Document Type

Thesis - Open Access

Award Date

2017

Degree Name

Master of Science (MS)

Department

Electrical Engineering and Computer Science

First Advisor

Sung Y. Shin

Keywords

Classification, Feature Extraction, Harris Corner Detection, Mammogram Images, Pre-processing, Support Vector Machine

Abstract

Image classification and extracting the characteristics of a tumor are the powerful tools in medical science. In case of breast cancer medical treatment, the breast cancer classification methods can be used to classify input images as benign and malignant classes for better diagnoses and earlier detection with breast tumors. However, classification process can be challenging because of the existence of noise in the images, and complicated structures of the image. Manual classification of the images is timeconsuming, and need to be done only by medical experts. Hence using an automated medical image classification tool is useful and necessary. In addition, having a better training data set directly affect the quality of classification process. In this paper, a method is proposed based on supervised learning and automatic thresholding for both generating better training data set, and more accurate classification of the mammogram images into benign/malignant classes. The procedure consists of pre-processing, removing noise, elimination of unwanted objects, features extraction, and classification. A Support Vector Machine (SVM) is used as the supervised model in two phases which are testing and training. Intensity value, auto-correlation matrix value of detected corners, and, energy, are three extracted features used to train the SVM. Experimental results show this method classify images with more accuracy and less execution time compared to the existing method.

Library of Congress Subject Headings

Breast -- Imaging.
Breast -- Radiography.
Image processing -- Digital techniques.
Support vector machines.

Description

Includes bibliographical references (pages 30-34)

Format

application/pdf

Number of Pages

44

Publisher

South Dakota State University

Rights

In Copyright - Educational Use Permitted
http://rightsstatements.org/vocab/InC-EDU/1.0/

Share

COinS