Document Type
Article
Publication Date
5-2013
Abstract
Crop yields at summit positions of rolling landscapes often are lower than backslope yields. The differences in plant response may be the result of many different factors. We examined corn (Zea mays L.) plant productivity, gene expression, soil water, and nutrient availability in two landscape positions located in historically high (backslope) and moderate (summit and shoulder) yielding zones to gain insight into plant response differences. Growth characteristics, gene expression, and soil parameters (water and N and P content) were determined at the V12 growth stage of corn. At tassel, plant biomass, N content, 13C isotope discrimination (Δ), and soil water was measured. Soil water was 35% lower in the summit and shoulder compared with the lower backslope plots. Plants at the summit had 16% less leaf area, biomass, and N and P uptake at V12 and 30% less biomass at tassel compared with plants from the lower backslope. Transcriptome analysis at V12 indicated that summit and shoulder-grown plants had 496 downregulated and 341 upregulated genes compared with backslope-grown plants. Gene set and subnetwork enrichment analyses indicated alterations in growth and circadian response and lowered nutrient uptake, wound recovery, pest resistance, and photosynthetic capacity in summit and shoulder-grown plants. Reducing plant populations, to lessen demands on available soil water, and applying pesticides, to limit biotic stress, may ameliorate negative water stress responses.
Publication Title
The Plant Genome
Volume
6
Issue
2
DOI of Published Version
10.3835/plantgenome2012.11.0029
Rights
A work produced within the official duties of an employee of the United States Government are not subject to copyright within the U.S.
Recommended Citation
Hansen, Stephanie; Clay, Sharon A.; Clay, David E.; Carlson, C. Gregg; Reicks, Graig; Jarachi, Youssef; and Horvath, David, "Landscape Features Impact on Soil Available Water, Corn Biomass, and Gene Expression during the Late Vegetative Stage" (2013). Agronomy, Horticulture and Plant Science Faculty Publications. 20.
https://openprairie.sdstate.edu/plant_faculty_pubs/20