Expectation of Genetic Alteration of Muscle Composition and Growth Traits in Rainbow Trout (Salmo gairdneri)

George W. Partelow

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Part of the Natural Resources and Conservation Commons

Recommended Citation
https://openprairie.sdstate.edu/etd/195

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
EXPECTATION OF GENETIC ALTERATION OF MUSCLE
COMPOSITION AND GROWTH TRAITS IN RAINBOW TROUT
(SALMO GAIRDNERI)

BY

GEORGE W. PARTELOW

A thesis submitted
in partial fulfillment of the requirements for the
degree Master of Science, Major in
Wildlife and Fisheries Sciences
South Dakota State University
1979
EXPECTATION OF GENETIC ALTERATION OF MUSCLE
COMPOSITION AND GROWTH TRAITS IN RAINBOW TROUT

(SALMO GAIRDNERI)

This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions are necessarily the conclusions of the major department.

Raymond C. Simon
Thesis Advisor - Director
Fish Genetics Laboratory
and Department of Wildlife
& Fisheries Sciences

Charles G. Scalet
Head, Department of Wildlife and Fisheries Sciences
ACKNOWLEDGEMENTS

My thanks go to my graduate advisor, Dr. Raymond Simon for his patience, advice, and understanding throughout this project. Thanks to the employees at the Fish Genetics Laboratory & McNenny Fish Hatchery including Dr. Harold Kincaid, Gary Reinitz, and William Kohler for their advice and support.

Special thanks to those close friends who supported me to this completion. I would also like to thank Dr. Charles Scalet for his review of this manuscript.

This project was supported jointly by South Dakota State University Agricultural Experiment Station Project #7116-712 and the U.S. Fish and Wildlife Service, Fish Genetics Lab, Beulah, Wyoming.

GWP
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>4</td>
</tr>
<tr>
<td>Experimental Source</td>
<td>4</td>
</tr>
<tr>
<td>Preparation of Samples</td>
<td>4</td>
</tr>
<tr>
<td>Protein</td>
<td>4</td>
</tr>
<tr>
<td>Moisture and Ash</td>
<td>5</td>
</tr>
<tr>
<td>Fat</td>
<td>5</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>5</td>
</tr>
<tr>
<td>Statistical Design</td>
<td>5</td>
</tr>
<tr>
<td>Coded Variables</td>
<td>7</td>
</tr>
<tr>
<td>Heritability Estimations</td>
<td>7</td>
</tr>
<tr>
<td>Correlation Estimates</td>
<td>9</td>
</tr>
<tr>
<td>Genetic Advance Estimation</td>
<td>10</td>
</tr>
<tr>
<td>Correlated Response to Selection</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS</td>
<td>12</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>16</td>
</tr>
<tr>
<td>Means</td>
<td>16</td>
</tr>
<tr>
<td>Variability</td>
<td>16</td>
</tr>
<tr>
<td>Heritability</td>
<td>16</td>
</tr>
<tr>
<td>Correlations</td>
<td>21</td>
</tr>
<tr>
<td>Efficiency of Protein Utilization</td>
<td>23</td>
</tr>
<tr>
<td>Expectation of Genetic Alteration through Selection</td>
<td>25</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCLUSION</td>
<td>29</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>30</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>35</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Code used in representing characters examined in rainbow trout (Salmo gairdneri)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Typical analysis of variance of observed traits with expected mean squares</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Descriptive statistics of flesh composition, length, weight, and condition traits</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>F test examining the influence of sire on traits examined (Null hypothesis of no sire effect, df = 28, 58)</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Heritability and genotypic and phenotypic correlation estimations for the observed traits</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Literature review of heritability estimates of traits examined</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Energy cost of animal production (Smith and Rumsey 1976)</td>
<td>24</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Response of WTGMS, WPROTEIN, and MOISTURE to selection directed toward either WTGMS or WPROTEIN</td>
<td>28</td>
</tr>
</tbody>
</table>
INTRODUCTION

The breeding of farm animals to produce superior organisms has been extensively applied in many parts of the world. Much of the research has been concerned with the manipulation of muscle protein and fat in muscle tissue for the purpose of catering to human needs (Kielanowski 1972; Dinkel and Busch 1973; Olson et al. 1976).

Though fishes are able to convert food to quality protein more efficiently than most animals, they have been underutilized as a protein source in the United States. Until recently, genetic manipulation through selection to enhance their quality has not been extensively applied (Smith and Rumsey 1976). Because of the increasing need for quality protein in the world, fish rearing, and subsequent character improvement should become a more important part of world protein production.

In order for fish production to be efficient, one basic requirement will be the production of an organism that will perform well in a hatchery condition (Gjedrem 1976). Artificial selection for increased growth, survivability, and disease resistance has been investigated in hatchery and wild strains of salmonids (Donaldson and Menasveta 1961; Aulstad et al. 1972; Gjedrem and Aulstad 1974; Kanis et al. 1976; Kincaid et al. 1976; Refstie et al. 1977). The use of wild strains, however, has been minimal due to their limited accessibility and poor performance in artificial rearing conditions (Reisenbichler and McIntyre 1977; Reinitz et al. 1979). The potential to increase or at least maintain genetic variability in hatchery
strains may increase their utilization.

Regulating the body composition of fish for a specific purpose will become an increasingly important requirement in fish production (Gjedrem 1976). Little is known about the degree of genetic influence (heritability) on body composition of fishes (Simon 1970), though it has been investigated in lab and farm animals (Dinkel and Busch 1973; Notter et al. 1976; Brown et al. 1977). Reinitz et al. (1979) found body composition differences among various strains of rainbow trout (Salmo gairdneri) and Gjedrem (1976) found differences in fillet quality among rainbow trout. Results from both these studies suggest potential for genetic improvement in this fish.

Genetic variation is believed to be 50% greater in fishes than in mammals (Ayala 1978). Gjedrem (1976) found coefficients of variation for economically important quality traits such as meat color and carcass score to average 30% in rainbow trout compared to 5-20% for similar characters in farm animals. Therefore increased genetic variability in addition to greater fecundity allow a greater potential for selective breeding among fishes than domestic livestock.

Phenotypic and genotypic correlations are important considerations when trying to alter the frequency of a particular trait in a population, for a change in one trait may have a pronounced effect on another (Falconer 1972). In selecting for body composition traits and overall quality improvement, it may also be more convenient and efficient not to select directly on the basis of composition analyses and taste testing but indirectly on the use of some more readily
available statistic such as weight. Reinitz et al. (1979) found a significant ($F < .01$) association between growth and percent protein on a dry weight basis. This suggests the possibility that direct selection for weight could bring about a measurable change in protein on a dry weight basis.

My objectives were to estimate heritabilities and phenotypic variances in rainbow trout for the traits: percent moisture, percent protein on a dry and wet weight basis, percent fat on a dry and wet weight basis, percent ash, standard length, weight, and K (condition factor). Another objective was to estimate phenotypic and genotypic correlations involving these traits. A final objective was to evaluate the potential for genetic alteration through direct and indirect selection of the above traits.
MATERIALS AND METHODS

Experimental Source.

Rainbow trout reared under standard environmental conditions (Spring Standard Strain) at the U.S. Fish Genetic Laboratory, Beulah, Wyoming, were used in this study. Standard environmental conditions included water temperature, 11 ± 1 C, pH, 7.6 to 7.8, water hardness, approximately 420 ppm as CaCO₃ and 634 ppm total hardness. For further information on rearing see Kincaid et al. (1976).

At approximately 1 year of age 609 fish were killed and stored at -40 C for a period of 6 months, then filleted and refrozen for later analysis.

Preparation of Samples.

Frozen fish fillets were homogenized in a Waring blender using dry ice. Aliquots were taken for the various analytical tests outlined below.

Protein.

Total soluble protein was extracted from the fish sample using a modified version of the Ellis and Winchester method (1959). It involved the use of a 4% NaCl solution buffered with a 61:39 mixture of KH₂PO₄-K₂HPO₄ respectively (pH 7.0) which was diluted 1 to 20 parts with deionized water. The extraction solution was then blended with the sample for 6 intervals of 10 seconds each, pausing between intervals to prevent excessive protein denaturation. The processing took place in a temperature controlled room so that the blended solution temperature remained stable at 8 ± 2 C. This extract was
then centrifuged for 20 minutes at 0 C at 1000 x g. The supernatant represented the total soluble protein; the concentration of protein was determined by the biuret method (Snow 1950) and calibrated against the macro-Kjeldahl method (Horwitz 1975). Samples were run in duplicate and standardized with the use of a known aliquot of albumin.

Moisture and Ash

Moisture and ash determinations were estimated by the standard AOAC method (Horwitz 1975), where duplicate samples from the same muscle mass used for extraction, were dried at 135 C for 2 hours. Samples were then cooled in a vacuum desiccator and weighed. These dried samples were ashed in a muffle furnace at 600 C for 2 hours, cooled under vacuum as above, and weighed to obtain ash weight.

Fat

Fat estimations were calculated by subtraction of the percent moisture, protein, and ash from 100%. This was permitted by the minimal carbohydrate content of the muscle amounting to about 292 mg/g tissue (Black et al. 1966).

Experimental Design

A balanced heirarchal experiment was employed where each of 29 sires was mated to 3 dams for a total of 87 half-sib families. Seven progeny per dam were used for the analyses resulting in 609 observations. Appendix A lists the 29 sire sets and their distribution in the various tanks used.

Statistical Design

The statistical design for the estimation of heritability and
phenotypic and genotypic correlations was based on a hierarchal design conforming to the additive linear model:

\[Y_{ijk} = \mu + S_i + D_{ij} + E_{ijk} \]

(Becker 1975)

where:

- \(Y_{ijk} \) = response of the \(k \)th observation in the \(j \)th dam in the \(i \)th sire.
- \(\mu \) = population of true mean.
- \(S_i \) = random effect of the \(i \)th sire.
- \(D_{ij} \) = random effect of the \(j \)th dam in the \(i \)th sire.
- \(E_{ijk} \) = random deviation of the response of the \(k \)th observation in the \(j \)th dam in the \(i \)th sire.

