9-3-1985

Economics of Grain Storage

Richard C. Shane
South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/econ_comm

Part of the Agricultural and Resource Economics Commons, and the Regional Economics Commons

Recommended Citation
http://openprairie.sdstate.edu/econ_comm/223

This Newsletter is brought to you for free and open access by the Economics at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Economics Commentator by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
Low grain prices of recent months have focused attention on the economics of storing grain. Potential seasonal price increases provide the incentive for grain storage. The predominant question in the decision to store is whether expected grain price increases will exceed the costs of storage.

The objective of this Newsletter is to present a method for calculating storage costs. Storage costs for several crops are presented. It is the reader's task to compare these storage costs with expected price changes associated with alternative grain marketing strategies.

Storage Costs

Total costs of storing grain are divided into fixed and variable categories. Fixed costs include depreciation, interest, maintenance, taxes and insurance on facilities and equipment. These costs are incurred whether the grain bin is full or empty. Variable costs differ depending on how much you store, where you store and how long you store. The major component of variable cost is interest. Interest on the inventory value of a stored crop must be taken into account. If a crop is sold (rather than stored), the proceeds from the sale could be used to (1) reduce debt—and hence reduce one's interest payments—or (2) invest to earn interest—for example, in a time certificate. For storage to be profitable, grain prices must increase enough to pay this interest (called opportunity cost interest) plus other storage costs.

Other variable storage costs include insurance on the grain, quality maintenance costs, loss of value due to deterioration, labor, added transportation charges, and shrinkage. In the short-run (one storage period), expected price increases must at least cover variable costs to make storage a viable alternative. However, in the long run (several years), fixed costs must be paid as well. This argument is made because the fixed costs must be paid even if the bin is empty. So, if variable costs plus a little more are paid by grain price increases, you are better off. In the long run, however, if year after year you pay only variable costs the grain bin will deteriorate and there will be no money to replace it.

Commercial Storage

A quoted grain storage charge (per bushel per month) in a commercial facility covers the total costs of storage plus a risk premium. Opportunity interest cost must be added to the quoted rate to calculate a producer's total storage cost. Equation (1) is used for computing storage costs at a commercial facility.

\[
(1) \text{(Rate per month } \times \text{ months stored}) \quad + \quad (\text{current price } \times \text{ annual interest rate } \times \text{ months stored}/12)
\]

A common commercial storage rate is three cents per bushel per month. Combining this rate with $2.00 per bushel of corn stored for six months and a 13 1/2 percent annual interest rate leads to the sample calculation in equation (2).

\[
(2) \quad (0.03 \times 6) \quad + \quad (2.00 \times 0.135 \times 6/12) \quad = \quad 0.315
\]

Farm Storage

A producer needs to determine his fixed and variable storage costs. For those who may not know what these costs are, the rule-of-thumb procedure shown in equation (3) can be used. This equation—derived in conjunction with
The farm storage cost is calculated using the following equation:

\[
FSC = CP \left(1 + \frac{i}{12}\right)^m + (a + b \cdot m)
\]

where:
- \(FSC\) = farm storage cost
- \(CP\) = current price
- \(i\) = interest rate
- \(m\) = months stored
- \(a\) = 0.01 for corn, soybeans, oats and barley and 0.005 for wheat
- \(b\) = 0.001 for corn and 0.0005 for soybeans, oats, barley and wheat.

For an example calculation for corn, with a current price of $2.00 per bushel, an interest rate of 13% per annum, and six months of storage:

\[
FSC = 2.00 \left(1 + \frac{0.13}{12}\right)^6 + (0.01 + 0.0001 \cdot 6) = 2.167
\]

This result is 16.7 cents per bushel for six months of storage. In order to justify storing corn under these conditions, an increase in corn price to at least $2.17 per bushel must be expected.

Table 1 shows storage costs for corn and soybeans in 1989-90.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Months Stored</th>
<th>Commercial</th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Corn</td>
<td>1.2</td>
<td>2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Soybeans</td>
<td>1.7</td>
<td>3.7</td>
<td>5.7</td>
</tr>
</tbody>
</table>

An example calculation for corn is shown next.

\[
b = \frac{0.005}{0.13} \left(\frac{2.00}{1}\right) + (0.01 + 0.0001 \cdot 6) = 0.05
\]

\[
FSC = CP \left(1 + \frac{i}{12}\right)^m + (a + b \cdot m) = 2.00 \left(1 + \frac{0.13}{12}\right)^6 + (0.01 + 0.0001 \cdot 6) = 2.167
\]

An example calculation for corn is shown next.

\[
b = \frac{0.005}{0.13} \left(\frac{2.00}{1}\right) + (0.01 + 0.0001 \cdot 6) = 0.05
\]

\[
FSC = CP \left(1 + \frac{i}{12}\right)^m + (a + b \cdot m) = 2.00 \left(1 + \frac{0.13}{12}\right)^6 + (0.01 + 0.0001 \cdot 6) = 2.167
\]