Document Type


Publication Date



The objective of this experiment was to examine the effects of supplementation and dose of rumenprotected choline (RPC) on markers of inflammation and metabolism in liver and mammary tissue during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC (20.4 g/d of choline ions; CHOL45), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30), or no RPC (CON) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 μg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM (CHOL45, n = 9; CHOL45-LPS, n = 9; CHOL30, n = 11; CHOL30-LPS, n = 10; CON, n = 10; CON-LPS, n = 9). Hepatic and mammary tissues were collected from all cows on d 17 postpartum. Hepatic and mammary tissues were collected at ~7.5 and 8 h, respectively, after the LPS challenge. An additional mammary biopsy was conducted on LPS-challenged cows (CHOL45-LPS, CHOL30-LPS, and CON-LPS) at 48 h postchallenge. Hepatic and mammary RNA copy numbers were quantified for genes involved in apoptosis, methylation, inflammation, oxidative stress, and mitochondrial function using NanoString technology. Targeted metabolomics was conducted only on mammary tissue samples (both 8 and 48 h biopsies) to quantify 143 metabolites including choline metabolites, amino acids, biogenic amines and derivatives, organic acids, carnitines, and glucose. Hepatic IFNG was greater in CHOL45 as compared with CON in unchallenged cows, suggesting an improvement in type 1 immune responses. Hepatic CASP3 was greater in CHOL45-LPS as compared with CON-LPS, suggesting greater apoptosis. Mammary IL6 was reduced in CHOL30-LPS cows as compared with CHOL45-LPS and CON-LPS (8 and 48 h). Mammary GPX4 and COX5A were reduced in CHOL30-LPS as compared with CON-LPS (8 h), and SDHA was reduced in CHOL30-LPS as compared with CON-LPS (8 and 48 h). Both CHOL30-LPS and CHOL45-LPS cows had lesser mammary ATP5J than CON-LPS, suggesting that dietary RPC supplementation altered mitochondrial function following LPS challenge. Treatment did not affect mammary concentrations of any metabolite in unchallenged cows, and only 4 metabolites were affected by dietary RPC supplementation in LPS-challenged cows. Mammary concentrations of isobutyric acid and 2 acyl-carnitines (C4:1 and C10:2) were reduced in CHOL45-LPS as compared with CHOL30-LPS and CON-LPS. Taken together, reductions in medium- and short-chain carnitines along with an increase in long-chain carnitines in mammary tissue from CHOL45-LPS cows suggests less fatty acid entry into the β oxidation pathway. Although the intramammary LPS challenge profoundly affected markers for inflammation and metabolism in liver and mammary tissue, dietary RPC supplementation had minimal effects on inflammatory markers and the mammary metabolome.

Publication Title

Journal of Dairy Science



First Page


Last Page


DOI of Published Version





Copyright © 2024 The Authors

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Dairy Science Commons