Assumptions underlying the analysis of variance and covariance needed in the unbiased estimation of heritability and correlations respectively, are first, that treatment and environmental effects are additive and second, that experimental errors are random and independent being normally distributed about a mean 0 with a common variance. The assumption of normality is required only in testing hypotheses (Steel and Torrie 1960).

To meet the above requirements, sires, dams, and progeny were chosen indiscriminately from a randomly mated reference population. At the time of analysis, full sib families were randomly selected and analyzed as families. "Batch" effects were minimized in protein determinations through use of an albumin standard in each family run. Common environmental effects during moisture and ash estimations were
considered minimal.

Test of normality (Snedecor and Cochran 1967) from skewness and kurtosis calculations were performed for all variables. This involved measuring deviation of the 29 sire set means from expectations of a normally distributed population. No significant departures from normality (2% level) were encountered.

Variances between progenies within sires within dams were tested for homogeneity using a Chi Square test (Steel and Torrie 1960). Though percent protein on a dry weight basis and percent fat on a wet weight basis were the only variables whose null hypotheses of homogeneity were not rejected, the average variance from 87 families with 6 degrees of freedom, represented a better estimate of the progeny variance than any single family estimate. Two transformations were used when they resulted in larger heritability value, represented a more normally distributed population, or resulted in a higher degree of homogeneity among family estimated progeny variances.

Coded Variables

Traits examined were coded to facilitate their presentation (Table 1).

Heritability Estimations

Heritability values were estimated through the analysis of variance estimation of the sire variance component (σ_s^2), the dam variance component (σ_d^2), and the progeny variance component, (σ_p^2). Expected mean squares in a typical analysis of variance table are illustrated in Table 2.
Table 1. Code used in representing characters examined in rainbow trout.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE</td>
<td>percent moisture</td>
</tr>
<tr>
<td>DPROTEIN</td>
<td>percent protein on a dry weight basis</td>
</tr>
<tr>
<td>WPROTEIN</td>
<td>percent protein on a wet weight basis</td>
</tr>
<tr>
<td>ASH</td>
<td>percent ash</td>
</tr>
<tr>
<td>ASHLOG</td>
<td>$\log_{10}(ASH + 1)$</td>
</tr>
<tr>
<td>DFAT</td>
<td>percent fat on a dry weight basis</td>
</tr>
<tr>
<td>WFAT</td>
<td>percent fat on a wet weight basis</td>
</tr>
<tr>
<td>LENGTH</td>
<td>standard length (snout to fork in tail) in millimeters</td>
</tr>
<tr>
<td>WTGMS</td>
<td>weight in grams of fish</td>
</tr>
<tr>
<td>K</td>
<td>condition factor of the fish calculated by: $\frac{WTGMS \times 10^5}{(LENGTH)^3}$</td>
</tr>
<tr>
<td>KLOG</td>
<td>$\log_{10}(K)$</td>
</tr>
</tbody>
</table>

Table 2. Typical analysis of variance of observed characters with expected mean squares.

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>EXPECTED MEAN SQUARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within sires</td>
<td>$\sigma_p^2 + 7 \sigma_d^2 + 21 \sigma_s^2$</td>
</tr>
<tr>
<td>Within dams within sires</td>
<td>$\sigma_p^2 + 7 \sigma_d^2$</td>
</tr>
<tr>
<td>Within progeny</td>
<td>σ_p^2</td>
</tr>
</tbody>
</table>
Since the sire variance component in this case is equal to one-quarter of the additive genetic variance (covariance of half-sibs), the heritability by sire is equal to:

\[h_s^2 = \frac{4 \sigma_s^2}{\sigma_s^2 + \sigma_d^2 + \sigma_p^2} \]
(Falconer 1972)

When referring to heritability I will be concerned with this estimate unless I state otherwise because it alone is unbiased (free of material and common environmental components).

Included in the dam variance component is not only one-quarter the additive genetic variance, but one-quarter the dominance variance and all the variance associated with common environmental effects (Falconer 1972).

\[h_d^2 = \frac{4 \sigma_d^2}{\sigma_s^2 + \sigma_d^2 + \sigma_p^2} \]
(Falconer 1972)

An analysis of variance for each variable is presented in Appendix B.

Correlation Estimates.

An analysis of covariance was used to determine phenotypic and genotypic correlations (Becker 1975). Estimations were obtained from the following formulas.

\[r_g = \frac{\text{cov}_{sx}}{\sigma_s^2 \times \sigma_s^2} \]
(Becker 1975)

where:

\[r_g \] = genetic correlation
\[\text{cov}_{sx} \] = covariance of sire involving variables x and y.
\(s^2_x \) or \(y \) = the variance of variable \(x \) or \(y \) associated with each sire.

\[
\frac{\text{cov}_{Txy}}{\sigma^2_T + \sigma^2_T} = (\text{Becker 1975})
\]

where:

- \(r_p \) = phenotypic correlation.
- \(\text{cov}_{Txy} \) = covariance of sires + dams + progeny involving variables \(x \) and \(y \).
- \(\sigma^2_T \) or \(y \) = the variance of variable \(x \) or \(y \) associated with the total of sire, dam and progeny variance components.

An analysis of covariance for each variable combination follows the analysis of variance in Appendix B.

Genetic Advance Estimations

Genetic advance per year for trait \(x \) is defined below.

\[
R_x = i h^2_x \frac{c_{p_x}}{L}
\]

(Lush 1948)

where:

- \(R_x \) = genetic response of \(x \).
- \(i \) = the intensity of selection
- \(h^2_x \) = heritability of \(x \).
- \(c_{p_x} \) = phenotypic standard deviation of \(x \).
- \(L \) = generation interval or time between successive matings.
Correlated Response to Selection

The correlated response to trait y when selection is directed toward trait x is presented below.

\[CR_y = i h_x h_y r_{gx} \sigma_y \]

(Falconer 1972)

where:

- \(CR_y \) = correlated response of y.
- \(i \) = intensity of selection.
- \(h_y \) = square root of the heritability of y.
- \(h_x \) = square root of the heritability of x.
- \(r_{gx} \) = genetic correlation between x and y.
- \(\sigma_y \) = phenotypic standard deviation of y.
RESULTS

Descriptive statistics including mean, range, variance, standard deviation, and coefficient of variation are given in Table 3. Transformed variables and their non-transformed counterparts are also shown. Variability measured as the coefficient of variation ranged from 2.14 for MOISTURE to 30.88 for WFAT.

The influence of the sire was examined for all variables in Table 4. MOISTURE, WPROTEIN, LENGTH, and KLOG had significant sire effects (P < .005).

Table 5 presents both sire and dam estimates of heritability along the diagonal for top left to bottom right. Genotypic and phenotypic correlations, within a calculated 90% confidence interval, are located above and below the diagonal respectively. DPROTEIN, ASHLOG, WFAT, and DFAT had heritability values of 0 while other traits had estimates ranging from a low of 0.48 ± .223 for MOISTURE to a high of 0.96 ± .333 for WTGMS. Genotypic correlations for DPROTEIN, ASHLOG, WFAT, and DFAT were not able to be estimated due to negative sire variance components associated with each of these variables. Because of large sample size, correlations as low as 0.08 were statistically significant (P < .05) though their importance at this level would be subject to the character under examination.
Table 3. Descriptive statistics of flesh composition, length, weight and condition traits.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MEAN</th>
<th>VARIANCE</th>
<th>S.D.*</th>
<th>C.V.*</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE</td>
<td>75.46</td>
<td>2.61</td>
<td>1.62</td>
<td>2.14</td>
<td>9.59</td>
</tr>
<tr>
<td>WPROTEIN</td>
<td>19.03</td>
<td>2.10</td>
<td>1.45</td>
<td>7.62</td>
<td>8.80</td>
</tr>
<tr>
<td>DPROTEIN</td>
<td>77.62</td>
<td>20.66</td>
<td>4.55</td>
<td>5.86</td>
<td>25.38</td>
</tr>
<tr>
<td>ASH</td>
<td>1.41</td>
<td>0.06</td>
<td>0.25</td>
<td>17.81</td>
<td>3.02</td>
</tr>
<tr>
<td>ASHLOG</td>
<td>0.38</td>
<td>0.002</td>
<td>0.04</td>
<td>11.10</td>
<td>0.49</td>
</tr>
<tr>
<td>WFAT</td>
<td>4.11</td>
<td>1.56</td>
<td>1.25</td>
<td>30.38</td>
<td>8.19</td>
</tr>
<tr>
<td>DFAT</td>
<td>16.67</td>
<td>21.53</td>
<td>4.64</td>
<td>27.84</td>
<td>26.48</td>
</tr>
<tr>
<td>LENGTH</td>
<td>198.26</td>
<td>406.61</td>
<td>20.17</td>
<td>10.17</td>
<td>148.00</td>
</tr>
<tr>
<td>WTGMS</td>
<td>141.87</td>
<td>1768.00</td>
<td>42.06</td>
<td>29.65</td>
<td>303.30</td>
</tr>
<tr>
<td>K</td>
<td>1.77</td>
<td>0.03</td>
<td>0.18</td>
<td>9.93</td>
<td>2.13</td>
</tr>
<tr>
<td>KLOG</td>
<td>0.25</td>
<td>0.002</td>
<td>0.04</td>
<td>16.61</td>
<td>0.42</td>
</tr>
</tbody>
</table>

* = standard deviation

** = coefficient of variation which is equal to: \(\frac{100 \times \text{S.D.}}{\text{MEAN}} \)
Table 4. F test examining the influence of sire on traits examined
(Null hypothesis of no sire effect, df = 28, 58).

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE</td>
<td>2.365</td>
<td>.005</td>
</tr>
<tr>
<td>DPROTEIN</td>
<td>0.710</td>
<td>.100</td>
</tr>
<tr>
<td>WPROTEIN</td>
<td>2.637</td>
<td>.005</td>
</tr>
<tr>
<td>ASHLOG</td>
<td>0.868</td>
<td>.100</td>
</tr>
<tr>
<td>DFAT</td>
<td>0.654</td>
<td>.100</td>
</tr>
<tr>
<td>WFAT</td>
<td>0.586</td>
<td>.100</td>
</tr>
<tr>
<td>LENGTH</td>
<td>3.838</td>
<td>.005</td>
</tr>
<tr>
<td>WTGMS</td>
<td>4.128</td>
<td>.005</td>
</tr>
<tr>
<td>KLOG</td>
<td>2.802</td>
<td>.005</td>
</tr>
</tbody>
</table>
Table 5. Heritability and genotypic and phenotypic correlation estimations for the observed traits.

