Phenotypic and Biomass Yield Variations in Natural Populations of Prairie Cordgrass (Spartina pectinata Link) in the USA

Document Type

Article

Publication Date

9-2015

Abstract

Prairie cordgrass (Spartina pectinata Link) is a productive warm-season, C4 perennial grass native to most of North America having tolerance to wet, cold, and saline growing conditions. Excellent stress tolerance, along with high biomass yields, makes prairie cordgrass a good candidate as a dedicated energy crop on marginal land. However, there is little information available on genetic variation, including yield potential, of native populations in the USA. The objectives of this study were to evaluate biomass yield and to identify the nature and extent of genetic variation in natural populations of prairie cordgrass by comparing endemic strains collected throughout the USA. Forty-two prairie cordgrass populations were collected from prairie-remnant sites in 13 states and evaluated at the University of Illinois in Urbana, IL. The 4-year field study of prairie cordgrass revealed extensive variations in biomass yield and phenotypic traits associated with biomass yield among these populations. Strong correlations were observed between the phenotypic values and origins of the populations. Path coefficient analysis indicated that tiller mass, tiller density, heading date, plant height, and phytomer number positively affected biomass yield directly or indirectly. However, the phenotypic traits including biomass yield showed significant variation among years except for phytomer number and heading date. With the extensive genetic variability and high biomass yield potential demonstrated in this experiment, prairie cordgrass could become a highly productive bioenergy crop by developing a well-planned breeding program.

Publication Title

BioEnergy Research

Volume

8

Issue

3

First Page

1371

Last Page

1383

DOI of Published Version

10.1007/s12155-015-9604-3

Share

COinS