Document Type

Article

Publication Date

11-1998

Abstract

Understanding the factors that influence soil and plant nitrogen (N) spatial variability may improve our ability to develop management systems that maximize productivity and minimize environmental hazards. The objective of this study was to determine the field (65 ha) scale spatial variability of N and δ15N in soil and corn (Zea mays). Soil, grain, and stover samples were collected from grids that ranged in size from 30 by 30 m to 60 by 60 m. Plant samples, collected following physiological maturity in 1995, were analyzed for total N and δ15N. Soil samples, collected prior to planting in the spring of 1995 and 1996, were analyzed for inorganic‐N, total N, and δ15N. All parameters showed strong spatial relationships. In an undrained portion of the field containing somewhat poorly and poorly drained soils there was a net loss of 95 kg N ha‐1, while in an adjacent area that was tile drained there was a net gain of 98 kg N ha‐1. Denitrification and N mineralization most likely were responsible for losses and gains, respectively. Differences between the N balances of these areas (193 kg N ha‐1) provide a relative measure of the impact of tile drainage on plant N availability and greenhouse gas production in a wet year.

Publication Title

Communications in Soil Science and Plant Analysis

Volume

28

Issue

17-18

First Page

1513

Last Page

1527

Format

application/pdf

Language

en

DOI of Published Version

10.1080/00103629709369893

Publisher

Taylor and Francis

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S.

Share

COinS