<table>
<thead>
<tr>
<th></th>
<th>CHEST</th>
<th>WPIPEIN</th>
<th>DPPIPEIN</th>
<th>ASHIOG</th>
<th>WFCAT</th>
<th>DPFCAT</th>
<th>LENGTH</th>
<th>WET'S</th>
<th>FOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.45*</td>
<td>0.25**</td>
<td>-0.36**</td>
<td>-0.28**</td>
<td>-0.42*</td>
<td>-0.42*</td>
<td>-0.50*</td>
<td>-0.36**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.60</td>
<td>-0.35</td>
<td>-0.35</td>
<td>-0.15</td>
<td>-0.28</td>
<td>-0.32</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.11**</td>
<td>0.77*</td>
<td>0.46*</td>
<td>0.13</td>
<td>-0.43</td>
<td>-0.60*</td>
<td>-0.25</td>
<td>-0.34</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>1.05*</td>
<td>0.61</td>
<td>0.13</td>
<td>-0.25</td>
<td>-0.45</td>
<td>-0.43</td>
<td>0.51</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.19*</td>
<td>0.10**</td>
<td>-0.97</td>
<td>-0.97</td>
<td>-0.02</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12*</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.24*</td>
<td>0.94</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2.13*</td>
<td>-0.18</td>
<td>-0.19</td>
<td>-0.13</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.65</td>
<td>0.50*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.31*</td>
<td>-0.22</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>-0.59*</td>
<td>0.60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.31*</td>
<td>-0.22</td>
<td>-0.22</td>
</tr>
<tr>
<td>8</td>
<td>-0.73</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.96</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>-0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.65</td>
<td>0.79*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.24</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>-0.55*</td>
<td>0.48*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34*</td>
<td>0.56*</td>
<td>0.56*</td>
</tr>
<tr>
<td></td>
<td>-0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heritability estimates are along the diagonal from top left to bottom right; sire estimate on top and dam estimate on bottom. Phenotypic and genotypic correlations are above and below the diagonal respectively with 90% confidence intervals.

* represents statistically significant at the 5% level.
** represents statistically significant at the 1% level.
O in genotypic correlations infers that the value could not be estimated.
DISCUSSION

Means.

Body composition measurement means estimated are supported by Denton and Yousef (1976) in similarly aged rainbow trout with the exception of WFAT which was higher in their study at 7% versus 4% in this study. Groves (1970) states that fat content may be dependent upon feed type.

Variability.

The low MOISTURE coefficient of variation (2.1) and high DFAT coefficient of variation (27.8) was similar to that reported in mice by Eisen et al. (1977). Work by Denton and Yousef (1976) produced similar coefficients of variation for MOISTURE, WPROTEIN, DPROTEIN, and ASHLOG in 12-month old rainbow trout.

The coefficient of variation of WTGMS was estimated to be 29.6 which agrees with Aulstad et al. (1972) using rainbow trout. It was considerably lower than the 70 and 40 estimates reported by Gjedrem (1975) for rainbow trout. Differences in values may depend upon how standardized the environmental conditions were when the estimates were made.

Heritability.

For variables MOISTURE, WPROTEIN, ASHLOG, WFAT and DFAT, the estimations of heritability by dam were much higher than the sire estimates. Common environmental or maternal effects and dominance effects were probably responsible for this inflation, since the dam estimate contained not only the additive genetic variation, but also
the full amount of non-additive genetic variation (dominance) and 4 times the common environmental variation (Falconer 1972). "Batch" effects may partly be responsible for this inflation because samples were dried as family groups. Samples for protein determinations were extracted without reference to a family but "batch" or common environmental effects may have occurred because of further treatment of samples as a family unit in subsequent steps of the protein analysis. I would consider common environmental effects associated with rearing minimal since whole families were not contained in any one tank (Appendix A) although at early ages, families were in individual tanks.

Heritability estimation by sire of WTGMS and LENGTH were higher, 0.99 ± .338 and 0.93 ± .331 respectively, than that reported in the literature (Table 6). Dam estimates though for WTGMS and LENGTH, 0.58 ± .169 and 0.64 ± .181, respectively, appear to be more realistic approximations.

Chance and random drift were possible explanations for high sire, low dam estimations since the degrees of freedom associated with the sires were only 28 compared to 86 for dams. This explanation is supported by the small paternal effect expected in fish of 365 days of age.

I did visually examine the possibility for half-sib families to have density related differences since each tank had varying numbers of fish. Density differences have been observed to cause variations in growth (Brauhn et al. 1976). No such tendency was noted nor were
Table 6. Literature review of heritability estimates of traits examined.

<table>
<thead>
<tr>
<th>ATTRIBUTE EXAMINED</th>
<th>GENERAL FINDING</th>
<th>(h^2)</th>
<th>AUTHOR, DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W TGMS</td>
<td>365 day old - good potential</td>
<td>0.58 ± 169*</td>
<td>Present study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.99 ± .338*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 day old - good potential</td>
<td>0.26 - 0.29</td>
<td>Kincaid et al. 1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.29</td>
<td>Aulstad et al. 1972</td>
</tr>
<tr>
<td></td>
<td>Fingerlings - good potential</td>
<td>0.09 - 0.32</td>
<td>Aulstad et al. 1972</td>
</tr>
<tr>
<td></td>
<td>Brood stock - good potential</td>
<td>0.21</td>
<td>Gall 1975</td>
</tr>
<tr>
<td>LENGTH</td>
<td>365 day old - good potential</td>
<td>0.64 ± .181*</td>
<td>Present study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.93 ± .331**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 day old - good potential</td>
<td>0.37 ± .23</td>
<td>Aulstad et al. 1972</td>
</tr>
</tbody>
</table>

DPROTEIN

W PROTEIN None of the below have been examined until this study. For results see Table 5.

WFAT

DFAT

ASHLOG

* Dam estimate

** Sire estimate
sire sets associated with specific tanks.

Unequal feeding of sire sets, creating a greater variance in growth between sire sets, was another possible explanation for high sire estimates of growth heritability. However, fish were fed by the method of Buterbaugh and Willoughby (1967) except that hatchery constants were inflated 20% in order to insure that fish were fed amply without discrimination (Kincaid et al. 1976).

WPROTEIN heritability was high (0.73 ± 0.316) compared to DPROTEIN (0). This difference might be the result of WPROTEIN being a function of the moisture content of fish. This is supported by the negative genetic correlation (r = -1.18) between MOISTURE and WPROTEIN.

The occurrence of cloudy samples (5%) in the biuret method of Snow (1950) may have been also responsible for the high heritability estimate of WPROTEIN. In determination, any artifact having a uniformly biased effect on a variable would introduce bias into the heritability estimate of that variable. This cloudiness seemed to be greatest in large fish. In examining the determination of WPROTEIN, the sample before centrifugation had a certain amount of denatured protein. This was a consequence of refreezing fish fillets, homogenization with dry ice, and subsequent blending in salt solution. Since it was determined in this study that large fish were expected to have less moisture and more protein on average, these samples might be associated with larger amounts of denatured protein. This could result in interferences with the separation of the supernatant from the rest of the sample thus creating "cloudy" samples and inflation in
WPROTEIN heritability. This was supported by the observation that increased blending in salt solution and therefore increased denaturation, was associated with cloudy samples.

Moisture content alone might have been responsible for cloudy samples since MOISTURE was highly correlated with WTGMS ($r = -0.41$). This would inflate WPROTEIN heritability and contribute to the dicotomy between WPROTEIN and DPROTEIN heritability estimations. This might be supported by the small positive correlation between DPROTEIN and WTGMS ($r = 0.1, P < 0.05$) which disagrees with the large negative correlation ($r = 0.95, P < 0.005$) between them found by Reinitz et al. (1979) in whole rainbow trout.

In an attempt to measure the significance of cloudy samples on the various estimations made, visibly cloudy samples were removed from the statistical procedure. Little difference was found in the estimations. Since some degree of cloudiness may have gone undetected, it cannot be ruled out in having some effect on the results.

Variables DPROTEIN, WFAT, DFAT, and ASHLOG had heritability estimations of 0. The results in Table 4 are in agreement where an F test involving the null hypothesis of no sire variance was not rejected. Most muscle composition traits would be expected to be under control of a large number of genes (Falconer 1972). Therefore the probability for low heritability values in these traits would be high. Of the 6 flesh composition characters examined only 2 had heritabilities over 0. My estimations of 0 may not only be due to a high probability of low values expected but also because of smaller
differences expected in body composition of fillets as compared to the whole fish. Imprecision in the determination of these traits could also be partly responsible for O estimations.

Since research in muscle composition estimates of heritability in trout is non-existent and because estimates in production animals have been primarily concerned with quality measurements versus quantitative measurement, comparison with past work is difficult. Dinkel et al. (1973) estimated heritability of marbling in beef cattle to be 0.24. Work with laboratory animals also offers some comparison. Notter et al. (1976) working with mice estimated heritability of lean gain to be 0.20 ± 0.12 and the efficiency of protein gain to be 0.20 ± 0.08.

Correlations.

Growth in terms of WTGMS showed a significantly positive correlation ($P < .005$), genotypically and phenotypically with LENGTH and KLOG. This is not surprising since heavier fish are usually longer and plumper. Aulstad et al. (1972) reported a highly significant ($P < .05$) phenotypic correlation of 0.94 between WTGMS and LENGTH in 150-day-old rainbow trout.

WTGMS showed a significantly negative ($P < .005$) correlation, genotypically and phenotypically with MOISTURE and a significantly positive ($P < .005$) association with WPROTEIN. The negative association of growth and percent moisture was partially supported by Denton and Yousef (1976) who found that as rainbow trout increased in age and size, percent moisture decreased and percent protein on a wet weight basis increased in whole body analysis. Reinitz et al. (1979)
found no significant association between growth and percent moisture in 180-day-old whole rainbow trout.

