Title

Opportunities for Bead-based Multiplex Assays in Veterinary Diagnostic Laboratories

Document Type

Article

Publication Date

11-2013

Keywords

Bead assay, cytometric bead array, diagnostics, Luminex, xMAP, multiplex, polymerase chain reaction

Abstract

Bead-based multiplex assays (BBMAs) are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several to 50–500 analytes within a single, small sample volume). Currently, few assays are commercially available for veterinary applications, but they are available to identify and measure various cytokines, growth factors and their receptors, inflammatory proteins, kinases and inhibitors, neurobiology proteins, and pathogens and antibodies in human beings, nonhuman primates, and rodent species. In veterinary medicine, various nucleic acid and protein-coupled beads can be used in, or for the development of, antigen and antibody BBMAs, with the advantage that more data can be collected using approximately the same amount of labor as used for other antigen and antibody assays. Veterinary-related BBMAs could be used for detection of pathogens, genotyping, measurement of hormone levels, and in disease surveillance and vaccine assessment. It will be important to evaluate whether BBMAs are “fit for purpose,” how costs and efficiencies compare between assays, which assays are published or commercially available for specific veterinary applications, and what procedures are involved in the development of the assays. It is expected that many veterinary-related BBMAs will be published and/or become commercially available in the next few years. The current review summarizes the BBMA technology and some of the currently available BBMAs developed for veterinary settings. Some of the human diagnostic BBMAs are also described, providing an example of possible templates for future development of new veterinary-related BBMAs.

Publication Title

Journal of Veterinary Diagnostic Investigation

Volume

25

Issue

6

First Page

671

Last Page

691

DOI of Published Version

10.1177/1040638713507256

Publisher

Sage Publications

Rights

Copyright © 2013 Sage