER THAN 5 PERFORM CARD-ERROR

GO TO READ-TAPE.

PERFORM MOVE-CARD-32.

GO TO READ-TAPE.

IF CARD-33-NUM IS NOT NUMERIC COMPUTE CARD-33-NUM = 0.

IF CARD-33-NUM IS GREATER THAN 1 PERFORM CARD-ERROR
009820 Go to read-tape.
009830 Compute card-33-num = card-33-num + 1.
009840 Move corresponding card-33-input to card-33-data(card-33-num).
009850 Go to read-tape.
009860 Card-34.
009870 If card-34-num is not numeric compute card-34-num = 0.
009880 If card-34-num is greater than 6 perform card-error.
009890 Go to read-tape.
009900 Compute card-34-num = card-34-num + 1.
009910 Move corresponding card-34-input to card-34-data(card-34-num).
009920 Go to read-tape.
009930 Card-35.
009940 If card-35-num is not numeric compute card-35-num = 0.
009950 If card-35-num is greater than 48 perform card-error.
009960 Go to read-tape.
009990 Go to read-tape.
010000 Card-error.
010010 Display 'Too many records--lake code '; temp-lake-code.
010020 If card-code = ' ', card-code = temp-card-code.
010030 Write lake-record.
010040 Write tape-out-record from tapecut-rec.
010050 Move spaces to tape-cut-rec.
010055 Move temp-lake-code to clo-lake-code.
010060 Sort-prep section.
010070 Read-sort.
010080 Open input tape-in-file.
010090 Read-next-card.
010100 Read tape-in-file at end go to read-sort-end.
010010 Read tape-in-file = spaces or lake-code-in = spaces.
010020 Display card-code-in, card-infc-in, lake-code-in.
010030 Else move tape-in-rec to sort-rec release sort-rec.
010040 Display sort-lake-code, sort-card-code.
010050 Go to read-next-card.
010060 Read-sort-end.
010080 Read-sort-exit.
010099 Move-card section.
010100 Move-card-3.
010110 Move source-3 of card-3-input to source-3 of card-3-data(card-3-num).
010120 If card-code = ' ', card-code = temp-card-code.
010130 Perform move-river-3 varying isub from 1 by 1 until isub is greater than 2.
010140 Move date-3 of card-3-input to date-3 of card-3-data(card-3-num).
010150 Move data-3 of card-3-input to data-3 of card-3-data(card-3-num).
010160 If card-code = ' ', card-code = temp-card-code.
010170 Perform move-river-3 varying isub from 1 by 1 until isub is greater than 4.
010180 Move map-date-3 of card-3-input to map-date-3 of card-3-data(card-3-num).
010190 Perform move-populate-3 varying isub from 1 by 1 until isub is greater than 3.
010200 Move river-3-data of card-3-input(isub) to river-3-data(card-3-num, isub).
010210 Of tape-out-rec(card-3-num, isub).
010300 MOVE-SPECIES-3.
010310 MOVE SPECIES-3-DATA OF CARD-3-INPUT(ISUB) TO
010320 SPECIES-3-DATA OF TAPEOUT-REC(CARD-3-NUM), {ISUB}.
010330 MOVE-DRAINAGE-3.
010340 MOVE DRAINAGE-3-DATA OF CARD-3-INPUT(ISUB) TO
010350 DRAINAGE-3-DATA OF TAPEOUT-REC(CARD-3-NUM), {ISUB}.
010360 MOVE-POPULATE-3.
010370 MOVE POPULATE-3-DATA OF CARD-3-INPUT(ISUB) TO
010380 POPULATE-3-DATA OF TAPEOUT-REC(CARD-3-NUM), {ISUB}.
010390 MOVE-CARD-6.
010400 MOVE BOTTOM-STRATA OF CARD-6-INPUT TO BOTTOM-STRATA OF
010410 CARD-6-DATA(CARD-6-NUM).
010420 PERFORM MOVE-FISHING-WATER-6 VARYING {ISUB FROM 1 BY 1
010430 UNTIL ISUB IS GREATER THAN 3.
010440 MOVE-FISHING-WATER-6.
010450 MOVE FISHING-WATER1-DATA OF CARD-6-INPUT(ISUB) TO
010460 FISHING-WATER1-DATA OF TAPEOUT-REC(CARD-6-NUM), {ISUB}.
010470 MOVE FISHING-WATER2-DATA OF CARD-6-INPUT(ISUB) TO
010480 FISHING-WATER2-DATA OF TAPEOUT-REC(CARD-6-NUM), {ISUB}.
010490 MOVE-CARD-9.
010500 MOVE SOURCE-9 OF CARD-9-INPUT TO SOURCE-9 OF
010510 CARD-9-DATA(CARD-9-NUM).
010520 MOVE DATE-9 OF CARD-9-INPUT TO DATE-9 OF CARD-9-DATA
010530 (CARD-9-NUM).