My results indicated a statistically significant ($r = 0.10, P < .05$) phenotypic correlation between DPROTEIN and WTGMS. Reinitz et al. (1979) however, found a highly significant ($P < .005$) negative correlation between them. One explanation for the discrepancy may be due to their examination of whole fish. Another may be due to the possible inflation in WPROTEIN estimations caused by cloudy samples.

The phenotypic correlation will be used in discussing the variables DPROTEIN, ASHLOG, WFAT, and DFAT because the genotypic correlation could not be estimated due to negative sire variance components associated with these variables.

ASHLOG was significantly positively correlated with WTGMS ($r = 0.1, P < .01$. This was in partial agreement with Denton and Yousef (1976) who found an increase in ash content with age and therefore growth.

WFAT was not associated with WTGMS but DFAT was significantly correlated with WTGMS ($r = 0.09, P < .05$. Denton and Yousef (1976) found an increase in total fat content as fish grew in age. Kownacki et al. (1977) found a positive correlation between percent fat on a dry weight basis and growth in female mice ($P < .05$), but not in male mice. This suggests that flesh composition correlations may be best estimated in fish by separate consideration of each sex.

An inverse relationship was found between MOISTURE and both DFAT and WFAT. These results were supported by Gerking (1955), and Lagler

MOISTURE was positively associated with DPROTEIN and DFAT and WFAT were inversely proportional to protein content. These findings are in agreement with Reinitz et al. (1979) and Reinitz et al. (1978) respectively. Groves (1970) found no significant (P < 0.05) correlation between fat percentage and protein, ash or moisture percentages in sockeye salmon (Oncorhynchus nerka). Reinitz's et al. (1979) and Groves' (1970) lack of associations may be due to the analyses of whole fish in smaller numbers compared to the present analyses of large numbers of fillets.

Efficiency of Protein Utilization

I have estimated the parameters, heritability, the phenotypic standard deviation, and the genetic correlations necessary to evaluate the genetic response of WTGMS, WPROTEIN, DPROTEIN, ASHLOG, WFAT, DFAT, LENGTH, and KLOG to selection. Before estimating genetic advance in these traits, it is important not only to re-emphasize that fish efficiently convert feed to edible protein but to explain why they do.

High efficiency in feed utilization by fishes is due to low energy cost of support and movement in water, their poikilothermic physiology and their efficiency of protein metabolism and nitrogen excretion (Smith and Rumsey 1976). The efficiency of protein utilization by fishes surpasses all other vertebrates.
About 30% of the gross energy of protein is unavailable to mammalian homeotherms because energy is needed for protein breakdown, the formation of urea or uric acid in the liver, and the concentration and excretion of this waste by the kidneys (Smith and Rumsey 1976). This amounts to a cost of 4 to 6 moles of ATP (88.4 to 122.6 kcal) per mole of urea or uric acid synthesized. Fish forego this production and concentration by excreting ammonia through the gills.

The energy cost of animal protein production in terms of feed per gain ratio is illustrated below (Table 7). Rainbow trout are the most efficient producers, having the smallest feed per gain ratio. Although fish gain is premised on the need for high levels of protein in their feed, their ability to utilize "low grade" or humanly unacceptable protein makes fishes an effective world protein source (Smith and Rumsey 1976).

Table 7. Energy cost of animal production.*

<table>
<thead>
<tr>
<th>FOOD PRODUCT</th>
<th>FEED/GAIN RATIO</th>
<th>GRAMS PROTEIN/MCAL D.P.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEEF</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td>PORK</td>
<td>4</td>
<td>6.4</td>
</tr>
<tr>
<td>BROILERS</td>
<td>2.1</td>
<td>15.9</td>
</tr>
<tr>
<td>RAINBOW TROUT</td>
<td>1.2 - 1.5</td>
<td>30 - 40</td>
</tr>
</tbody>
</table>

* Table taken from Smith and Rumsey (1976).

** Mcal digestible protein.
Expectation of Genetic Alteration through Selection

It appears that the characters LENGTH, WTGMS, and KLOG would respond to selection quickly due to their relatively high heritabilities and variances. This was supported by Kincaid et al. (1976) who found that after 3 generations of selection for growth in rainbow trout, genetic gain in weight amounted to 30.1%.

DPROTEIN, ASHLOG, WFAT, and DFAT are not heritable so genetic alteration through selection would be slight. The high phenotypic standard deviation associated with WFAT and DFAT must then be explained by environmental and non-additive genetic variance. This is supported by Eisen et al. (1977) who hypothesized fat deposition in mice to be partially controlled by directional dominance. Environmental manipulation through diet control has been found to be directly related to DFAT levels in fish (Groves 1970 and others).

MOISTURE and WPROTEIN are highly heritable with relatively low phenotypic standard deviations. One method of improving these traits would be mass selection or with family selection where a portion of fish muscle could be removed for analysis without death to the fish. A second method of improvement would be random sampling within families where selection of parents for the next generation would be based on family mean. These sampled fish could be killed. A third method would be indirect selection involving selecting directly for one trait with the expectation of changing another.

Indirect selection has its advantages when applying direct selection for the desired trait is difficult (Falconer 1972). Using
biopsy to determine composition levels may be more time consuming or possibly technically unfeasible in a hatchery. In order for indirect selection to be considered advantageous, a high genetic correlation is needed between the primary and secondary trait. Also, the secondary character must have a higher heritability than the primary trait (Falconer 1972). Indirect selection of WPROTEIN through direct selection of WTGMS using the sire estimate of heritability for WTGMS satisfies these requirements.

A selection model was solved using a 90% culling intensity \((i = 1.78)\) (Falconer 1972) and sire estimates of heritability for 5 generations assuming a 3-year generation interval. Selection was directed separately toward both WTGMS and WPROTEIN for the purpose of examining the efficiency of genetic alteration in WPROTEIN, WTGMS and MOISTURE. When selection was based on WPROTEIN, the increases in WPROTEIN, WTGMS, and MOISTURE were 3.2%, 78.49g, and 2.9% respectively after 5 generations. When selection was based on WTGMS, the increases in WPROTEIN, WTGMS and MOISTURE were 2.7%, 123.53 gms, and 2.2% respectively after 5 generations (Figures 1, 2, and 3).

If selection for WPROTEIN could achieve as high a selection intensity as selection for WTGMS, the genetic gain in WPROTEIN would be only slightly greater than indirect selection through WTGMS. Also the total protein content of the fish would be greater in direct selection for WTGMS since WTGMS was approximately 40% larger than it would be through direct WPROTEIN selection. It may be argued that when selecting for increased growth and therefore increased WPROTEIN,
selection may be directed toward greater food consumption not higher feed efficiency. Simon (personal communication) has stated that in all strains of rainbow trout that he has examined for growth, all showed positive correlation between food conversion efficiency and body weight.
Figure 1. Response of WTGMS, WPROTEIN, and MOISTURE to selection directed toward either WTGMS or WPROTEIN.
CONCLUSION

One would expect selection for changes in WFAT, DFAT, DPROTEIN, and ASHLOG to proceed slowly because of low additive genetic variance associations. Any change in these components would have to be done through environmental manipulation such as diet regulation. Providing inbreeding is kept low through the use of large parental numbers, selection for WTGMS would be expected to proceed rapidly with a subsequent increase in WPROTEIN, LENGTH and KLOG and a decrease in MOISTURE. Having the power to alter these characters, man will be able to optimize their use for his specific needs.
LITERATURE CITED

Appendix A. Distribution of half-sib families (sire sets) in tanks at 147 to 363 days of age.

<table>
<thead>
<tr>
<th>TANK NUMBER</th>
<th>SIRE SET NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 29</td>
<td>1 3</td>
</tr>
<tr>
<td>6 and 30</td>
<td>1 2 3</td>
</tr>
<tr>
<td>7 and 31</td>
<td>2</td>
</tr>
<tr>
<td>8 and 32</td>
<td>1 2 3</td>
</tr>
<tr>
<td>9 and 33</td>
<td>4 5 6</td>
</tr>
<tr>
<td>10 and 34</td>
<td>4 5 6</td>
</tr>
<tr>
<td>11 and 35</td>
<td>4 5 6</td>
</tr>
<tr>
<td>13 and 37</td>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>14 and 38</td>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>15 and 39</td>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>16 and 40</td>
<td>11 12</td>
</tr>
<tr>
<td>17 and 41</td>
<td>14 16 18 19 20</td>
</tr>
<tr>
<td>18 and 42</td>
<td>14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>19 and 43</td>
<td>15 16 17 20</td>
</tr>
<tr>
<td>21 and 45</td>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>22 and 46</td>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>23 and 47</td>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>49 and 50</td>
<td>28 28 28 29 29 29</td>
</tr>
</tbody>
</table>

29 sire sets were used out of a possible 56 sets. Though it appears that tank density was not uniform, unused sire sets made density distribution fairly equal.
Appendix B. Analysis of variance and covariance for the observed traits.

