Document Type

Article

Publication Date

2016

Abstract

Interactions among biochar, respiration, nitrification, and soils can result in biochar increasing, decreasing, or not impacting greenhouse gas (GHG) emissions. This experiment determined the impact of water-filled porosity (WFP) and corn (Zea mays L.) stover biochar on CO2 and N2O emissions in May (spring) and August (summer). The May experiment contained two N rates [0 and 224 kg Ca(NO3)2–N ha–1], whereas the August had three N rates [0, 224 kg Ca(NO3)2–N ha–1, and 224 kg (NH4)2SO4–N ha–1]. The average temperatures in the May and Augusts 2014 experiments were 14 and 24°C, respectively. Biochar reduced CO2–C emissions in the high WFP Ca(NO3)2 treatment in the May and August experiments 15.4 and 16.3 kg ha–1, respectively. Associated with the CO2–C decrease was a 15.7% reduction in the soil solution dissolved organic C. In addition, N2O–N and CO2–C emissions were not correlated in the May Ca(NO3)2 ha–1 treatment, whereas in the August experiment, N2O–N and CO2–C emissions were correlated (r2 = 0.98, P < 0.01). In August, biochar increased the apparent nitrification from 16 to 25 kg NH4–N (ha × d)–1 in the low WFP (NH4)2SO4treatment, and it did not influence the nitrification rate in the high WFP (NH4)2SO4 treatment. In general, N2O–N emissions increased with WFP and N rate and were reduced 21.7% by biochar. The findings suggest that multiple mechanisms contributed to N2O emissions and seasonal differences in soil temperature could result in biochar having a mixed impact on GHG emissions.

Publication Title

Agronomy Journal

Volume

108

Issue

6

First Page

2214

Last Page

2221

DOI of Published Version

10.2134/agronj2016.02.0100

Publisher

American Society of Agronomy, Inc.

Rights

Copyright © 2016 American Society of Agronomy

Comments

This article was published in (2016) Agronomy Journal 108:2214-2221. doi:10.2134/agronj2016.02.0100.

Share

COinS