"Rumen microbial protein synthesis in cows fed dried whey." by P. M. Windschitl and D. J. Schingoethe
 

Rumen microbial protein synthesis in cows fed dried whey.

P. M. Windschitl, South Dakota State University
D. J. Schingoethe

Research

Abstract

Two rumen-fistulated Holstein cows, weighing approximately 550 kg, were in an experiment with switchback design to evaluate effects of consuming large amounts (38% of total ration dry matter) of dried whole whey on synthesis of microbial protein in the rumen. Cows were fed total mixed rations of (dry matter) 45% corn silage, 10% alfalfa hay, and 45% concentrate mix. The concentrate mix was primarily corn and soybean meal (control) or 85% dried whole whey. Dry matter intakes averaged 16.4 and 15.3 kg/day for control and whey diets. Diaminopimelic acid nitrogen as percent of bacterial nitrogen was similar for both diets (.61 and .63% for control and whey diets). Likewise, aminoethylphosphonic acid nitrogen as percent of protozoal nitrogen was similar for both diets (.17 and .19% for control and whey diets). For the control diet, total ruminal nitrogen was estimated to be 45% bacterial and 27% protozoal. Bacteria and protozoa accounted for 52 and 22% of the total ruminal nitrogen in the cows fed the whey diet. Ruminal fluid volume (33.8 and 39.2 liters for control and dried whey diets) and dilution rates (10.2 and 12.8% h) were higher for dried whey. Ruminal ammonia (5.0 and 3.4 mg/dl) was lower for dried whey. Butyrate (16.5 and 24.4 moles/100 moles total volatile fatty acids) was higher, whereas propionate was lower (32.4 and 23.2 moles/100 moles total volatile fatty acids) when cows were fed dried whey. Bacterial synthesis appeared to be increased when cows were fed a diet containing large amounts of dried whey.