Analysis of Variable Moisture

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>1508.15450</td>
<td>2.66150</td>
<td>2.42480</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>115.53260</td>
<td>4.12185</td>
<td>0.21360</td>
<td>11.95</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>279.42054</td>
<td>4.92094</td>
<td>0.41764</td>
<td>10.91</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>943.50331</td>
<td>1.80521</td>
<td>1.80521</td>
<td>12.03</td>
</tr>
</tbody>
</table>

Mean Standard Deviation: 15.466016
Coefficient of Variation: 0.018212

Analysis of Variable Nitrogen

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>1278.49143</td>
<td>2.10278</td>
<td>2.10278</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>95.36246</td>
<td>3.40544</td>
<td>0.34054</td>
<td>13.34</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>267.35511</td>
<td>4.69043</td>
<td>0.46904</td>
<td>25.59</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>620.76308</td>
<td>1.19220</td>
<td>1.19220</td>
<td>56.01</td>
</tr>
</tbody>
</table>

Mean Standard Deviation: 10.03196
Coefficient of Variation: 0.051795

Analysis of Variable Phosphate

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>1258.01137</td>
<td>2.06962</td>
<td>2.06962</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>142.79464</td>
<td>5.09316</td>
<td>0.50931</td>
<td>6.46</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>399.71773</td>
<td>6.92713</td>
<td>0.69271</td>
<td>33.34</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>599.48720</td>
<td>1.15164</td>
<td>1.15164</td>
<td>61.46</td>
</tr>
</tbody>
</table>

Mean Standard Deviation: 71.077150
Coefficient of Variation: 0.06703
Appendix B. Continued

Analysis of Variable AS II

<table>
<thead>
<tr>
<th>Source</th>
<th>D.I.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>383.04670</td>
<td>0.58941</td>
<td>0.06394</td>
<td>100.00</td>
</tr>
<tr>
<td>Sine</td>
<td>28</td>
<td>19.52233</td>
<td>0.73933</td>
<td>-0.00076</td>
<td>0.0</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>316.86590</td>
<td>0.53660</td>
<td>0.01298</td>
<td>26.31</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>26.58754</td>
<td>0.00515</td>
<td>0.00395</td>
<td>19.69</td>
</tr>
</tbody>
</table>

Mean

- **Standard Deviation**: 1.40918
- **Coefficient of Variation**: 0.160100

Analysis of Variable WAII

<table>
<thead>
<tr>
<th>Source</th>
<th>D.I.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>923.78277</td>
<td>1.50291</td>
<td>1.66950</td>
<td>100.00</td>
</tr>
<tr>
<td>Sine</td>
<td>28</td>
<td>76.66491</td>
<td>2.73432</td>
<td>-0.03565</td>
<td>0.0</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>776.14614</td>
<td>4.17762</td>
<td>0.12267</td>
<td>31.49</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>593.46717</td>
<td>1.13691</td>
<td>1.13691</td>
<td>68.51</td>
</tr>
</tbody>
</table>

Mean

- **Standard Deviation**: 4.110951
- **Coefficient of Variation**: 0.116760

Analysis of Variable DPAI

<table>
<thead>
<tr>
<th>Source</th>
<th>D.I.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>13094.16899</td>
<td>21.70659</td>
<td>22.17744</td>
<td>100.00</td>
</tr>
<tr>
<td>Sine</td>
<td>28</td>
<td>1288.12046</td>
<td>45.21142</td>
<td>-1.19289</td>
<td>0.0</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>4204.69270</td>
<td>74.66867</td>
<td>0.32529</td>
<td>36.38</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>7462.81820</td>
<td>14.44862</td>
<td>14.44862</td>
<td>61.62</td>
</tr>
</tbody>
</table>

Mean

- **Standard Deviation**: 16.406959
- **Coefficient of Variation**: 0.2289361
Appendix B. Continued

ANALYSIS OF VARIABLE LENGTH

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th>Variance</th>
<th>Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>0.2472200</td>
<td>0.40620</td>
<td>0.41049</td>
<td>0.41049</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>746.2371120</td>
<td>2.75114</td>
<td>95.60886</td>
<td>95.60886</td>
<td>23.30</td>
</tr>
<tr>
<td>Dam</td>
<td>52</td>
<td>16026.19088</td>
<td>6.17346</td>
<td>65.42554</td>
<td>65.42554</td>
<td>15.94</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.1301760</td>
<td>0.02493</td>
<td>0.02493</td>
<td>0.02493</td>
<td>6.76</td>
</tr>
</tbody>
</table>

Mean: 191.262126
Standard Deviation: 15.941304
Coefficient of Variation: 0.079549

ANALYSIS OF VARIABLE HEIGHTS

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th>Variance</th>
<th>Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>0.1075960</td>
<td>0.17689</td>
<td>0.17855</td>
<td>0.17855</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>31236.6610</td>
<td>0.11092</td>
<td>0.43021</td>
<td>0.43021</td>
<td>24.09</td>
</tr>
<tr>
<td>Dam</td>
<td>52</td>
<td>16759.490</td>
<td>0.31412</td>
<td>0.31412</td>
<td>0.31412</td>
<td>14.31</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.5746590</td>
<td>0.01098</td>
<td>0.01098</td>
<td>0.01098</td>
<td>6.59</td>
</tr>
</tbody>
</table>

Mean: 141.361364
Standard Deviation: 37.163138
Coefficient of Variation: 0.253763

ANALYSIS OF VARIABLE X

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th>Variance</th>
<th>Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>18.81417</td>
<td>0.00105</td>
<td>0.00105</td>
<td>0.00105</td>
<td>100.00</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>3.21035</td>
<td>0.11146</td>
<td>0.00324</td>
<td>0.00324</td>
<td>10.42</td>
</tr>
<tr>
<td>Dam</td>
<td>52</td>
<td>2.70538</td>
<td>0.05107</td>
<td>0.05107</td>
<td>0.05107</td>
<td>10.08</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>12.89620</td>
<td>0.02471</td>
<td>0.02471</td>
<td>0.02471</td>
<td>79.50</td>
</tr>
</tbody>
</table>

Mean: 1.171818
Standard Deviation: 0.157191
Coefficient of Variation: 0.033763
Appendix B. Continued.

Analysis of Variable log

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>588</td>
<td>1.08179</td>
<td>0.00181</td>
<td>0.00181</td>
<td>100.00</td>
</tr>
<tr>
<td>Site</td>
<td>28</td>
<td>0.15694</td>
<td>0.00109</td>
<td>-0.00055</td>
<td>0.0</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>0.25699</td>
<td>0.00044</td>
<td>0.00044</td>
<td>23.86</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.71874</td>
<td>0.00139</td>
<td>0.00139</td>
<td>76.14</td>
</tr>
</tbody>
</table>

*Mean Standard Deviation: 0.216452
Coefficient of Variation: 0.144396*

Analysis of Variable ash

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>Variance Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>588</td>
<td>1.08179</td>
<td>0.00181</td>
<td>0.00181</td>
<td>100.00</td>
</tr>
<tr>
<td>Site</td>
<td>28</td>
<td>0.16694</td>
<td>0.00109</td>
<td>-0.00055</td>
<td>0.0</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>0.25699</td>
<td>0.00044</td>
<td>0.00044</td>
<td>23.86</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.71874</td>
<td>0.00139</td>
<td>0.00139</td>
<td>76.14</td>
</tr>
</tbody>
</table>

*Mean Standard Deviation: 0.310818
Coefficient of Variation: 0.167076*

Covariance of Variable Moisture with Weight

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>-482.03132</td>
<td>-1.55350</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.6821</td>
<td>-0.6821</td>
</tr>
<tr>
<td>Site</td>
<td>28</td>
<td>-394.14219</td>
<td>-10.86139</td>
<td>-0.41329</td>
<td>-1.173</td>
<td>-0.0266</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-125.03404</td>
<td>-2.22588</td>
<td>-0.37033</td>
<td>-0.37033</td>
<td>-0.4536</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-504.13452</td>
<td>-0.47592</td>
<td>0.215927</td>
<td>0.6512</td>
<td>-0.6452</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable Moisture with Protein

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Correlation</th>
<th>Mean Square</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>605</td>
<td>1141.53</td>
<td>2.59</td>
<td>2.59520</td>
<td>0.3362</td>
<td>0.2558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>20</td>
<td>-220.73</td>
<td></td>
<td>-0.15374</td>
<td>0.6</td>
<td>-0.3178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.</td>
<td>58</td>
<td>340.61</td>
<td>0.01</td>
<td>0.57924</td>
<td>0.3092</td>
<td>0.3323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>1021.21</td>
<td>1.95</td>
<td>1.95546</td>
<td>0.398</td>
<td>0.3898</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariance of Variable Moisture with Ash

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Correlation</th>
<th>Mean Square</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>603</td>
<td>-84.02</td>
<td></td>
<td>-0.136157</td>
<td>0.005815</td>
<td>0.0144</td>
<td>-0.3408</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>29</td>
<td>-6.54</td>
<td></td>
<td>-0.24596</td>
<td>0.01891</td>
<td>0.0</td>
<td>-0.1900</td>
<td></td>
</tr>
<tr>
<td>D.M.</td>
<td>58</td>
<td>-20.73</td>
<td></td>
<td>-0.35810</td>
<td>0.35530</td>
<td>0.3922</td>
<td>-0.4175</td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-56.73</td>
<td></td>
<td>-0.10879</td>
<td>-0.10879</td>
<td>-0.3503</td>
<td>-0.3503</td>
<td></td>
</tr>
</tbody>
</table>

Covariance of Variable Moisture with Wax

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Correlation</th>
<th>Mean Square</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>600</td>
<td>-557.02</td>
<td></td>
<td>-0.96092</td>
<td>0.574505</td>
<td>0.6366</td>
<td>-0.4477</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>29</td>
<td>-13.19</td>
<td></td>
<td>-0.470542</td>
<td>0.470542</td>
<td>0.6</td>
<td>-0.0631</td>
<td></td>
</tr>
<tr>
<td>D.M.</td>
<td>58</td>
<td>-122.79</td>
<td></td>
<td>-2.11690</td>
<td>-0.186584</td>
<td>-0.4033</td>
<td>-0.4405</td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-440.95</td>
<td></td>
<td>-0.19468</td>
<td>-0.19468</td>
<td>-0.5438</td>
<td>-0.5438</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable Moisture with Doy

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>616</td>
<td>-1134.631972</td>
<td>-1.864221</td>
<td>0.535059</td>
<td>0.0758</td>
<td>-0.2436</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>174.741323</td>
<td>6.417012</td>
<td>0.562899</td>
<td>0.0</td>
<td>0.2759</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-341.244446</td>
<td>-5.883576</td>
<td>-0.574175</td>
<td>-0.1979</td>
<td>-0.3146</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-913.165714</td>
<td>-1.664302</td>
<td>-1.064302</td>
<td>-0.3564</td>
<td>-0.3564</td>
</tr>
</tbody>
</table>

Covariance of Variable Moisture with Length

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>616</td>
<td>-6579.772627</td>
<td>-10.621994</td>
<td>0.236323</td>
<td>0.0072</td>
<td>-0.3374</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-2034.522151</td>
<td>-14.437210</td>
<td>-3.246636</td>
<td>-0.5929</td>
<td>-0.4229</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-163.539048</td>
<td>-6.267015</td>
<td>0.231320</td>
<td>0.0439</td>
<td>-3.1073</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-431.711529</td>
<td>-7.915156</td>
<td>-7.915156</td>
<td>-0.3647</td>
<td>-0.3647</td>
</tr>
</tbody>
</table>

Covariance of Variable Moisture with Weights

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>603</td>
<td>-16988.425872</td>
<td>-27.941690</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1114</td>
</tr>
<tr>
<td>SIRE</td>
<td>26</td>
<td>-536.427804</td>
<td>-19.160852</td>
<td>-7.014395</td>
<td>-0.6727</td>
<td>-0.5194</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-1596.812871</td>
<td>-17.596804</td>
<td>-1.185024</td>
<td>-0.115</td>
<td>-0.2330</td>
</tr>
<tr>
<td>ERROR</td>
<td>542</td>
<td>-10617.894028</td>
<td>-19.210524</td>
<td>-19.210524</td>
<td>-0.3210</td>
<td>-0.4216</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-41.16017903</td>
<td>-0.06710813</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.2734</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-14.75291711</td>
<td>-0.13594430</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.2109</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-9.149333</td>
<td>-0.06219243</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.4503</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-17.254214</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1485</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVARIANCE OF VARIABLE MOISTURE WITH KLOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVARIANCE SOURCE</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>SIRE</td>
</tr>
<tr>
<td>DAM</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVARIANCE OF VARIABLE MOISTURE WITH ASHLOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVARIANCE SOURCE</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>SIRE</td>
</tr>
<tr>
<td>DAM</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

Appendix B. Continued.

