Document Type

Thesis - Open Access

Award Date

1987

Degree Name

Master of Science (MS)

Department / School

Civil Engineering

First Advisor

M. Nadim Hassoun

Abstract

A reinforced concrete structure must satisfy adequate strength at ultimate load stage and serviceability at service load, and it must meet the ductility requirements. Unfortunately reinforced concrete, unlike steel, tends to fail in a relatively brittle manner due to its limited ductility, which has led to a limitation in steel quantities to be used by the ACI Code. An over-reinforced concrete section will fail by crushing of concrete before the yielding of steel, whereas in under-reinforced section the steel will yield before the crushing of concrete. Ductility plays a significant role in structures, especially those built in seismic zones or those subjected to blast or suddenly applied loads. Numerous investigations have dealt with. ductility in reinforced concrete structures, thus leading to improved economy, and sometimes to simplified design procedures. New design concepts have been developed, especially the use of the limit state design concept, which relies heavily on the inelastic behavior of reinforced concrete. For the limit state design concept to be valid, a concrete structure must have adequate rotation capacity that exceeds what is required by the plastic hinges. Plastic hinge rotation depends primarily on concrete compression failure. A low compressive strain in concrete will reduce the degree of moment redistribution; therefore, a collapse mechanism will develop without reaching the ultimate load capacity, unless the ultimate strain can be increased in some way, as adding fibers to the concrete mix.

Library of Congress Subject Headings

Concrete beams

Reinforced concrete, Fiber

Steel -- Ductility

Format

application/pdf

Number of Pages

316

Publisher

South Dakota State University

Share

COinS