010540 MOVE LOCATION-9 OF CARD-9-INPUT TO LOCATION-9 OF
010550 CARD-9-DATA(CARD-9-NUM).
010560 MOVE SECCI OF CARD-9-INPUT TO SECCI OF CARD-9-DATA
010570 ([CARD-9-NUM]).
010580 MOVE COLOR OF CARD-9-INPUT TO COLOR OF CARD-9-DATA
010590 ([CARD-9-NUM]).
010600 PERFORM MOVE-TEMP-OXY-9 VARYING {ISUB FROM 1 BY 1 UNTIL
010610 ISUB IS GREATER THAN 5.
010630 MOVE DEPTH-9 OF CARD-9-INPUT(ISUB) TO DEPTH-9
010640 OF TAPEOUT-REC(CARD-9-ALP), {ISUB}.
010650 MOVE TEMP OF CARD-9-INPUT(ISUB) TO TEMP
010660 OF TAPEOUT-REC(CARD-9-ALP), {ISUB}.
010670 MOVE DISS-OXY OF CARD-9-INPUT(ISUB) TO DISS-OXY
010680 OF TAPEOUT-REC(CARD-9-ALP), {ISUB}.
010690 MOVE-CARD-10.
010700 MOVE THERMO-LOW OF CARD-10-INPUT TO THERMO-LOW OF
010710 CARD-10-DATA(CARD-10-ALP).
010720 MOVE THERMO-HIGH OF CARD-10-INPUT TO THERMO-HIGH OF
010730 CARD-10-DATA(CARD-10-ALP).
010740 PERFORM MOVE-CARD-10-ALKALINITY VARYING {ISUB FROM 1 BY 1
010750 UNTIL ISUB IS GREATER THAN 3.
010760 MOVE PH-10 OF CARD-10-INPUT TO PH-10 OF CARD-10-DATA
010770 ([CARD-10-ALP]).
010780 MOVE C02 OF CAR0-10-INPUT TO C02 OF CARD-10-DATA
010790 ([CARD-10-ALP]).
010800 MOVE HARDNESS OF CARD-10-INPUT TO HARDNESS OF
010810 CARD-10-DATA(CARD-10-ALP).
010820 MOVE CONDUCTIVITY OF CARD-10-INPUT TO CONDUCTIVITY OF
010830 CARD-10-DATA(CARD-10-ALP).
010840 PERFORM MOVE-SPC-CARD-10 VARYING {ISUB FROM 1 BY 1 UNTIL
010850 ISUB IS GREATER THAN 2.
010860 MOVE CHLORIDE-ION OF CARD-10-INPUT TO CHLORIDE-ION OF
010870 CARD-10-DATA(CARD-10-ALP).
010880 PERFORM MOVE-NITROGEN-1C VARYING {ISUB FROM 1 BY 1 UNTIL
010890 ISUB IS GREATER THAN 4.
010900 MOVE DATE-10 OF CARD-10-INPUT TO DATE-10 OF CARD-10-DATA
010910 (CARD-10-NUM).
010920 MOVE-CARD-10-ALKALINITY.
010930 MOVE ALKALINITY-DATA OF CARD-10-INPUT(ISUB) TO
010940 ALKALINITY-DATA OF TAPEOUT-RECICARD-10-NUM, (ISUB).
010950 MOVE-SPC-CARD-10.
010960 MOVE SOLIDS-DATA OF CARD-10-INPUT(ISUB) TO
010970 SOLIDS-DATA OF TAPEOUT-RECICARD-10-NUM, (ISUB).
010980 MOVE PHOS-DATA OF CARD-10-INPUT(ISUB) TO PHOS-DATA OF
010990 TAPEOUT-RECICARD-10-NUM, (ISUB).
011000 MOVE CHLOROPHYLL-DATA CF CARD-10-INPUT(ISUB) TO
011010 CHLOROPHYLL-DATA CF TAPEOUT-RECICARD-10-NUM, (ISUB).
011020 MOVE-NITROGEN-10.
011030 MOVE NITROGEN-DATA OF CARD-10-INPUT(ISUB) TO
011040 NITROGEN-DATA OF TAPEOUT-RECICARD-10-NUM, (ISUB).
011050 MOVE-CARD-11.
011060 MOVE SOURCE-11 OF CARD-11-INPUT TO SOURCE-11 OF
011070 CARD-11-DATA(CARD-11-NUM).
011080 PERFORM MOVE-RIVER-11 VARYING [SUB FROM 1 BY 1 UNTIL ISUB
011090 IS GREATER THAN 2.
011100 MOVE DATE-11 OF CARO-11-INPUT TO DATE-11 OF CARO-11-DATA
011110 (CARD-11-NUM).
