Document Type

Thesis - Open Access

Award Date

2018

Degree Name

Master of Science (MS)

Department / School

Electrical Engineering and Computer Science

First Advisor

Sung Shin

Abstract

The Precision Agriculture plays a crucial part in the agricultural industry about improving the decision-making process. It aims to optimally allocate the resources to maintain the sustainable productivity of farmland and reduce the use of chemical compounds. [17] However, the on-site inspection of vegetations often falls to researchers’ trained eye and experience, when it deals with the identification of the non-crop vegetations. Deep Convolution Neural Network (CNN) can be deployed to mitigate the cost of manual classification. Although CNN outperforms the other traditional classifiers, such as Support Vector Machine, it is still in question whether CNN can be deployable in an industrial environment. In this paper, I conducted a study on the feasibility of CNN for Vegetation Mapping on lawn inspection for weeds. I want to study the possibility of expanding the concept to the on-site, near real-time, crop site inspections, by evaluating the generated results.

Library of Congress Subject Headings

Vegetation mapping.
Neural networks (Computer science)
Vegetation classification.

Description

Includes bibliographical references

Format

application/pdf

Number of Pages

41

Publisher

South Dakota State University

Share

COinS
 

Rights Statement

In Copyright