Document Type
Thesis - Open Access
Award Date
2021
Degree Name
Master of Science (MS)
Department / School
Mechanical Engineering
First Advisor
Todd Letcher
Keywords
3D Printed Composites, Fused Deposition Modeling, Print Orientation, Thermal Conductivity
Abstract
Additive manufacturing (AM) technologies have become widely used for rapid prototyping and are beginning to be used for end-use applications. Fused Deposition Modeling (FDM) is a type of 3D printing where molten thermoplastic is extruded layer by layer to create parts. There is an increasing need for improvement and diversification of material properties to further extend the use of AM parts. AM parts have not been commonly used in heat transfer applications due to the limited availability of information on thermal conductivity of materials and the effects of printing orientation. A special apparatus was designed and built to experimentally test the thermal conductivity of various FDM materials. A variety of materials (pure polymers and composites) were tested. Samples of pure polymers such as Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol-Modified (PETG) were manufactured in a variety of orientations to test tool path effects on heat conduction through the material. Composite polymers using a PLA matrix with a varying mass fraction of copper filler, were experimentally tested for their thermal conductivities. One copper sample was sintered to remove the PLA matrix and increase conductivity. For the PLA and PETG samples, it was found that the vertical parallel print displayed the highest conductivity in both polymers and vertical [45°, -45°] in both polymers showed the lowest conductivity of all orientations. Copper composites showed increasing thermal conductivity with increasing copper filler mass fraction. Sintering copper composites was shown to increase thermal conductivity by orders of magnitude.
Library of Congress Subject Headings
Three-dimensional printing.
Thermal conductivity.
Thermoplastic composites.
Composite materials.
Number of Pages
61
Publisher
South Dakota State University
Recommended Citation
Jacques, Cory, "Effect of Composition and Print Orientation on Thermal Conductivity of 3d Printed Composites" (2021). Electronic Theses and Dissertations. 5495.
https://openprairie.sdstate.edu/etd/5495