Comparison of functional properties of porous starches produced with different enzyme combinations.

Document Type

Article

Publication Date

2021

Journal

International Journal of Biological Macromolecules

Volume

174

Pages

110-119

Language

en.

Keywords

Porous starches, Enzyme combinations, Structure characteristics, Absorption capacities

Abstract

To obtain porous starch granules with higher absorption capacities, three types of enzyme combinations were adopted to modify wheat and maize starches: (1) sequential α-amylase (AA) → glucoamylase (GA); (2) sequential branching enzyme (BE) → GA; and (3) sequential AA→BE→GA. The results indicated that AA→BE→GA treatment had a most optimal influence on porous starches. Compared to AA→GA and BE→GA, the mesopores in wheat starch granules treated with AA→BE→GA decreased by 52.82 and 48.70%, respectively. Conversely, the macropores increased by 216.68 and 138.18%, respectively. While for maize starch, the percentages of mesopores and macropores hardly changed after three enzyme combinations. Comparing the three enzyme treatments showed that pore volume (0.005 and 0.007 cm3/g) and pore size (36.35 and 26.54 nm) were largest in the AA→BE→GA treated wheat and maize starches, respectively. Compared to the AA→GA and BE→GA, the adsorption capacities for oil, dye and heavy metal ions, wheat starch treated with AA→BE→GA increased by 46.61 and 242.33%, and 44.52 and 134.41%, and 28.83 and 271.72%, respectively. Correspondingly, that of maize starch increased by 29.71 and 133.29%, and 42.92 and 79.93%, and 28.16 and 161.43%, respectively. These results may provide a new and valuable enzyme combination for optimising porous starch granules with higher absorption capacities.

This document is currently not available here.

Share

COinS