Title

Soybean meal substitution by a microbial protein source in dairy cow diets

Divisions

University

Document Type

Abstract

Publication Date

2011

Journal

Journal of Dairy Science

Volume

E-Suppl. 1

Issue

94

Pages

237

Language

en

Abstract

The objective of this study was to examine the effects substituting soybean meal with a yeast-derived microbial protein (YMP) on rumen and blood metabolites, dry matter intake, and milk production of high-producing dairy cows. Sixteen Holstein cows (12 multiparous and 4 primiparous), 93 ± 37 DIM (mean ± SD) at the beginning of the experiment, were used in a 4 × 4 Latin square design with four 28-d periods. Cows were blocked by parity and production, with 1 square consisting of 4 animals fitted with rumen cannulas. Basal diets, formulated for 16.1% crude protein and 1.56 Mcal/kg of net energy for lactation, contained 40% corn silage, 20% alfalfa hay, and 40% concentrate mix. During each period, cows were fed 1 of 4 treatment diets corresponding to YMP (DEMP; Alltech Inc., Nicholasville, KY) concentrations of 0, 1.14, 2.28, and 3.41% DM. Soybean meal (44% CP) was replaced by YMP to attain isonitrogenous and isoenergetic diets. Dietary treatments had no effect on pH and on most ruminal volatile fatty acid concentrations, with the exception of isovalerate, which decreased linearly with the addition of YMP. Rumen ammonia concentration decreased linearly, whereas free amino acids, total amino acid nitrogen, and soluble proteins weighing more than 10 kDa showed a cubic response on rumen N fractionation. A quadratic response was observed in oligopeptides that weighed between 3 and 10 kDa and peptides under 3 kDa when expressed as percentages of total amino acids and total nitrogen. Although nonesterified fatty acid concentration in blood did not differ between treatments, β-hydroxybutyrate and plasma glucose increased linearly as YMP increased. Dry matter intake showed a cubic effect, where cows fed 1.14, and 3.41% YMP had the highest intake. Milk production was not affected by YMP, whereas a trend was observed for a quadratic increase for 4% fat-corrected milk and energy-corrected milk. Medium- and long-chain fatty acid concentrations in milk increased quadratically, which elicited similar effects on milk fat concentration and yield. Total solids percentage and yield, and milk urea nitrogen also showed quadratic effects as YMP increased in the diet. No effects were observed on feed efficiency, milk protein, and lactose percentage or yield. A complementary in vitro study demonstrated a quadratic tendency for apparent and true dry matter digestibility as YMP was added to the diet. It was concluded that the substitution of soybean meal with YMP increased the percentage of total solids in milk and tended to improve energy-corrected and fat-corrected milk production in high-producing dairy cows consuming high-forage diets.