Consistency of Mobile and Sedentary Movement Extremes Exhibited by an Invasive Fish, Silver Carp Hypophthalmichthys molitrix

Document Type


Publication Date



Within many populations, some individuals may be more apt to move, and these individuals can substantially impact population dynamics. Invasive Silver Carp (Hypophthalmichthys molitrix) have spread throughout much of the Mississippi River Basin, and their presence has resulted in multiple negative ecosystem effects. Silver Carp are known to move hundreds of km, which has likely contributed to their rapid spread. Our study examined movement patterns and environmental cues for movement in Silver Carp based on acoustic telemetry of tagged fish that ranged widely (i.e., mobile) and those that did not range far from the site of their original capture and tagging (i.e., sedentary) in the Wabash River, USA. Sedentary and mobile designations were made based on observed extremes of mean annual ranges, and these designations were consistent within seasons and among years. Both movement groups displayed seasonal variation in movements, with mobile Silver Carp consistently moving greater distances within each season and sedentary Silver Carp exhibiting lower variability in distances moved than mobile individuals. Discharge (change in discharge) and temperature were significant predictors of mobile and sedentary individuals’ movements. Additional environmental variables (i.e., cumulative growing degree day, day of year, and change in temperature) also related to movement likelihood of sedentary individuals, whereas total length was the only additional variable that influenced movement likelihood of mobile individuals. Total length was significantly related to movement distance for both groups of Silver Carp, but the relationship was negative for sedentary fish and positive for mobile fish. Results point to differences in behavior that may require targeted management strategies to achieve agency goals to interrupt mobile individual movements that can result in range expansion. Such strategies may also limit introductions and invasions by other aquatic invasive species that exhibit similar behaviors.

Publication Title

Biological Invasions



First Page


Last Page


DOI of Published Version