Covariance of Variable W/Protein with Protein

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>605</td>
<td>2200.974560</td>
<td>3.650149</td>
<td>3.638293</td>
<td>0.5395</td>
<td>0.5613</td>
</tr>
<tr>
<td>SIRE</td>
<td>26</td>
<td>522.600758</td>
<td>1.50.4634</td>
<td>0.214601</td>
<td>0.6</td>
<td>0.7341</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>764.692666</td>
<td>13.17012</td>
<td>1.613987</td>
<td>0.5663</td>
<td>0.6950</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>912.093097</td>
<td>1.747305</td>
<td>1.747305</td>
<td>0.6388</td>
<td>0.4180</td>
</tr>
</tbody>
</table>

Covariance of Variable W/Protein with Ash

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>50.125354</td>
<td>0.062443</td>
<td>0.042809</td>
<td>0.2243</td>
<td>0.2264</td>
</tr>
<tr>
<td>SIRE</td>
<td>26</td>
<td>5.139046</td>
<td>0.103525</td>
<td>0.051207</td>
<td>0.0</td>
<td>0.1471</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>7.174767</td>
<td>0.180177</td>
<td>0.127986</td>
<td>0.1524</td>
<td>0.1880</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>35.012600</td>
<td>0.068666</td>
<td>0.068606</td>
<td>0.2757</td>
<td>0.2787</td>
</tr>
</tbody>
</table>

Covariance of Variable W/Protein with W/ Fat

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>606</td>
<td>355.116782</td>
<td>-0.325132</td>
<td>0.024594</td>
<td>0.0143</td>
<td>-0.2449</td>
</tr>
<tr>
<td>SIRE</td>
<td>26</td>
<td>53.786015</td>
<td>-2.228243</td>
<td>0.227854</td>
<td>0.0</td>
<td>-0.3747</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>146.098710</td>
<td>-2.963051</td>
<td>-0.367287</td>
<td>-0.6937</td>
<td>-0.5853</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>432.278352</td>
<td>-0.287874</td>
<td>-0.287874</td>
<td>-0.2456</td>
<td>-0.2470</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable Weight with DFAT

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Covariance</th>
<th>Covariance Component</th>
<th>Mean Square</th>
<th>Mean Covariance Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>-2176.204519</td>
<td>-3.570284</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.5319</td>
<td></td>
</tr>
<tr>
<td>Sire</td>
<td>26</td>
<td>-472.241285</td>
<td>-10.565560</td>
<td>-0.185832</td>
<td>0.0</td>
<td>-0.6725</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>-751.071262</td>
<td>-12.963298</td>
<td>-1.591338</td>
<td>-0.7564</td>
<td>-0.6617</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-952.049271</td>
<td>-1.823931</td>
<td>-1.823931</td>
<td>-0.4194</td>
<td>-0.4394</td>
<td></td>
</tr>
</tbody>
</table>

Covariance of Variable Weight with Length

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Covariance</th>
<th>Covariance Component</th>
<th>Mean Square</th>
<th>Mean Covariance Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>6105.195596</td>
<td>10.041438</td>
<td>10.176290</td>
<td>0.3445</td>
<td>0.2424</td>
<td></td>
</tr>
<tr>
<td>Sire</td>
<td>26</td>
<td>2580.646546</td>
<td>92.166677</td>
<td>3.674123</td>
<td>0.6225</td>
<td>0.4077</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>28</td>
<td>870.539571</td>
<td>15.009266</td>
<td>1.417853</td>
<td>0.2379</td>
<td>0.2527</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>2644.044295</td>
<td>5.084413</td>
<td>5.084413</td>
<td>0.2952</td>
<td>0.2952</td>
<td></td>
</tr>
</tbody>
</table>

Covariance of Variable Weight with M1G085

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Covariance</th>
<th>Covariance Component</th>
<th>Mean Square</th>
<th>Mean Covariance Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>606</td>
<td>15927.093088</td>
<td>26.195678</td>
<td>26.195678</td>
<td>0.4314</td>
<td>0.4295</td>
<td></td>
</tr>
<tr>
<td>Sire</td>
<td>26</td>
<td>6135.613443</td>
<td>240.97623</td>
<td>5.613826</td>
<td>0.7433</td>
<td>0.6074</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>2267.640467</td>
<td>38.666218</td>
<td>3.622034</td>
<td>0.3015</td>
<td>0.3221</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>6448.335521</td>
<td>13.311953</td>
<td>13.311953</td>
<td>0.3631</td>
<td>0.3681</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable: Protein with k

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>347.765756</td>
<td>0.015474</td>
<td>0.001468</td>
<td>0.2394</td>
<td>0.2394</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>18.616155</td>
<td>0.064957</td>
<td>0.028816</td>
<td>0.8119</td>
<td>0.5414</td>
</tr>
<tr>
<td>Dam</td>
<td>50</td>
<td>34.450476</td>
<td>0.059019</td>
<td>0.004529</td>
<td>0.1093</td>
<td>0.1240</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>14.677482</td>
<td>0.028116</td>
<td>0.028116</td>
<td>0.1640</td>
<td>0.1640</td>
</tr>
</tbody>
</table>

Covariance of Variable: Protein with YLBG

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>609</td>
<td>9.410106</td>
<td>0.015474</td>
<td>0.015542</td>
<td>0.2633</td>
<td>0.2607</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>4.951466</td>
<td>0.017488</td>
<td>0.007253</td>
<td>0.9253</td>
<td>0.5491</td>
</tr>
<tr>
<td>Dam</td>
<td>50</td>
<td>0.041930</td>
<td>0.019555</td>
<td>0.006090</td>
<td>0.1059</td>
<td>0.1270</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>3.121951</td>
<td>0.030924</td>
<td>0.030924</td>
<td>0.1765</td>
<td>0.1785</td>
</tr>
</tbody>
</table>

Covariance of Variable: Protein with ASILBG

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>609</td>
<td>5.556598</td>
<td>0.314121</td>
<td>0.015364</td>
<td>0.2320</td>
<td>0.2319</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>2.301426</td>
<td>0.014167</td>
<td>-0.006237</td>
<td>0.001427</td>
<td>0.01071</td>
</tr>
<tr>
<td>Dam</td>
<td>50</td>
<td>1.676111</td>
<td>0.028905</td>
<td>0.004624</td>
<td>0.1584</td>
<td>0.1452</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>6.232683</td>
<td>0.011960</td>
<td>0.011960</td>
<td>0.2451</td>
<td>0.2651</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

COVARIANCE OF VARIABLE DPROTEIN WITH ASH

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT</th>
<th>MEAN SQUARE CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-57.733235</td>
<td>-0.074937</td>
<td>0.021813</td>
<td>0.0105</td>
<td>-0.3812</td>
<td>-0.3812</td>
</tr>
<tr>
<td>SIRE</td>
<td>24</td>
<td>-0.128166</td>
<td>-0.004577</td>
<td>0.021813</td>
<td>0.0</td>
<td>-0.0013</td>
<td>-0.0013</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-26.034081</td>
<td>-0.462657</td>
<td>-0.037681</td>
<td>-0.1751</td>
<td>-0.1447</td>
<td>-0.1447</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-30.740986</td>
<td>-0.058891</td>
<td>-0.058891</td>
<td>-0.0714</td>
<td>-0.0714</td>
<td>-0.0714</td>
</tr>
</tbody>
</table>

COVARIANCE OF VARIABLE DPROTEIN WITH WFAT

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT</th>
<th>MEAN SQUARE CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-3250.735784</td>
<td>-5.346610</td>
<td>0.360687</td>
<td>0.0601</td>
<td>-0.9410</td>
<td>-0.9410</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-295.103546</td>
<td>-10.539412</td>
<td>0.360687</td>
<td>0.0</td>
<td>-0.8800</td>
<td>-0.8800</td>
</tr>
<tr>
<td>DAM</td>
<td>52</td>
<td>-1058.602457</td>
<td>-18.111835</td>
<td>-2.056335</td>
<td>-0.9885</td>
<td>-0.9758</td>
<td>-0.9758</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-1905.032786</td>
<td>-3.694498</td>
<td>-3.694498</td>
<td>-0.9373</td>
<td>-0.9373</td>
<td>-0.9373</td>
</tr>
</tbody>
</table>

COVARIANCE OF VARIABLE DPROTEIN WITH DEAT

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT</th>
<th>MEAN SQUARE CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-1337.615505</td>
<td>-20.292131</td>
<td>1.102277</td>
<td>0.0496</td>
<td>-0.9621</td>
<td>-0.9621</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-1329.019057</td>
<td>-14.656645</td>
<td>1.102277</td>
<td>0.0</td>
<td>-0.9646</td>
<td>-0.9646</td>
</tr>
<tr>
<td>DAM</td>
<td>52</td>
<td>-4095.222562</td>
<td>-70.612470</td>
<td>-0.195574</td>
<td>-0.5867</td>
<td>-0.9784</td>
<td>-0.9784</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-6913.082386</td>
<td>-13.243452</td>
<td>-13.243452</td>
<td>-0.9578</td>
<td>-0.9578</td>
<td>-0.9578</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable DPPTEIN With Length