011120 MOVE COVERAGE-1 OF CARD-11-INPUT TO COVERAGE-1 OF
011130 CARD-11-DATA(CARD-11-NUM).
011140 PERFORM MOVE-STAND-SUBMERG-11 VARYING [SUB FROM 1 BY 1
011150 UNTIL ISUB IS GREATER THAN 5.
011160 MOVE COVERAGE-2 OF CARD-11-INPUT TO COVERAGE-2 OF
011170 CARD-11-DATA(CARD-11-NUM).
011180 MOVE GROWTH-11 OF CARD-11-INPUT TO GROWTH-11 OF
011190 CARD-11-DATA(CARD-11-NUM).
011200 MOVE OTHER-LIFE OF CARD-11-INPUT TO OTHER-LIFE OF
011210 CARD-11-DATA(CARD-11-NUM).
011220 MOVE-RIVER-11.
011230 MOVE RIVER-11-DATA OF CARD-11-INPUT(ISUB) TO
011240 RIVER-11-DATA OF TAPEOUT-RECICARD-11-NUM, (ISUB).
011250 MOVE-STAND-SUBMERG-11.
011260 MOVE SPECIES-11 OF CARD-11-INPUT(ISUB) TO SPECIES1-11
011270 OF TAPEOUT-RECICARD-11-NUM, (ISUB).
011280 MOVE ABUND-11 OF CARD-11-INPUT(ISUB) TO ABUND1-11
011290 OF TAPEOUT-RECICARD-11-NUM, (ISUB).
011300 MOVE SPECIES2-11 OF CARD-11-INPUT(ISUB) TO
011310 SPECIES2-11 OF TAPEOUT-RECICARD-11-NUM, (ISUB).
011320 MOVE ABUND2-11 OF CARD-11-INPUT(ISUB) TO
011330 ABUND2-11 OF TAPEOUT-RECICARD-11-NUM, (ISUB).
011340 MOVE-CARD-12.
011350 PERFORM MOVE-SPECIES-12 VARYING [SUB FROM 1 BY 1 UNTIL
011360 ISUB IS GREATER THAN 18.
011370 MOVE-SPECIES-12.
011380 MOVE SPECIES-12 OF CARD-12-INPUT(ISUB) TO SPECIES1-12
011390 OF TAPEOUT-RECICARD-12-NUM, (ISUB).
011400 MOVE ABUND-12 OF CARD-12-INPUT(ISUB) TO ABUND1-12
011410 OF TAPEOUT-RECICARD-12-NUM, (ISUB).
011420 MOVE-CARD-13.
011430 PERFORM MOVE-SPECIES-13 VARYING [SUB FROM 1 BY 1 UNTIL
011440 ISUB IS GREATER THAN 5.
011450 MOVE-SPECIES-13.
011460 MOVE SPECIES-13 OF CARD-13-INPUT(ISUB) TO
011480 MOVE EVALUATION OF CARD-13-INPUT(ISUB) TO
011490 EVALUATION OF TAPEOUT-RECICARD-13-NUM, (ISUB).
011491 PERFORM MOVE-LOCATION-13 VARYING JSUB FROM 1 BY 1 UNTIL
011492 JSUB IS GREATER THAN 3.
011500 MOVE LOCATION-13 OF CARD-13-INPUT(ISUB, JSUB) TO
011510 LOCATION-13 OF TAPEOUT-REC(CARD-13-NUM, ISUB, JSUB).
011520 MOVE-CARD-14.
011530 MOVE DATE-14 OF CARD-14-INPUT TO DATE-14 OF CARD-14-DATA
011540 (CARD-14-NUM).
