CD31+ T Cells Represent a Functionally Distinct Vascular T Cell Phenotype
Document Type
Article
Publication Date
3-1-2010
Abstract
In contrast to CD3(+)/CD31(-) cells, CD3(+)/CD31(+) cells aid in endothelial repair and revascularization. There are limited data regarding the functional differences between circulating CD3(+)/CD31(+) and CD3(+)/CD31(-) cells that may contribute to their divergent cardiovascular effects. The aim of the present study was to characterize functional differences between CD3(+)/CD31(+) and CD3(+)/CD31(-) cells. To address this aim, migratory capacity, proangiogenic cytokine release and apoptotic susceptibility of CD3(+)/CD31(+) and CD3(+)/CD31(-) cells were determined. Human CD3(+)/CD31(+) and CD3(+)/CD31(-)cells from peripheral blood were isolated using magnetic-activated cell sorting. CD3(+)/CD31(+) cells demonstrated significantly higher ( approximately 60%) migratory capacity to the chemokines SDF-1alpha (655+/-99 vs. 273+/-54 AU) and VEGF (618+/-99 vs. 259+/-57 AU) vs. CD3(+)/CD31(-) cells. Release of angiogenic cytokines G-CSF, interleukin-8 and matrix metallopeptidase-9 were all approximately 100% higher (P<0.05) in CD3(+)/CD31(+) than CD3(+)/CD31(-) cells. CD3(+)/CD31(+) cells exhibited significantly higher intracellular concentrations of active caspase-3 (2.61+/-0.60 vs. 0.34+/-0.09 ng/mL) and cytochrome-c (21.8+/-1.4 vs. 13.7+/-1.0 ng/mL). In summary, CD3(+)/CD31(+) cells have greater migratory and angiogenic cytokine release capacity, but are more susceptible to apoptosis compared with CD3(+)/CD31(-) cells. Enhanced migratory capacity and angiogenic cytokine release may contribute to the vasculogenic properties of this unique T cell subpopulation.
Publication Title
Blood Cells, Molecules & Diseases
Volume
44
Issue
2
First Page
74
Last Page
78
DOI of Published Version
10.1016/j.bcmd.2009.10.009
Publisher
Elsevier
Recommended Citation
Kushner, Erich J; MacEneaney, Owen J; Morgan, Richard G; Van Engelenburg, Alexander M; Van Guilder, Gary P.; and DeSouza, Christopher A, "CD31+ T Cells Represent a Functionally Distinct Vascular T Cell Phenotype" (2010). Health and Nutritional Sciences Faculty Publications. 59.
https://openprairie.sdstate.edu/hns_pubs/59