Document Type

Thesis - Open Access

Award Date

2019

Degree Name

Master of Science (MS)

Department / School

Electrical Engineering and Computer Science

First Advisor

Dennis Helder

Keywords

Image Processing, Satellite Calibration

Abstract

In this study an initial validation of the Landsat 8 (L8) Operational Land Imager (OLI) Surface Reflectance (SR) product was performed. The OLI SR product is derived from the L8 Top-of-Atmosphere product via the Landsat Surface Reflectance Code (LaSRC) software and generated by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of this study is to develop and evaluate proper validation methodology for the OLI L2 SR product. Validation was performed using near-simultaneous ground truth SR measurements during Landsat 8 overpasses at 13 sites located in the U.S., Brazil, Chile and France. The ground truth measurements consisted of field spectrometer measurements, automated hyperspectral ground measurements operated by the Radiometric Calibration Network (RadCalNet) and derived SR measurements from Airborne Observation Platforms (AOP) operated by the National Ecological Observatory Network (NEON). The 13 sites cover a broad range of 0–0.5 surface reflectance units across the reflective solar spectrum. Results show that the mean reflectance difference between OLI L2 SR products and ground truth measurements for the 13 validation sites and all bands was under 2.5%. The largest uncertainties of 11% and 8% were found in the CA and Blue bands, respectively; whereas, the longer wavelength bands were within 4% or less. Results consistently indicated similarity between the OLI L2 SR product and ground truth data, especially in longer wavelengths over dark and bright targets, while less reliable performance was observed in shorter wavelengths and sparsely vegetated targets.

Library of Congress Subject Headings

Landsat satellites.
Landsat satellites -- Calibration.
Reflectance.
Imaging systems -- Image quality.
Remote sensing -- Quality control.

Format

application/pdf

Number of Pages

63

Publisher

South Dakota State University

Share

COinS
 

Rights Statement

In Copyright