Document Type

Article

Publication Date

2006

Abstract

Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN−), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercuri)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in carbon tetrachloride. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined. Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the analysis, but SCN− and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide.

Publication Title

Toxicology Mechanisms and Methods

Volume

16

Issue

6

First Page

339

Last Page

345

Format

application/pdf

Language

en

DOI of Published Version

10.1080/15376520600616933

Publisher

Taylor and Francis

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S.

COinS