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>604</td>
<td>4453.624039</td>
<td>7.325540</td>
<td>11.251240</td>
<td>0.1192</td>
<td>0.0799</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>3828.921135</td>
<td>136.747933</td>
<td>4.407953</td>
<td>0.0</td>
<td>0.3671</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>2563.224762</td>
<td>44.179353</td>
<td>6.043868</td>
<td>0.2926</td>
<td>0.1960</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-1936.542857</td>
<td>-3.713684</td>
<td>-3.713684</td>
<td>-0.0644</td>
<td>-0.0644</td>
</tr>
</tbody>
</table>

Covariance of Variable DPPTEIN With VIGNS

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>11754.795995</td>
<td>19.349993</td>
<td>25.540761</td>
<td>0.1298</td>
<td>0.1012</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>10204.313943</td>
<td>367.725466</td>
<td>13.891062</td>
<td>0.0</td>
<td>0.4713</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>440.456095</td>
<td>25.887174</td>
<td>11.583000</td>
<td>0.2519</td>
<td>0.1666</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-2932.913143</td>
<td>-5.618722</td>
<td>-5.618722</td>
<td>-0.0464</td>
<td>-0.0464</td>
</tr>
</tbody>
</table>

Covariance of Variable DPPTEIN With K

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Product</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>638</td>
<td>18.005641</td>
<td>0.029615</td>
<td>0.029615</td>
<td>0.0676</td>
<td>0.0370</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>25.059419</td>
<td>1.037016</td>
<td>0.062539</td>
<td>0.0</td>
<td>0.4250</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-15.907167</td>
<td>-0.275244</td>
<td>-0.275244</td>
<td>-0.2515</td>
<td>-0.1504</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>4.917529</td>
<td>0.009413</td>
<td>0.009413</td>
<td>0.0164</td>
<td>0.0164</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable U Protein With Klog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>4.052074</td>
<td>0.039980</td>
<td>0.018168</td>
<td>0.0950</td>
<td>0.0429</td>
</tr>
<tr>
<td>Sire</td>
<td>20</td>
<td>7.621678</td>
<td>0.272203</td>
<td>0.016116</td>
<td>0.0</td>
<td>0.4439</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-3.841144</td>
<td>-0.066227</td>
<td>-0.009754</td>
<td>-0.2412</td>
<td>-0.1522</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>1.071541</td>
<td>0.002053</td>
<td>0.002053</td>
<td>0.0158</td>
<td>0.0158</td>
</tr>
</tbody>
</table>

Covariance of Variable U Protein With Ashlog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-12.132676</td>
<td>-0.119955</td>
<td>0.003091</td>
<td>0.0156</td>
<td>-3.1041</td>
</tr>
<tr>
<td>Sire</td>
<td>20</td>
<td>-0.668701</td>
<td>-0.023888</td>
<td>0.003091</td>
<td>0.0</td>
<td>-0.0541</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-5.150404</td>
<td>-0.048800</td>
<td>-0.010958</td>
<td>-0.1825</td>
<td>-0.1590</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-0.313574</td>
<td>-0.012095</td>
<td>-0.012095</td>
<td>-0.0893</td>
<td>-0.0893</td>
</tr>
</tbody>
</table>

Covariance of Variable Ash With WFAT

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-5.222948</td>
<td>-0.038590</td>
<td>0.008393</td>
<td>0.0258</td>
<td>-0.0274</td>
</tr>
<tr>
<td>Sire</td>
<td>20</td>
<td>-2.186043</td>
<td>-0.076673</td>
<td>-0.005986</td>
<td>0.0</td>
<td>-3.1313</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>2.763039</td>
<td>0.047639</td>
<td>0.008393</td>
<td>0.1019</td>
<td>0.0578</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-5.799943</td>
<td>-0.011111</td>
<td>-0.011111</td>
<td>-0.0462</td>
<td>-0.0462</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable Ash with Fat

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-75.906642</td>
<td>-0.124846</td>
<td>0.03672</td>
<td>0.0030</td>
<td>-0.1071</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>-10.342933</td>
<td>-0.369290</td>
<td>-0.013309</td>
<td>0.00</td>
<td>-0.1512</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-5.214538</td>
<td>-0.084906</td>
<td>0.001672</td>
<td>0.0112</td>
<td>-0.0280</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-0.159171</td>
<td>-0.115611</td>
<td>-0.1346</td>
<td>-0.1346</td>
<td></td>
</tr>
</tbody>
</table>

Covariance of Variable Ash with Length

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>350.703136</td>
<td>0.502601</td>
<td>0.529285</td>
<td>0.1933</td>
<td>0.0993</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>23.112104</td>
<td>0.025435</td>
<td>-0.025954</td>
<td>0.0</td>
<td>0.0447</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>79.486667</td>
<td>1.370460</td>
<td>0.140196</td>
<td>0.1521</td>
<td>0.1368</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>203.104286</td>
<td>0.389089</td>
<td>0.389089</td>
<td>0.1092</td>
<td>0.1092</td>
</tr>
</tbody>
</table>

Covariance of Variable Ash with Weight

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>730.158330</td>
<td>1.203918</td>
<td>1.204353</td>
<td>0.1127</td>
<td>0.1137</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>72.183135</td>
<td>3.292370</td>
<td>0.028046</td>
<td>0.0</td>
<td>0.0350</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>156.797429</td>
<td>2.703404</td>
<td>0.254516</td>
<td>0.1397</td>
<td>0.1336</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>481.174571</td>
<td>0.921790</td>
<td>0.921790</td>
<td>0.1731</td>
<td>0.1231</td>
</tr>
</tbody>
</table>
Covariance of Variable Ash with K

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>0.90404646</td>
<td>0.0015481</td>
<td>0.002370</td>
<td>0.0532</td>
<td>0.0335</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>0.5482464</td>
<td>0.019580</td>
<td>0.001161</td>
<td>0.0</td>
<td>0.1639</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-0.278552</td>
<td>-0.004803</td>
<td>-0.000859</td>
<td>-0.136</td>
<td>-0.0590</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>0.63080000</td>
<td>0.001208</td>
<td>0.001208</td>
<td>0.0341</td>
<td>0.0341</td>
</tr>
</tbody>
</table>

Covariance of Variable Ash with Klog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>0.26810546</td>
<td>0.000641</td>
<td>0.000651</td>
<td>0.0627</td>
<td>0.0429</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>0.1147174</td>
<td>0.004811</td>
<td>0.000279</td>
<td>0.0</td>
<td>0.1581</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-0.060761</td>
<td>-0.031046</td>
<td>-0.002030</td>
<td>-0.1273</td>
<td>-0.0542</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>0.1991949</td>
<td>0.003372</td>
<td>0.003372</td>
<td>0.0463</td>
<td>0.0463</td>
</tr>
</tbody>
</table>

Covariance of Variable Ash with Ashlog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>6.0726524</td>
<td>0.010481</td>
<td>0.010644</td>
<td>0.5900</td>
<td>0.7809</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>0.8094272</td>
<td>0.021760</td>
<td>-0.000145</td>
<td>0.0</td>
<td>0.9927</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>1.438165</td>
<td>0.024796</td>
<td>0.002359</td>
<td>0.967</td>
<td>0.9930</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>4.251954</td>
<td>0.008266</td>
<td>0.008286</td>
<td>0.9842</td>
<td>0.9892</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

<table>
<thead>
<tr>
<th>COVARIANCE OF VARIABLE WAT WITH DFAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>SIRE</td>
</tr>
<tr>
<td>DAM</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVARIANCE OF VARIABLE WAT WITH LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>SIRE</td>
</tr>
<tr>
<td>DAM</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVARIANCE OF VARIABLE WAT WITH WIGHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>SIRE</td>
</tr>
<tr>
<td>DAM</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

COVARIANCE OF VARIABLE WFAT WITH K

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>3.781353</td>
<td>0.006219</td>
<td>0.017826</td>
<td>0.0785</td>
<td>0.0283</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-4.164423</td>
<td>-0.148744</td>
<td>-0.011861</td>
<td>-0.0</td>
<td>-0.2621</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>5.814876</td>
<td>0.100543</td>
<td>0.013853</td>
<td>0.3398</td>
<td>0.2122</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>2.126300</td>
<td>0.004073</td>
<td>0.004073</td>
<td>0.0243</td>
<td>0.0243</td>
</tr>
</tbody>
</table>

COVARIANCE OF VARIABLE WFAT WITH KLOG

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>0.859004</td>
<td>0.001413</td>
<td>0.004303</td>
<td>0.0614</td>
<td>0.0276</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-1.059164</td>
<td>-0.016649</td>
<td>-0.002954</td>
<td>0.0</td>
<td>-0.2631</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>1.403342</td>
<td>0.024196</td>
<td>0.003315</td>
<td>0.3779</td>
<td>0.2153</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>0.515426</td>
<td>0.000387</td>
<td>0.000987</td>
<td>0.0260</td>
<td>0.0260</td>
</tr>
</tbody>
</table>

COVARIANCE OF VARIABLE WFAT WITH ASHLOG

<table>
<thead>
<tr>
<th>COVARIANCE SOURCE</th>
<th>D.F.</th>
<th>SUM OF PRODUCTS</th>
<th>MEAN PRODUCTS</th>
<th>COVARIANCE COMPONENT</th>
<th>VARIANCE COMPONENT CORRELATION</th>
<th>MEAN SQUARE CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>0.019730</td>
<td>0.000032</td>
<td>0.001716</td>
<td>0.0413</td>
<td>0.0006</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-0.225299</td>
<td>-0.060846</td>
<td>-0.000913</td>
<td>0.0</td>
<td>-0.0777</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>0.651632</td>
<td>0.011239</td>
<td>0.001716</td>
<td>0.1143</td>
<td>0.0774</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-0.406663</td>
<td>-0.000779</td>
<td>-0.000779</td>
<td>-0.0197</td>
<td>-0.0197</td>
</tr>
</tbody>
</table>
Appendix B. Continued.

