Document Type
Thesis - Open Access
Award Date
2022
Degree Name
Master of Science (MS)
Department / School
Mathematics and Statistics
First Advisor
Hossein Moradi Rekabdarkolaee
Keywords
Precision agriculture, statistics
Abstract
As the population of the Earth increases, there is a growing need for food to feed the inhabitants. Precision agriculture offers techniques and tools that can be used to help accommodate the growing population. One specific precision agriculture tool is remote sensing data, which can be used to image fields as an effort to better predict or understand the crops. In this thesis, deep neural networks are used to evaluate various spatial, spectral, and temporal resolutions of three different satellite images to determine which best predicts corn yield. The main metrics we used to evaluate the models were R-squared (R2), root mean squared error (RMSE), and mean absolute error (MAE). Regarding spectral resolutions, our results suggest that more granularity produces better models. For spatial resolutions, our results suggest less granularity performs better. Additionally, our results found that high frequency temporal resolution does not produce perform better than low frequency temporal resolution.
Library of Congress Subject Headings
Precision farming.
Crop yields -- Remote sensing.
Neural networks (Computer science)
Agricultural estimating and reporting.
Number of Pages
103
Publisher
South Dakota State University
Recommended Citation
Liebl, Stephanie, "Using Deep Neural Networks to Analyze Precision Agriculture Data" (2022). Electronic Theses and Dissertations. 434.
https://openprairie.sdstate.edu/etd2/434