011550 PERFORM MOVE-STOCKING-14 VARYING ISUB FROM 1 BY 1 UNTIL
011560 ISUB IS GREATER THAN 4.
011570 MOVE-STOCKING-14.
011573 MOVE SOURCE-14 OF CARD-14-INPUT TO SOURCE-14 OF
011574 CARD-14-DATA(CARD-14-NUM).
011580 MOVE SPECIES-14 OF CARD-14-INPUT(ISUB) TO
011590 SPECIES-14 OF TAPEOUT-REC(CARD-14-NUM, ISUB).
011591 MOVE NUMBER-14 OF CARD-14-INPUT(ISUB) TO
011592 NUMBER-14 OF TAPEOUT-REC(CARD-14-NUM, ISUB).
011593 MOVE SIZE-14 OF CARD-14-INPUT(ISUB) TO
011594 SIZE-14 OF TAPEOUT-REC(CARD-14-NUM, ISUB).
011640 MOVE-CARD-15.
011650 MOVE METHOD OF CARD-15-INPUT TO METHOD OF CARD-15-DATA
011660 (CARD-15-NUM).
011670 MOVE HAULS OF CARD-15-INPUT TO HAULS OF CARD-15-DATA
011680 (CARD-15-NUM).
011690 PERFORM MOVE-COMMERCIAL-15 VARYING ISUB FROM 1 BY 1 UNTIL
011700 ISUB IS GREATER THAN 6.
011710 MOVE-COMMERCIAL-15.
011720 MOVE SPECIES-15 OF CARD-15-INPUT(ISUB) TO
011731 MOVE WEIGHT-15 OF CARD-15-INPUT(ISUB) TO
011733 MOVE YEAR-15 OF CARD-15-INPUT TO
011780 MOVE-CARD-16.
011790 PERFORM MOVE-COMM-16 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
011800 IS GREATER THAN 2.
011850 PERFORM MOVE-GAME1-16 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
011860 IS GREATER THAN 5.
011870 PERFORM MOVE-GAME2-16 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
011880 IS GREATER THAN 2.
011890 MOVE YEAR-16 OF CARD-16-INPUT TO YEAR-16 OF CARD-16-DATA
011900 (CARD-16-NUM).
011902 MOVE-COMM-16.
011904 MOVE SPECIES1-16 OF CARD-16-INPUT(ISUB) TO
011906 SPECIES1-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
011907 MOVE WEIGHT1-16 OF CARD-16-INPUT(ISUB) TO
011908 WEIGHT1-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
011910 MOVE-GAME1-16.
011920 MOVE SPECIES2-16 OF CARD-16-INPUT(ISUB) TO
011930 SPECIES2-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
011940 MOVE NUMBER2-16 OF CARD-16-INPUT(ISUB) TO
011950 NUMBER2-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
011960 MOVE-GAME2-16.
011970 MOVE SPECIES3-16 OF CARD-16-INPUT(ISUB) TO
011980 SPECIES3-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
011990 MOVE NUMBER3-16 OF CARD-16-INPUT(ISUB) TO
012000 NUMBER3-16 OF TAPEOUT-REC(CARD-16-NUM, ISUB).
012010 MOVE-CARD-18.
012020 PERFORM MOVE-DATA-18 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012030 IS GREATER THAN 6.
012040 MOVE-DATA-18.
012050 MOVE SPECIES-18 OF CARO-18-INPUT(ISUB) TO
012060 SPECIES-18 OF TAPEUT-REC(CARO-18-NUM, ISUB).
012070 MOVE NUMBER-18 OF CARO-18-INPUT(ISUB) TO
012080 NUMBER-18 OF TAPEUT-REC(CARO-18-NUM, ISUB).
012090 MOVE-CARO-24.
012100 MOVE SPECIES-24 OF CARO-24-INPUT TO SPECIES-24 OF
012110 CARO-24-DATE(CARO-24-NUM).
012120 MOVE SIZE-24 OF CARO-24-INPUT TO SIZE-24 OF CARO-24-DATA
012130 (CARO-24-NUM).
012140 MOVE SAMPLE-24 OF CARO-24-INPUT TO SAMPLE-24 OF CARO-24-DATA
012150 (CARO-24-NUM).
012160 PERFORM MOVE-AGE-GROUP-24 VARYING ISUB FROM 1 BY 1 UNTIL
012170 ISUB IS GREATER THAN 9.
012190 MOVE AGE-GROUP-24-DATE OF CARO-24-INPUT(ISUB) TO
012200 AGE-GROUP-24-DATA OF TAPEUT-REC(CARO-24-NUM, ISUB).
012210 MOVE-CARO-26.
012220 MOVE DATE-26 OF CARO-26-INPUT TO DATE-26 OF CARO-26-DATA
012230 (CARO-26-NUM).
012240 MOVE DATA-26 OF CARO-26-INPUT TO DATA-26 OF CARO-26-DATA
012250 (CARO-26-NUM).
