Document Type
Article
Publication Date
6-2019
Abstract
Local adaptation is the process by which natural selection drives adaptive phenotypic divergence across environmental gradients. Theory suggests that local adaptation results from genetic trade-offs at individual genetic loci, where adaptation to one set of environmental conditions results in a cost to fitness in alternative environments. However, the degree to which there are costs associated with local adaptation is poorly understood because most of these experiments rely on two-site reciprocal transplant experiments. Here, we quantify the benefits and costs of locally adaptive loci across 17° of latitude in a four-grandparent outbred mapping population in outcrossing switchgrass (Panicum virgatum L.), an emerging biofuel crop and dominant tallgrass species. We conducted quantitative trait locus (QTL) mapping across 10 sites, ranging from Texas to South Dakota. This analysis revealed that beneficial biomass (fitness) QTL generally incur minimal costs when transplanted to other field sites distributed over a large climatic gradient over the 2 y of our study. Therefore, locally advantageous alleles could potentially be combined across multiple loci through breeding to create high-yielding regionally adapted cultivars.
Publication Title
PNAS
Volume
116
Issue
26
First Page
12933
Last Page
12941
DOI of Published Version
10.1073/pnas.1821543116
Publisher
National Academy of Sciences
Rights
Copyright © 2019 the Author(s)
Recommended Citation
Lowry, David B.; Lovell, John T.; Zhang, Li; Bonnette, Jason; Fay, Philip A.; Mitchell, Robert B.; Lloyd-Reilley, John; Boe, Arvid R.; and Et. al, "QTL × Environment Interactions Underlie Adaptive Divergence in Switchgrass Across a Large Latitudinal Gradient" (2019). Agronomy, Horticulture and Plant Science Faculty Publications. 309.
https://openprairie.sdstate.edu/plant_faculty_pubs/309
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comments
This article contains Supporting information online at:www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821543116/-/DCSupplemental.