Document Type


Publication Date



Metapopulation models may be applied to inform natural resource management to guide actions targeted at location-specific subpopulations. Model insights frequently help to understand which subpopulations to target and highlight the importance of connections among subpopulations. For example, managers often treat aquatic invasive species populations as discrete populations due to hydrological (e.g., lakes, pools formed by dams) or jurisdictional boundaries (e.g., river segments by country or jurisdictional units such as states or provinces). However, aquatic invasive species often have high rates of dispersion and migration among heterogenous locations, which complicates traditional metapopulation models and may not conform to management boundaries. Controlling invasive species requires consideration of spatial dynamics because local management activities (e.g., harvest, movement deterrents) may have important impacts on connected subpopulations. We expand upon previous work to create a spatial linear matrix model for an aquatic invasive species, Bighead Carp, in the Illinois River, USA, to examine the per capita contributions of specific subpopulations and impacts of different management scenarios on these subpopulations. Managers currently seek to prevent Bighead Carp from invading the Great Lakes via a connection between the Illinois Waterway and Lake Michigan by allocating management actions across a series of river pools. We applied the model to highlight how spatial variation in movement rates and recruitment can affect decisions about where management activities might occur. We found that where the model suggested management actions should occur depend crucially on the specific management goal (i.e., limiting the growth rate of the metapopulation vs. limiting the growth rate of the invasion front) and the per capita recruitment rate in downstream pools. Our findings illustrate the importance of linking metapopulation dynamics to management goals for invasive species control.

Publication Title






First Page


DOI of Published Version





© 2022 The Authors. This article has been contributed to by U.S.Government employees and their work is in the public domain in the USA

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.