Document Type
Article
Publication Date
4-2022
Abstract
Limited knowledge about how nitrogen (N) dynamics are affected by climate change, weather variability, and crop management is a major barrier to improving the productivity and environmental performance of soybean-based cropping systems. To fill this knowledge gap, we created a systems understanding of agroecosystem N dynamics and quantified the impact of controllable (management) and uncontrollable (weather, climate) factors on N fluxes and soybean yields. We performed a simulation experiment across 10 soybean production environments in the United States using the Agricultural Production Systems sIMulator (APSIM) model and future climate projections from five global circulation models. Climate change (2020–2080) increased N mineralization (24%) and N2O emissions (19%) but decreased N fixation (32%), seed N (20%), and yields (19%). Soil and crop management practices altered N fluxes at a similar magnitude as climate change but in many different directions, revealing opportunities to improve soybean systems’ performance. Among many practices explored, we identified two solutions with great potential: improved residue management (short-term) and water management (long-term). Inter-annual weather variability and management practices affected soybean yield less than N fluxes, which creates opportunities to manage N fluxes without compromising yields, especially in regions with adequate to excess soil moisture. This work provides actionable results (tradeoffs, synergies, directions) to inform decision-making for adapting crop management in a changing climate to improve soybean production systems.
Publication Title
Frontiers in Plant Science
Volume
13
DOI of Published Version
10.3389/fpls.2022.849896
Rights
Copyright © The Author(s)
Recommended Citation
Elli EF, Ciampitti IA, Castellano MJ, Purcell LC, Naeve S, Grassini P, La Menza NC, Moro Rosso L, de Borja Reis AF, Kovács P and Archontoulis SV (2022) Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield. Front. Plant Sci. 13:849896. doi: 10.3389/fpls.2022.849896
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.