Title

Do Synergistic Relationships between Nitrogen and Water Influence the Ability of Corn to Use Nitrogen Derived from Fertilizer and Soil?

Document Type

Article

Publication Date

5-2008

Abstract

To improve site-specific N recommendations a more complete understanding of the mechanisms responsible for synergistic relationships between N and water is needed. Th e objective of this research was to determine the infl uence of soil water regime on the ability of corn (Zea mays L.) to use N derived from fertilizer and soil. A randomized split-block experiment was conducted in 2002, 2003, and 2004. Soil at the site was a Brandt silty clay loam (fi ne-silty, mixed, superactive frigid Calcic Hapludoll). Blocks were split into moderate (natural rainfall) and high (natural + supplemental irrigation) water regimes. Nitrogen rates were 0, 56, 112, and 168 kg urea-N ha–1 that was surface applied. Water, soil N, and N fertilizer use effi ciencies were determined. Plant utilization of soil N was determined by mass balance in the unfertilized control plots and by using the δ15N approach in fertilized plots. Findings showed that: (i) plants responded to N and water simultaneously; (ii) N fertilizer increased water use effi ciency (170 kg vs. 223 kg grain cm–1 in 0 and 112 kg N ha–1 treatments, respectively); and (iii) water increased the ability of corn to use N derived from soil (67.7 and 61.6% effi cient in high and moderate water regimes, respectively, P = 0.002) and fertilizer (48 and 44% efficient in high and moderate water regimes, respectively, P = 0.10). Higher N use efficiency in the high water regime was attributed to two interrelated factors. First, total growth and evapotranspiration (ET) were higher in the high than the moderate water regime. Second, N transport to the root increased with water transpired. For precision farming, results indicate that: (i) the amount of N fertilizer needed to produce a kg of grain is related to the yield loss due to water stress; and (ii) the rate constant used in yield goal equations can be replaced with a variable.

Publication Title

Agronomy Journal

Volume

100

Issue

3

First Page

551

Last Page

556

DOI of Published Version

10.2134/agronj2007.0064

Share

COinS