Document Type
Article
Publication Version
Version of Record
Publication Date
10-2016
Keywords
: Sentinel-2; fire; burned area; separability analysis
Description
: Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI) bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance) and atmospherically corrected (surface reflectance) images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence) and non-parametric (decision tree) approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.
Publication Title
Remote Sensing
Volume
8
Issue
10
First Page
873
DOI of Published Version
10.3390/rs8100873
Pages
18
Type
text
Format
application/pdf
Language
en
Publisher
MDPI
Rights
Copyright © The Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Huang, Haiyan; Roy, David P.; Boschetti, Luigi; Zhang, Hankui; Yan, Lin Dr.; Kumar, Sanath Sathyachandran; Gomez-Dans, Jose; and Li, Jian, "Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination" (2016). GSCE Faculty Publications. 22.
https://openprairie.sdstate.edu/gsce_pubs/22
Included in
Environmental Sciences Commons, Physical and Environmental Geography Commons, Remote Sensing Commons