Covariance of Variable Data with Length

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-4056.905484</td>
<td>-6.72831</td>
<td>3.676653</td>
<td>0.0303</td>
<td>-0.0720</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-5486.694516</td>
<td>-124.524405</td>
<td>-3.859050</td>
<td>0.0</td>
<td>-0.3470</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-2529.428100</td>
<td>-43.610755</td>
<td>-6.753344</td>
<td>-0.2501</td>
<td>-0.1926</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>1919.722857</td>
<td>3.676653</td>
<td>3.676653</td>
<td>0.0612</td>
<td>0.0612</td>
</tr>
</tbody>
</table>

Covariance of Variable Data with WtGns

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-10521.884814</td>
<td>-17.30732</td>
<td>5.373822</td>
<td>0.0266</td>
<td>-0.0387</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-9233.311957</td>
<td>-329.76141</td>
<td>-12.341904</td>
<td>0.0</td>
<td>-0.4385</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>-4093.70714</td>
<td>-70.50167</td>
<td>-10.850713</td>
<td>-0.2358</td>
<td>-0.1542</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>2805.133057</td>
<td>5.17322</td>
<td>5.373822</td>
<td>0.0420</td>
<td>0.0426</td>
</tr>
</tbody>
</table>

Covariance of Variable Data with K

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>608</td>
<td>-10.491062</td>
<td>-0.017354</td>
<td>0.047109</td>
<td>0.0560</td>
<td>-0.0215</td>
</tr>
<tr>
<td>SIRE</td>
<td>28</td>
<td>-29.227147</td>
<td>-0.402562</td>
<td>-0.058309</td>
<td>0.0</td>
<td>-0.3070</td>
</tr>
<tr>
<td>DAM</td>
<td>58</td>
<td>18.671543</td>
<td>0.121923</td>
<td>0.047109</td>
<td>0.2424</td>
<td>0.1751</td>
</tr>
<tr>
<td>ERROR</td>
<td>522</td>
<td>-4.090457</td>
<td>-0.007037</td>
<td>-0.007037</td>
<td>-0.0151</td>
<td>-0.0151</td>
</tr>
</tbody>
</table>
Covariance of Variable DFAT with Klog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-3.134596</td>
<td>-0.0052164</td>
<td>0.011282</td>
<td>0.0960</td>
<td>-0.0372</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>-6.595183</td>
<td>-0.235542</td>
<td>-0.016845</td>
<td>0.0</td>
<td>-0.3165</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>4.408106</td>
<td>0.077035</td>
<td>0.011242</td>
<td>0.2803</td>
<td>0.1763</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-1.012914</td>
<td>-0.009643</td>
<td>-0.001940</td>
<td>-0.0143</td>
<td>-0.0143</td>
</tr>
</tbody>
</table>

Covariance of Variable DFAT with Ashlog

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-9.849185</td>
<td>-0.016499</td>
<td>0.001375</td>
<td>0.0068</td>
<td>-0.0379</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>-1.142609</td>
<td>-0.040007</td>
<td>-0.001641</td>
<td>0.0</td>
<td>-0.0555</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>-0.368153</td>
<td>-0.036331</td>
<td>0.001375</td>
<td>0.0230</td>
<td>-0.0133</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-0.438224</td>
<td>-0.015975</td>
<td>-0.0015974</td>
<td>-0.0113</td>
<td>-0.0113</td>
</tr>
</tbody>
</table>

Covariance of Variable Length with HgMS

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>0.48314250</td>
<td>0.274646221</td>
<td>0.80232970</td>
<td>0.9374</td>
<td>0.9370</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>0.153333220</td>
<td>0.546575204</td>
<td>0.19665270</td>
<td>0.9711</td>
<td>0.9625</td>
</tr>
<tr>
<td>Dam</td>
<td>56</td>
<td>7.1360723810</td>
<td>12.490973</td>
<td>0.4473</td>
<td>0.9377</td>
<td>0.9377</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.252066650</td>
<td>0.462946603</td>
<td>0.462860603</td>
<td>0.9221</td>
<td>0.9221</td>
</tr>
</tbody>
</table>
Covariance of Variable Length with K

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-261.150597</td>
<td>-0.429539</td>
<td>0.180147</td>
<td>0.0504</td>
<td>-0.1211</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>56.413826</td>
<td>2.021922</td>
<td>0.180147</td>
<td>0.3237</td>
<td>0.1146</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-162.147619</td>
<td>-1.761666</td>
<td>-0.192584</td>
<td>-0.4255</td>
<td>-0.3066</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-215.625714</td>
<td>-0.413076</td>
<td>-0.413076</td>
<td>-0.1666</td>
<td>-0.1664</td>
</tr>
</tbody>
</table>

Covariance of Variable Length with KLOG

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>-57.922450</td>
<td>-0.095267</td>
<td>0.049441</td>
<td>0.0544</td>
<td>-0.1154</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>16.842635</td>
<td>0.601523</td>
<td>0.049441</td>
<td>0.3368</td>
<td>0.1345</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>-25.331362</td>
<td>-0.436748</td>
<td>-0.048864</td>
<td>-0.4326</td>
<td>-0.3200</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>-49.433123</td>
<td>-0.094701</td>
<td>-0.094701</td>
<td>-0.1686</td>
<td>-0.1686</td>
</tr>
</tbody>
</table>

Covariance of Variable Length with ASHLOG

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>59.226502</td>
<td>0.002609</td>
<td>0.089591</td>
<td>0.1045</td>
<td>0.0972</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>1.768147</td>
<td>0.063170</td>
<td>-0.007414</td>
<td>0.0</td>
<td>0.0196</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>12.694091</td>
<td>0.210664</td>
<td>0.021479</td>
<td>0.1279</td>
<td>0.1241</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>35.763664</td>
<td>0.068513</td>
<td>0.068513</td>
<td>0.1169</td>
<td>0.1169</td>
</tr>
</tbody>
</table>
Covariance of Variable Wigs with K

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>849.495438</td>
<td>1.347671</td>
<td>1.532146</td>
<td>0.2057</td>
<td>0.1089</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>375.301916</td>
<td>13.603607</td>
<td>0.633669</td>
<td>0.5368</td>
<td>0.3625</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>52.996857</td>
<td>0.966549</td>
<td>-0.114561</td>
<td>-0.1280</td>
<td>0.0083</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>469.004571</td>
<td>0.893476</td>
<td>0.898476</td>
<td>0.1724</td>
<td>0.1724</td>
</tr>
</tbody>
</table>

Covariance of Variable Wigs with KLG

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>207.603619</td>
<td>6.341453</td>
<td>0.375579</td>
<td>0.2165</td>
<td>0.1983</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>100.181921</td>
<td>3.577926</td>
<td>0.110201</td>
<td>0.5466</td>
<td>0.3818</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>0.214592</td>
<td>0.063606</td>
<td>-0.026812</td>
<td>-0.1289</td>
<td>0.0013</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>107.203305</td>
<td>0.269378</td>
<td>0.205370</td>
<td>0.1741</td>
<td>0.1741</td>
</tr>
</tbody>
</table>

Covariance of Variable Wigs with ASLOG

<table>
<thead>
<tr>
<th>Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component Correlation</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>172.355308</td>
<td>0.201242</td>
<td>0.203227</td>
<td>0.1311</td>
<td>0.1135</td>
</tr>
<tr>
<td>Sire</td>
<td>28</td>
<td>11.63191</td>
<td>0.445021</td>
<td>-0.601633</td>
<td>0.0</td>
<td>0.0016</td>
</tr>
<tr>
<td>Dam</td>
<td>58</td>
<td>26.685703</td>
<td>0.447719</td>
<td>0.041082</td>
<td>0.1237</td>
<td>0.1262</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>64.639645</td>
<td>0.162145</td>
<td>0.162145</td>
<td>0.1318</td>
<td>0.1318</td>
</tr>
</tbody>
</table>
Covariance of Variable K with Klog

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>638</td>
<td>4.340195</td>
<td>0.007138</td>
<td>0.007174</td>
<td>0.9912</td>
<td>0.9912</td>
</tr>
<tr>
<td>Sire</td>
<td>2d</td>
<td>0.41606</td>
<td>0.020986</td>
<td>0.000856</td>
<td>1.0018</td>
<td>0.9914</td>
</tr>
<tr>
<td>Dam</td>
<td>50</td>
<td>0.630761</td>
<td>0.011013</td>
<td>0.000782</td>
<td>0.9975</td>
<td>0.9937</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>2.894028</td>
<td>0.005536</td>
<td>0.005536</td>
<td>0.9903</td>
<td>0.9903</td>
</tr>
</tbody>
</table>

Covariance of Variable K with Ashlog

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>608</td>
<td>0.174849</td>
<td>0.000288</td>
<td>0.000403</td>
<td>0.0537</td>
<td>0.0588</td>
</tr>
<tr>
<td>Sire</td>
<td>20</td>
<td>0.087568</td>
<td>0.003127</td>
<td>0.000175</td>
<td>0.31</td>
<td>0.1494</td>
</tr>
<tr>
<td>Dam</td>
<td>50</td>
<td>-0.011513</td>
<td>-0.000544</td>
<td>-0.000110</td>
<td>-0.0949</td>
<td>-0.0380</td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.110055</td>
<td>0.000220</td>
<td>0.000220</td>
<td>0.0390</td>
<td>0.0390</td>
</tr>
</tbody>
</table>

Covariance of Variable Klog with Ashlog

<table>
<thead>
<tr>
<th>Covariance Source</th>
<th>D.F.</th>
<th>Sum of Products</th>
<th>Mean Products</th>
<th>Covariance Component</th>
<th>Variance Component</th>
<th>Mean Square Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>693</td>
<td>0.905037</td>
<td>0.000083</td>
<td>0.000110</td>
<td>0.0631</td>
<td>0.0483</td>
</tr>
<tr>
<td>Sire</td>
<td>70</td>
<td>0.072513</td>
<td>0.000761</td>
<td>0.000042</td>
<td>0.00</td>
<td>0.1355</td>
</tr>
<tr>
<td>Dam</td>
<td>50-0.050784-02-0.1121908D-03-0.258333D-04</td>
<td>-0.0089</td>
<td>-0.0330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>522</td>
<td>0.005831</td>
<td>0.000069</td>
<td>0.000069</td>
<td>0.0520</td>
<td>0.0520</td>
</tr>
</tbody>
</table>