012260 PERFORM MOVE-SPECIES-26 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012270 IS GREATER THAN 4.
012280 MOVE-SPECIES-26.
012290 MOVE SPECIES-26-DATA OF CARO-26-INPUT(ISUB) TO
012300 SPECIES-26-DATA OF TAPEUT-REC(CARO-26-NUM, ISUB).
012310 MOVE-CARO-28.
012320 PERFORM MOVE-DATA-28 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012330 IS GREATER THAN 8.
012340 MOVE-DATA-28.
012350 MOVE SPECIES-28 OF CARO-28-INPUT(ISUB) TO
012360 SPECIES-28 OF TAPEUT-REC(CARO-28-NUM, ISUB).
012370 MOVE CATCH-HR-28 OF CARO-28-INPUT(ISUB) TO
012380 CATCH-HR-28 OF TAPEUT-REC(CARO-28-NUM, ISUB).
012390 MOVE WT-HR-28 OF CARO-28-INPUT(ISUB) TO
012400 WT-HR-28 OF TAPEUT-REC(CARO-28-NUM, ISUB).
012410 MOVE-CARO-29.
012420 MOVE SOURCE-29 OF CARO-29-INPUT TO SOURCE-29 OF CARO-29-DATA
012430 (CARO-29-NUM).
012440 MOVE DATE-29 OF CARO-29-INPUT TO DATE-29 OF CARO-29-DATA
012450 (CARO-29-NUM).
012460 MOVE HOURS-29 OF CARO-29-INPUT TO HOURS-29 OF CARO-29-DATA
012470 (CARO-29-NUM).
012480 PERFORM MOVE-ACTIVS-29 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012490 IS GREATER THAN 11.
012500 MOVE-ACTIVS-29.
012510 MOVE ACTIVS-29-DATA OF CARO-29-INPUT(ISUB) TO
012520 ACTIVS-29-DATA OF TAPEUT-REC(CARO-29-NUM, ISUB).
012530 MOVE-CARO-31.
012540 PERFORM MOVE-DATA-31 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012550 IS GREATER THAN 2.
012560 MOVE-DATA-31.
012570 MOVE REC-31 OF CARO-31-INPUT(ISUB) TO
012580 REC-31 OF TAPEUT-REC(CARO-31-NUM, ISUB).
012590 MOVE SPECIES-31 OF CARO-31-INPUT(ISUB) TO
012600 SPECIES-31 OF TAPEUT-REC(CARO-31-NUM, ISUB).
012610 MOVE SPECIES-31 OF CARO-31-INPUT(ISUB) TO
012620 SPECIES-31 OF TAPEUT-REC(CARO-31-NUM, ISUB).
012630 MOVE BENEFIT-31 OF CARO-31-INPUT(ISUB) TO
012640 BENEFIT-31 OF TAPEOUT-RECICARD-31-NUM, [SUB].
012650 MOVE YEAR-COMPLETE OF CARD-31-INPUT[SUB] TO
012660 YEAR-COMPLETE OF TAPEOUT-RECICARD-31-NUM, [SUB].
012670 MOVE COST-31 OF CARD-31-INPUT[SUB] TO
012680 COST-31 OF TAPEOUT-RECICARD-31-NUM, [SUB].
012690 MOVE-CARD-31.
012700 PERFORM MOVE-DATA-31 VARYING ISUB FROM 1 BY 1 UNTIL ISUB
012710 IS GREATER THAN 2.
012720 MOVE YEAR-31 OF CARD-31-INPUT TO YEAR-31 OF CARD-31-DATA
012730 (CARD-31-NUM).
012740 MOVE-DATA-31.
012750 MOVE LOCATION-32 OF CARD-32-INPUT[SUB] TO
012760 LOCATION-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012790 MOVE REC-32 OF CARD-32-INPUT[SUB] TO
012800 REC-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012810 MOVE BENEFIT-32 OF CARD-32-INPUT[SUB] TO
012820 BENEFIT-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012830 MOVE COST-32 OF CARD-32-INPUT[SUB] TO
012840 COST-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012860 MOVE REC2-32 OF CARD-32-INPUT[SUB] TO
012870 REC2-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012880 MOVE BENEFIT2-32 OF CARD-32-INPUT[SUB] TO
012890 BENEFIT2-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012900 MOVE COST2-32 OF CARD-32-INPUT[SUB] TO
012910 COST2-32 OF TAPEOUT-RECICARD-32-NUM, [SUB].
012850 NC-MORE-DATA.
012860 CLOSE TEMP-FILE.
012870 STOP RUN.