Faculty Mentor
Brian A. Logue
Abstract
Cyanide poisoning is a public concern, and there are many shortfalls in current cyanide treatments. Dimethyl trisulfide (DMTS) is a cyanide antidote candidate that overcomes these shortfalls. Currently, there are limited published reports related to the analysis of DMTS. Therefore, an analytical method to detect and analyze DMTS from a biological matrix is vital for it to become available as a therapeutic agent against cyanide poisoning. The motivation of this project is to develop an HPLC-MS/MS method for analysis of DMTS and its degradation products; however, DMTS is difficult to ionize, a requirement for MS analysis, due to its nonpolar nature. In this study, DMTS was oxidized to a more polar compound that should enable its MS-MS analysis. The oxidation reaction was optimized to maximize product yield and, therefore, improve the accuracy of the analytical technique. The optimized oxidation reaction increased the yield of oxidized DMTS by 17.4% and decreased the amount of un-oxidized DMTS by 88.5%. In addition, initial characterization of the reaction product was preformed, using GC-MS. The preliminary results indicated the DMTS was fully oxidized.
Recommended Citation
Dirks, Laura; Peterson, Brian; and Walter, Benjamin
(2015)
"Optimization and Structural Characterization of Dimethyl Trisulfide (DMTS) Oxidation Product,"
The Journal of Undergraduate Research: Vol. 13, Article 7.
Available at:
https://openprairie.sdstate.edu/jur/vol13/iss1/7