Document Type

Thesis - Open Access

Award Date


Degree Name

Master of Science (MS)

Department / School

Electrical Engineering and Computer Science

First Advisor

Songxin Tan


Study of vegetation is of great importance to the improvement of agriculture and forest management. Although there have been various attempts to characterize vegetation using remote sensing techniques, polarimetric lidar is a novel remote sensing tool that has shown potential in vegetation remote sensing. In this thesis, a near-infrared polarimetric lidar at 1064 nm was used to investigate the effects of seasonal change and water stress condition on plant leaves. Two variables, time and water content, affected the plant leaf laser depolarization ratio measurement. The first study focused on the maple tree in order to figure out how seasonal change affected the maple leaf depolarization. Seasonal trendline was obtained and revealed an overall downward trend over time. In the second study, the leaves from maple, lemon, and rubber trees were investigated to study the effect of water stress on the depolarization ratio. It was discovered that the leaf depolarization ratio increased for more water content and went down for less water content. In addition, leaf samples were collected in the morning, afternoon, and evening, respectively, to study the diurnal change. Statistical analysis suggested that depolarization ratio did not change significantly for the different times of a day. It was suggested that the seasonal change had a greater effect on depolarization than the diurnal change. This study demonstrates that the near-infrared polarimetric lidar system has an ability to remotely characterize the vegetation internal conditions that may not be visible to the human eyes. Furthermore, the lidar system has the potential to differentiate the various plant species based on the depolarization ratio. In conclusion, the polarimetric lidar system at 1064-nm is an effective and sensitive enough remote sensing tool which can be widely used in active remote sensing.

Library of Congress Subject Headings

Polarization (Light)
Plants -- Effect of stress on.
Plants -- Seasonal variations.
Optical radar.
Reflectance spectroscopy.


Includes bibliographical references



Number of Pages



South Dakota State University



Rights Statement

In Copyright