Document Type

Thesis - Open Access

Award Date

2018

Degree Name

Master of Science (MS)

Department

Civil and Environmental Engineering

First Advisor

Suzette Burckhard

Keywords

Additive Manufacturing, High Density Polyethylene, Material Study, Mechanical Properties, Printing Parameters, Recyclable

Abstract

High-density polyethylene is a common recyclable plastic that has a large potential as an additive manufacturing material due its economic and environmental benefits. However, high-density polyethylene has undesirable thermal properties that cause the material to shirk and not adhere to the printing bed during an additive manufacturing processes. Researchers have attempted to combat these thermal properties but have only created novel filaments of high-density polyethylene without being able to create 3D printed specimens for mechanical property testing. This paper presents several methods to create 3D printed specimens with pure high-density polyethylene filament on a fused filament fabrication type 3D printer. The methods show that using a plastic bag composed of highdensity polyethylene on the printing bed in conjunction with clamps can be used to 3D print high-density polyethylene specimens consistently. These methods were used to create specimens for tensile, compression, impact, flexural, and shear mechanical property tests. The results of this study showed that following the recommended methods for 3D printing with high-density polyethylene presented in this paper will yield consistent specimens and data for mechanical property testing on a fused filament fabrication type 3D printer.

Description

Includes bibliographical references

Format

application/pdf

Number of Pages

60

Publisher

South Dakota State University

Rights

In Copyright - Educational Use Permitted
http://rightsstatements.org/vocab/InC-EDU/1.0/

Share

COinS