Document Type
Article
Publication Date
10-2002
Keywords
beef, muscles, tenderness
Abstract
The objective of this study was to quantify intramuscular tenderness variation within four muscles from the beef round: biceps femoris (BF), semitendinosus (ST), semimembranosus (SM), and adductor (AD). At 48 h postmortem, the BF, ST, SM, and AD were dissected from either the left or right side of ten carcasses, vacuum packaged, and aged for an additional 8 d. Each muscle was then frozen and cut into 2.54- cm-thick steaks perpendicular to the long axis of the muscle. Steaks were broiled on electric broilers to an internal temperature of 71°C. Location-specific cores were obtained from each cooked steak, and Warner- Bratzler shear force was evaluated. Definable intramuscular shear force variation (SD = 0.56 kg) was almost twice as large as between-animal shear force variation (SD = 0.29 kg) and 2.8 times as large as between muscle variation (SD = 0.20 kg). The ranking of muscles from greatest to least definable intramuscular shear force variation was BF, SM, ST, and AD (SD = 1.09, 0.72, 0.29, and 0.15 kg, respectively). The BF had its lowest shear force values at the origin (sirloin end), intermediate shear force values at the insertion, and its highest shear force values in a middle region 7 to 10 cm posterior to the sirloin-round break point (P < 0.05). The BF had lower shear force values toward the ST side than toward the vastus lateralis side (P < 0.05). The ST had its lowest shear force values in a 10-cm region in the middle, and its highest shear force values toward each end (P < 0.05). The SM had its lowest shear force values in the first 10-cm from the ischial end (origin), and its highest shear force values in a 13- cm region at the insertion end (P < 0.05). Generally, shear force was lower toward the superficial (medial) side than toward the deep side of the SM (P < 0.05). There were no intramuscular differences in shear force values within the AD (P > 0.05). These data indicate that definable intramuscular tenderness variation is substantial and could be used to develop alternative fabrication and(or) merchandising methods for beef round muscles.
Publication Title
Journal of Animal Science
Volume
80
Issue
10
First Page
2594
Last Page
2599
Pages
6
DOI of Published Version
2002.80102594x
Publisher
American Society of Animal Science
Rights
Copyright © 2002 American Society of Animal Science
Recommended Citation
Reuter, B.J.; Wulf, D.M.; and Maddock, R.J., "Mapping Intramuscular Tenderness Variation in Four Major Muscles of the Beef Round" (2002). Animal Science Faculty Publications. 33.
https://openprairie.sdstate.edu/ans_pubs/33