Atrazine Sorption and Desorption as Affected by Aggregate Size, Particle Size, and Soil Type
Document Type
Article
Publication Date
2003
Abstract
Wind-erodible soil sediments are classified as aggregates and particles < 1 mm in diameter. Aggregate size has been reported to influence pesticide retention and behavior in the soil. Atrazine sorption and desorption isotherms were determined using batch equilibration methods for six aggregate sizes of Barnes loam (fine-loamy, mixed, superactive, frigid Calcic Haplodol) and Brandt silty clay loam (fine-silty, mixed, superactive, frigid Calcic Haplodol) soils. Aggregate and particle sizes used in this study ranged from < 0.11 to > 1.7 mm, and atrazine concentrations ranged from 0.65 to 39.2 μmol L−1. The Kf values for the isotherms were calculated using the Freundlich equation. In the Barnes loam, Kf values were strongly positively correlated to aggregate size, particle size, and organic carbon (OC) content (P = 0.01 for each parameter), whereas in the Brandt silty clay loam, Kfvalues were less correlated to size and OC content (P ≥ 0.1) but were better correlated to clay content and estimated specific surface area (P = 0.05 for each parameter). Desorption was hysteretic with about 18% more atrazine desorbed from smallest than from largest size fractions. At a concentration of 13.0 μmol L−1, the amount desorbed ranged from 9 to 13.7% of the initial amount of adsorbed atrazine after 5 d, whereas at 39.2 μmol L−1, the amount desorbed ranged from 10.3 to 16% of the amount adsorbed. These data indicate that wind-erodible size aggregates and particles could be a source of herbicide contamination of surface water.
Publication Title
Weed Science
Volume
51
Issue
3
First Page
456
Last Page
462
DOI of Published Version
10.1614/0043-1745(2003)051[0456:ASADAA]2.0.CO;2
Recommended Citation
DeSutter, Thomas M.; Clay, Sharon A.; and Clay, David E., "Atrazine Sorption and Desorption as Affected by Aggregate Size, Particle Size, and Soil Type" (2003). Agronomy, Horticulture and Plant Science Faculty Publications. 175.
https://openprairie.sdstate.edu/plant_faculty_pubs/175