Session 11: On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring

Hassan Okasha, Al-Azhar University - Egypt
Y. L. Lio, University of South Dakota
Mohammed Albassam, King Abdulaziz University

Abstract

Bayesian estimates involve the selection of hyper-parameters in the prior distribution. To deal with this issue, the empirical Bayesian and E-Bayesian estimates may be used to overcome this problem. The first one uses the maximum likelihood estimate (MLE) procedure to decide the hyper-parameters; while the second one uses the expectation of the Bayesian estimate taken over the joint prior distribution of the hyper-parameters. This study focuses on establishing the E-Bayesian estimates for the Lomax distribution shape parameter functions by utilizing the Gamma prior of the unknown shape parameter along with three distinctive joint priors of Gamma hyper-parameters based two asymmetric loss functions include a general entropy and LINEX loss functions. To investigate the effect of the hyper-parameters' selections, mathematical propositions have been derived for the E-Bayesian estimates of the three shape functions that comprise the identity, reliability and hazard rate functions. Monte Carlo simulation has been performed to compare all procedures. Two real data sets from industry life test and medical study are applied for the illustrative purpose

 
Feb 7th, 3:00 PM Feb 7th, 4:00 PM

Session 11: On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring

Herold Crest 253 C

Bayesian estimates involve the selection of hyper-parameters in the prior distribution. To deal with this issue, the empirical Bayesian and E-Bayesian estimates may be used to overcome this problem. The first one uses the maximum likelihood estimate (MLE) procedure to decide the hyper-parameters; while the second one uses the expectation of the Bayesian estimate taken over the joint prior distribution of the hyper-parameters. This study focuses on establishing the E-Bayesian estimates for the Lomax distribution shape parameter functions by utilizing the Gamma prior of the unknown shape parameter along with three distinctive joint priors of Gamma hyper-parameters based two asymmetric loss functions include a general entropy and LINEX loss functions. To investigate the effect of the hyper-parameters' selections, mathematical propositions have been derived for the E-Bayesian estimates of the three shape functions that comprise the identity, reliability and hazard rate functions. Monte Carlo simulation has been performed to compare all procedures. Two real data sets from industry life test and medical study are applied for the illustrative purpose