Document Type

Thesis - Open Access

Award Date

2016

Degree Name

Master of Science (MS)

Department / School

Electrical Engineering and Computer Science

First Advisor

Zhen Ni

Keywords

blackouts, cascading failures, contingency analysis, cyber-physical system, smart grid security

Abstract

The modern electric power grid has become highly integrated in order to increase the reliability of power transmission from the generating units to end consumers. In addition, today’s power system are facing a rising appeal for the upgrade to a highly intelligent generation of electricity networks commonly known as Smart Grid. However, the growing integration of power system with communication network also brings increasing challenges to the security of modern power grid from both physical and cyber space. Malicious attackers can take advantage of the increased access to the monitoring and control of the system and exploit some of the inherent structural vulnerability of power grids. Therefore, determining the most vulnerable components (e.g., buses or generators or transmission lines) is critically important for power grid defense. This dissertation introduces three different approaches to enhance the security of the smart grid. Motivated by the security challenges of the smart grid, the first goal of this thesis is to facilitate the understanding of cascading failure and blackouts triggered by multi-component attacks, and to support the decision making in the protection of a reliable and secure smart grid. In this work, a new definition of load is proposed by taking power flow into consideration in comparison with the load definition based on degree or network connectivity. Unsupervised learning techniques (e.g., K-means algorithm and self-organizing map (SOM)) are introduced to find the vulnerable nodes and performance comparison is done with traditional load based attack strategy. Second, an electrical distance approach is introduced to find the vulnerable branches during contingencies. A new network structure different than the original topological structure is formed based on impedance matrix which is referred as electrical structure. This structure is pruned to make it size compatible with the topological structure and the common branches between the two different structures are observed during contingency analysis experiments. Simulation results for single and multiple contingencies have been reported and the violation of line limits during single and multiple outages are observed for vulnerability analysis. Finally, a cyber-physical power system (CPS) testbed is introduced as an accurate cyber-physical environment in order to observe the system behavior during malicious attacks and different disturbance scenarios. The application areas and architecture of proposed CPS testbed have been discussed in details. The testbed’s efficacy is then evaluated by conducting real-time cyber attacks and exploring the impact in a physical system. The possible mitigation strategies are suggested for defense against the attack and protect the system from being unstable.

Library of Congress Subject Headings

Smart power grids -- Security measures.
Electric power transmission.
Electric power failures -- Prevention.

Description

Includes bibliographical references (page 92-100)

Format

application/pdf

Number of Pages

114

Publisher

South Dakota State University

Share

COinS
 

Rights Statement

In Copyright