Document Type
Article
Publication Version
Version of Record
Publication Date
10-7-2011
Description
Instantaneous estimates of the power released by fire (fire radiative power, FRP) are available with satellite active fire detection products. The temporal integral of FRP provides an estimate of the fire radiative energy (FRE) that is related linearly to the amount of biomass burned needed by the atmospheric emissions modeling community. The FRE, however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires. Satellite FRPs derived over individual burned areas and fires have been observed to exhibit power law distributions. This property is exploited to develop a new way to derive FRE, as the product of the fire duration and the expected FRP value derived from the FRP power law probability distribution function. The method is demonstrated and validated by the use of FRP data measured with a dual‐band radiometer over prescribed fires in the United States and by the use of FRP data retrieved from moderate resolution imaging spectroradiometer (MODIS) active‐fire detections over Brazilian deforestation and Australian savanna fires. The biomass burned derived using the conventional FRP temporal integration and power law FRE estimation methods is compared with biomass burned measurements (prescribed fires) and available fuel load information reported in the literature (Australian and Brazilian fires). The results indicate that the FRE power law derivation method may provide more reliable burned biomass estimates under sparse satellite FRP sampling conditions and correct for satellite active‐fire detection omission errors if the FRP power law distribution parameters and the fire duration are known.
Publication Title
Journal of Geophysical Research
Volume
116
DOI of Published Version
10.1029/2011JD015676
Pages
18
Type
text
Format
application/pdf
Language
en
Publisher
American Geophysical Union
Rights
© Copyright 2011 by the American Geophysical Union
Recommended Citation
Kumar, S. S., D. P. Roy, L. Boschetti, and R. Kremens (2011), Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations, J. Geophys. Res., 116, D19303, doi:10.1029/2011JD015676.
Included in
Physical and Environmental Geography Commons, Remote Sensing Commons, Spatial Science Commons
Comments
This article was published in Journal of Geophysical Research, 116, D19303, doi:10.1029/2011JD015676. Posted with permission.